loading
Papers Papers/2022 Papers Papers/2022

Research.Publish.Connect.

Paper

Paper Unlock

Authors: André Lourenço 1 ; Samuel Rota Bulò 2 ; Nicola Rebagliati 2 ; Ana Fred 3 ; Mário Figueiredo 3 and Marcello Pelillo 2

Affiliations: 1 Instituto Superior de Engenharia de Lisboa and Instituto Superior Técnico, Portugal ; 2 Università Ca’ Foscari Venezia, Italy ; 3 Instituto Superior Técnico, Portugal

Keyword(s): Clustering Algorithm, Clustering Ensembles, Probabilistic Modeling, Evidence Accumulation Clustering.

Related Ontology Subjects/Areas/Topics: Clustering ; Ensemble Methods ; Pattern Recognition ; Theory and Methods

Abstract: Ensemble clustering methods derive a consensus partition of a set of objects starting from the results of a collection of base clustering algorithms forming the ensemble. Each partition in the ensemble provides a set of pairwise observations of the co-occurrence of objects in a same cluster. The evidence accumulation clustering paradigm uses these co-occurrence statistics to derive a similarity matrix, referred to as co-association matrix, which is fed to a pairwise similarity clustering algorithm to obtain a final consensus clustering. The advantage of this solution is the avoidance of the label correspondence problem, which affects other ensemble clustering schemes. In this paper we derive a principled approach for the extraction of a consensus clustering from the observations encoded in the co-association matrix. We introduce a probabilistic model for the co-association matrix parameterized by the unknown assignments of objects to clusters, which are in turn estimated using a maxi mum likelihood approach. Additionally, we propose a novel algorithm to carry out the parameter estimation with convergence guarantees towards a local solution. Experiments on both synthetic and real benchmark data show the effectiveness of the proposed approach. (More)

CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 18.97.9.173

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Lourenço, A., Rota Bulò, S., Rebagliati, N., Fred, A., Figueiredo, M. and Pelillo, M. (2013). Probabilistic Evidence Accumulation for Clustering Ensembles. In Proceedings of the 2nd International Conference on Pattern Recognition Applications and Methods - ICPRAM; ISBN 978-989-8565-41-9; ISSN 2184-4313, SciTePress, pages 58-67. DOI: 10.5220/0004267900580067

@conference{icpram13,
author={André Louren\c{c}o and Samuel {Rota Bulò} and Nicola Rebagliati and Ana Fred and Mário Figueiredo and Marcello Pelillo},
title={Probabilistic Evidence Accumulation for Clustering Ensembles},
booktitle={Proceedings of the 2nd International Conference on Pattern Recognition Applications and Methods - ICPRAM},
year={2013},
pages={58-67},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004267900580067},
isbn={978-989-8565-41-9},
issn={2184-4313},
}

TY - CONF

JO - Proceedings of the 2nd International Conference on Pattern Recognition Applications and Methods - ICPRAM
TI - Probabilistic Evidence Accumulation for Clustering Ensembles
SN - 978-989-8565-41-9
IS - 2184-4313
AU - Lourenço, A.
AU - Rota Bulò, S.
AU - Rebagliati, N.
AU - Fred, A.
AU - Figueiredo, M.
AU - Pelillo, M.
PY - 2013
SP - 58
EP - 67
DO - 10.5220/0004267900580067
PB - SciTePress