loading
Documents

Research.Publish.Connect.

Paper

Paper Unlock

Authors: David Graullera 1 ; Salvador Moreno 1 and M. Teresa Escrig 2

Affiliations: 1 Universidad de Valencia, Spain ; 2 Universitat Jaume I, Spain

ISBN: 978-972-8865-60-3

Keyword(s): Qualitative Reasoning, Cooperative Map Building, Multi-Robot System.

Related Ontology Subjects/Areas/Topics: Autonomous Agents ; Informatics in Control, Automation and Robotics ; Mobile Robots and Autonomous Systems ; Modeling, Simulation and Architectures ; Robotics and Automation

Abstract: The problem that a robot navigates autonomously through its environment, builds its own map and localizes itself in the map, is still an open problem. It is known as the SLAM (Simultaneous Localization and Map Building) problem. This problem is made even more difficult when we have several robots cooperating to build a common map of an unknown environment, due to the problem of map integration of several submaps built independently by each robot, and with a high degree of error, making the map matching specially difficult. Most of the approaches to solve map building problems are quantitative, resulting in a great computational cost and a low level of abstraction. In order to fulfil these drawbacks qualitative models have been recently used. However, qualitative models are non deterministic. Therefore, the solution recently adopted has been to mix both qualitative and quantitative models to represent the environment and build maps. However, no reasoning process has been used to deal w ith the information stored in maps up to now, therefore maps are only static storage of landmarks. In this paper we propose a novel method for cooperative map building based on hybrid (qualitative+quantitative) representation which includes also a reasoning process. Distinctive landmarks acquisition for map representation is provided by the cognitive vision and infrared modules which compute differences from the expected data according to the current map and the actual information perceived. We will store in the map the relative orientation information of the landmarks which appear in the environment, after a qualitative reasoning process, therefore the map will be independent of the point of view of the robot. Map integration will then be achieved by localizing each robot in the maps made by the other robots, through a process of pattern matching of the hybrid maps elaborated by each robot, resulting in an integrated map which all robots share, and which is the main objective of this work. This map building method is currently being tested on a team of Sony AIBO four legged robots. (More)

PDF ImageFull Text

Download
Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 18.234.51.17

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Graullera D.; Moreno S.; Escrig M. and (2006). COOPERATIVE MAP BUILDING USING QUALITATIVE REASONING FOR SEVERAL AIBO ROBOTS.In Proceedings of the Third International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-972-8865-60-3, pages 229-234. DOI: 10.5220/0001218502290234

@conference{icinco06,
author={David Graullera and Salvador Moreno and M. Teresa Escrig},
title={COOPERATIVE MAP BUILDING USING QUALITATIVE REASONING FOR SEVERAL AIBO ROBOTS},
booktitle={Proceedings of the Third International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2006},
pages={229-234},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001218502290234},
isbn={978-972-8865-60-3},
}

TY - CONF

JO - Proceedings of the Third International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - COOPERATIVE MAP BUILDING USING QUALITATIVE REASONING FOR SEVERAL AIBO ROBOTS
SN - 978-972-8865-60-3
AU - Graullera, D.
AU - Moreno, S.
AU - Escrig, M.
PY - 2006
SP - 229
EP - 234
DO - 10.5220/0001218502290234

Login or register to post comments.

Comments on this Paper: Be the first to review this paper.