loading
Papers Papers/2022

Research.Publish.Connect.

Paper

Authors: Naeem Ayoub and Peter Schneider-Kamp

Affiliation: Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmmark

Keyword(s): Power Lines Inspection, Fault Detection, Autonomous Drones Systems, Deep Learning.

Abstract: The inspection of power line components is periodically conducted by specialized companies to identify possible faults and assess the state of the critical infrastructure. UAV-systems represent an emerging technological alternative in this field, with the promise of safer, more efficient, and less costly inspections. In the Drones4Energy project, we work toward a vision-based beyond-visual-line-of-sight (BVLOS) power line inspection architecture for automatically and autonomously detecting components and faults in real-time on board of the UAV. In this paper, we present the first step towards the vision system of this architecture. We train Deep Neural Networks (DNNs) and tune them for reliability under different conditions such as variations in camera used, lighting, angles, and background. For the purpose of real-time on-board implementation of the architecture, experimental evaluations and comparisons are performed on different hardware such as Raspberry Pi 4, Nvidia Jetson Nano, Nvidia Jetson TX2, and Nvidia Jetson AGX Xavier. The use of such Single Board Devices (SBDs) is an integral part of the design of the proposed power line inspection architecture. Our experimental results demonstrate that the proposed approach can be effective and efficient for fully-automatic real-time on-board visual power line inspection. (More)

CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 3.233.217.106

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Ayoub, N. and Schneider-Kamp, P. (2020). Real-time On-board Detection of Components and Faults in an Autonomous UAV System for Power Line Inspection. In Proceedings of the 1st International Conference on Deep Learning Theory and Applications - DeLTA, ISBN 978-989-758-441-1, pages 68-75. DOI: 10.5220/0009826700680075

@conference{delta20,
author={Naeem Ayoub. and Peter Schneider{-}Kamp.},
title={Real-time On-board Detection of Components and Faults in an Autonomous UAV System for Power Line Inspection},
booktitle={Proceedings of the 1st International Conference on Deep Learning Theory and Applications - DeLTA,},
year={2020},
pages={68-75},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0009826700680075},
isbn={978-989-758-441-1},
}

TY - CONF

JO - Proceedings of the 1st International Conference on Deep Learning Theory and Applications - DeLTA,
TI - Real-time On-board Detection of Components and Faults in an Autonomous UAV System for Power Line Inspection
SN - 978-989-758-441-1
AU - Ayoub, N.
AU - Schneider-Kamp, P.
PY - 2020
SP - 68
EP - 75
DO - 10.5220/0009826700680075