loading
Papers Papers/2022 Papers Papers/2022

Research.Publish.Connect.

Paper

Authors: Samuel Cardoso 1 ; 2 ; Juliano Buss 2 ; Javier Gomez 2 ; Helida Santos 3 ; Giancarlo Lucca 4 ; Adenauer Yamin 2 and Renata Reiser 2

Affiliations: 1 Federal Institute of Education Science and Technology Sul-rio-grandense (IFSul), Av. Paul Harris, 97574-360, Brazil ; 2 Federal University of Pelotas (UFPel), R. Gomes Carneiro, 96010-610, Brazil ; 3 Center for Computational Sciences (C3), Federal University of Rio Grande (FURG), Av. Itália, km 8, 96203-900, Brazil ; 4 CCST, Catholic University of Pelotas (UCPel), R. Gonc ¸alves Chaves, 96015-560, Brazil

Keyword(s): Fuzzy Logic, Machine Learning, Neonatal EEG, Hypoxic-Ischemic Encephalopathy, Seizure Detection, Neonatal Neurological Monitoring, Biomarkers for Neonatal Brain Injury, Systematic Review.

Abstract: Machine learning has advanced in healthcare, aiding diagnostics, treatment, and monitoring. In neonatal health, it helps to classify and predict conditions such as hypoxic-ischemic encephalopathy, which requires early detection. Thus, EEG pattern analysis is key in improving the neonatal prognosis. In this work, we present a systematic review of the literature to identify strategies currently employed to classify and predict neonatal EEG patterns using fuzzy logic. Fuzzy logic is particularly valuable for handling uncertainties in biological signals and improving interpretability. Five studies were selected and analyzed, focusing on applying fuzzy systems to detect epileptic events. The reviewed studies highlight techniques involving EEG data, emphasizing the role of fuzzy logic in advancing the understanding and management of neonatal neurological conditions, contributing to the state of the art in this critical field.

CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 18.191.254.28

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Cardoso, S., Buss, J., Gomez, J., Santos, H., Lucca, G., Yamin, A. and Reiser, R. (2025). Fuzzy Logic for Neonatal EEG Analysis: A Systematic Review. In Proceedings of the 27th International Conference on Enterprise Information Systems - Volume 1: ICEIS; ISBN 978-989-758-749-8; ISSN 2184-4992, SciTePress, pages 840-847. DOI: 10.5220/0013362800003929

@conference{iceis25,
author={Samuel Cardoso and Juliano Buss and Javier Gomez and Helida Santos and Giancarlo Lucca and Adenauer Yamin and Renata Reiser},
title={Fuzzy Logic for Neonatal EEG Analysis: A Systematic Review},
booktitle={Proceedings of the 27th International Conference on Enterprise Information Systems - Volume 1: ICEIS},
year={2025},
pages={840-847},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0013362800003929},
isbn={978-989-758-749-8},
issn={2184-4992},
}

TY - CONF

JO - Proceedings of the 27th International Conference on Enterprise Information Systems - Volume 1: ICEIS
TI - Fuzzy Logic for Neonatal EEG Analysis: A Systematic Review
SN - 978-989-758-749-8
IS - 2184-4992
AU - Cardoso, S.
AU - Buss, J.
AU - Gomez, J.
AU - Santos, H.
AU - Lucca, G.
AU - Yamin, A.
AU - Reiser, R.
PY - 2025
SP - 840
EP - 847
DO - 10.5220/0013362800003929
PB - SciTePress