loading
Documents

Research.Publish.Connect.

Paper

Paper Unlock

Authors: Qiang Lu 1 and Jack G. Conrad 2

Affiliations: 1 Kore Federal, United States ; 2 Thomson Reuters Global Resources, Switzerland

ISBN: 978-989-8565-30-3

Keyword(s): Unsupervised Learning, Recommendation, Clustering, Labeling, Document-cluster Associations.

Related Ontology Subjects/Areas/Topics: Applications and Case-studies ; Artificial Intelligence ; Domain Analysis and Modeling ; Knowledge Engineering and Ontology Development ; Knowledge-Based Systems ; Symbolic Systems

Abstract: The task of recommending content to professionals (such as attorneys or brokers) differs greatly from the task of recommending news to casual readers. A casual reader may be satisfied with a couple of good recommendations, whereas an attorney will demand precise and comprehensive recommendations from various content sources when conducting legal research. Legal documents are intrinsically complex and multi-topical, contain carefully crafted, professional, domain specific language, and possess a broad and unevenly distributed coverage of issues. Consequently, a high quality content recommendation system for legal documents requires the ability to detect significant topics from a document and recommend high quality content accordingly. Moreover, a litigation attorney preparing for a case needs to be thoroughly familiar the principal arguments associated with various supporting opinions, but also with the secondary and tertiary arguments as well. This paper introduces an issue-based cont ent recommendation system with a built-in topic detection/segmentation algorithm for the legal domain. The system leverages existing legal document metadata such as topical classifications, document citations, and click stream data from user behavior databases, to produce an accurate topic detection algorithm. It then links each individual topic to a comprehensive pre-defined topic (cluster) repository via an association process. A cluster labeling algorithm is designed and applied to provide a precise, meaningful label for each of the clusters in the repository, where each cluster is also populated with member documents from across different content types. This system has been applied successfully to very large collections of legal documents, O(100M), which include judicial opinions, statutes, regulations, court briefs, and analytical documents. Extensive evaluations were conducted to determine the efficiency and effectiveness of the algorithms in topic detection, cluster association, and cluster labeling. Subsequent evaluations conducted by legal domain experts have demonstrated that the quality of the resulting recommendations across different content types is close to those created by human experts. (More)

PDF ImageFull Text

Download
Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 18.212.83.37

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Lu, Q. and Conrad, J. (2012). Bringing Order to Legal Documents - An Issue-based Recommendation System Via Cluster Association.In Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2012) ISBN 978-989-8565-30-3, pages 76-88. DOI: 10.5220/0004136600760088

@conference{keod12,
author={Qiang Lu. and Jack G. Conrad.},
title={Bringing Order to Legal Documents - An Issue-based Recommendation System Via Cluster Association},
booktitle={Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2012)},
year={2012},
pages={76-88},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004136600760088},
isbn={978-989-8565-30-3},
}

TY - CONF

JO - Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2012)
TI - Bringing Order to Legal Documents - An Issue-based Recommendation System Via Cluster Association
SN - 978-989-8565-30-3
AU - Lu, Q.
AU - Conrad, J.
PY - 2012
SP - 76
EP - 88
DO - 10.5220/0004136600760088

Login or register to post comments.

Comments on this Paper: Be the first to review this paper.