loading
Papers Papers/2022

Research.Publish.Connect.

Paper

Authors: Lars Sørensen ; Simon Mathiesen ; Dirk Kraft and Henrik Petersen

Affiliation: SDU Robotics, University of Southern Denmark, Campusvej, Odense, Denmark

Keyword(s): Iterative Learning, Statistical Function Estimators, Binomial Trials.

Abstract: We propose a new function estimator, called Wilson Score Kernel Density Estimation, that allows to estimate a mean probability and the surrounding confidence interval for parameterized processes with binomially distributed outcomes. Our estimator combines the advantages of kernel smoothing, from Kernel Density Estimation, and robustness to low number of samples, from Wilson Score. This allows for more robust and data efficient estimates compared to the individual use of these two estimators. While our estimator is generally applicable for processes with binomially distributed outcomes, we will present it in the context of iterative optimization. Here we first show the advantage of our estimator on a mathematically well defined problem, and then apply our estimator to an industrial automation process.

CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 3.233.217.106

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Sørensen, L.; Mathiesen, S.; Kraft, D. and Petersen, H. (2020). Wilson Score Kernel Density Estimation for Bernoulli Trials. In Proceedings of the 17th International Conference on Informatics in Control, Automation and Robotics - ICINCO, ISBN 978-989-758-442-8; ISSN 2184-2809, pages 305-313. DOI: 10.5220/0009816503050313

@conference{icinco20,
author={Lars Sørensen. and Simon Mathiesen. and Dirk Kraft. and Henrik Petersen.},
title={Wilson Score Kernel Density Estimation for Bernoulli Trials},
booktitle={Proceedings of the 17th International Conference on Informatics in Control, Automation and Robotics - ICINCO,},
year={2020},
pages={305-313},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0009816503050313},
isbn={978-989-758-442-8},
issn={2184-2809},
}

TY - CONF

JO - Proceedings of the 17th International Conference on Informatics in Control, Automation and Robotics - ICINCO,
TI - Wilson Score Kernel Density Estimation for Bernoulli Trials
SN - 978-989-758-442-8
IS - 2184-2809
AU - Sørensen, L.
AU - Mathiesen, S.
AU - Kraft, D.
AU - Petersen, H.
PY - 2020
SP - 305
EP - 313
DO - 10.5220/0009816503050313