loading
Papers Papers/2022 Papers Papers/2022

Research.Publish.Connect.

Paper

Paper Unlock

Authors: Mirco Fabbri and Gianluca Moro

Affiliation: Department of Computer Science and Engineering (DISI), University of Bologna, Via Cesare Pavese, I-47522, Cesena and Italy

Keyword(s): Stock Market Prediction, Trading, Dow Jones, Quantitative Finance, Deep Learning, Recurrent Neural Network, LSTM.

Abstract: Though recurrent neural networks (RNN) outperform traditional machine learning algorithms in the detection of long-term dependencies among the training instances, such as in term sequences in sentences or among values in time series, surprisingly few studies so far have deployed concrete solutions with RNNs for the stock market trading. Presumably the current difficulties of training RNNs have contributed to discourage their wide adoption.This work presents a simple but effective solution, based on a deep RNN, whose gains in trading with Dow Jones Industrial Average (DJIA) outperform the state-of-the-art, moreover the gain is 50% higher than that produced by similar feed forward deep neural networks. The trading actions are driven by the predictions of the price movements of DJIA, using simply its publicly available historical series. To improve the reliability of results with respect to the literature, we have experimented the approach on a long consecutive period of 18 years of his torical DJIA series, from 2000 to 2017. In 8 years of trading in the test set period from 2009 to 2017, the solution has quintupled the initial capital, moreover since DJIA has on average an increasing trend, we also tested the approach with a decreasing averagely trend by simply inverting the same historical series of DJIA. In this extreme case, in which hardly any investor would risk money, the approach has more than doubled the initial capital. (More)

CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 18.97.9.172

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Fabbri, M. and Moro, G. (2018). Dow Jones Trading with Deep Learning: The Unreasonable Effectiveness of Recurrent Neural Networks. In Proceedings of the 7th International Conference on Data Science, Technology and Applications - DATA; ISBN 978-989-758-318-6; ISSN 2184-285X, SciTePress, pages 142-153. DOI: 10.5220/0006922101420153

@conference{data18,
author={Mirco Fabbri and Gianluca Moro},
title={Dow Jones Trading with Deep Learning: The Unreasonable Effectiveness of Recurrent Neural Networks},
booktitle={Proceedings of the 7th International Conference on Data Science, Technology and Applications - DATA},
year={2018},
pages={142-153},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006922101420153},
isbn={978-989-758-318-6},
issn={2184-285X},
}

TY - CONF

JO - Proceedings of the 7th International Conference on Data Science, Technology and Applications - DATA
TI - Dow Jones Trading with Deep Learning: The Unreasonable Effectiveness of Recurrent Neural Networks
SN - 978-989-758-318-6
IS - 2184-285X
AU - Fabbri, M.
AU - Moro, G.
PY - 2018
SP - 142
EP - 153
DO - 10.5220/0006922101420153
PB - SciTePress