loading
Documents

Research.Publish.Connect.

Paper

Paper Unlock

Authors: Marcus Cheetham 1 ; Cátia Cepeda 2 and Hugo Gamboa 3

Affiliations: 1 University of Zurich and Nungin University, Switzerland ; 2 FCT-UNL, Portugal ; 3 FCT-UNL and PLUX Wireless Biosignals S.A, Portugal

ISBN: 978-989-758-170-0

Keyword(s): Biosignals, Mind Wandering, Mindfulness, Attention, Signal-Processing, Stress, Mobile Phone App.

Related Ontology Subjects/Areas/Topics: Applications and Services ; Biomedical Engineering ; Biomedical Signal Processing ; Computer Vision, Visualization and Computer Graphics ; Devices ; Health Information Systems ; Human-Computer Interaction ; Medical Image Detection, Acquisition, Analysis and Processing ; Physiological Computing Systems ; Real-Time Systems ; Wearable Sensors and Systems

Abstract: There is growing interest in mindfulness-based training of attention. A particular challenge for novices is learning to sustain focused attention while ensuring that the mind does not wander. This paper presents the development of a tool for the automated detection of episodes of mind wandering (MW), on the basis of biosignals, while normal healthy participants engaged in brief mindfulness-based training (BMT) of attention. BMT required five 20-minute training sessions on consecutive days and entailed practice of breath-focused attention, a typical exercise in mindfulness-based techniques of stress-reduction. Heart rate, respiratory rate, electrodermal and electromyographic activity were measured, and participants pressed a button to indicate the subjective detection of MW during training. The data showed that BMT did not influence our measures of stress but BMT was effective in reducing the frequency of subjectively detected MW events. The algorithm for offline detection of MW achiev ed an accuracy of 85%. Based on this algorithm, a mobile application was developed for automated MW detection in real-time. The application requires the use of easily placeable sensors, provides a new approach to the real-time MW detection, and could be developed further for use in MW-related investigations and interventions (such as mindfulness-based training of focused attention). (More)

PDF ImageFull Text

Download
Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 3.88.156.58

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Cheetham, M.; Cepeda, C. and Gamboa, H. (2016). Automated Detection of Mind Wandering: A Mobile Application.In Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2016) ISBN 978-989-758-170-0, pages 198-205. DOI: 10.5220/0005702401980205

@conference{biosignals16,
author={Cheetham, M. and Cátia Cepeda. and Hugo Gamboa.},
title={Automated Detection of Mind Wandering: A Mobile Application},
booktitle={Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2016)},
year={2016},
pages={198-205},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005702401980205},
isbn={978-989-758-170-0},
}

TY - CONF

JO - Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2016)
TI - Automated Detection of Mind Wandering: A Mobile Application
SN - 978-989-758-170-0
AU - Cheetham, M.
AU - Cepeda, C.
AU - Gamboa, H.
PY - 2016
SP - 198
EP - 205
DO - 10.5220/0005702401980205

Login or register to post comments.

Comments on this Paper: Be the first to review this paper.