loading
Documents

Research.Publish.Connect.

Paper

Paper Unlock

Authors: Hossam Faris 1 ; Ibrahim Aljarah 1 ; Seyedali Mirjalili 2 ; Pedro A. Castillo 3 and Juan J. Merelo 3

Affiliations: 1 The University of Jordan, Jordan ; 2 Griffith University, Australia ; 3 University of Granada, Spain

ISBN: 978-989-758-201-1

Keyword(s): Evolutionary, Swarm Optimization, Metaheuristic, Optimization, Python, Framework.

Related Ontology Subjects/Areas/Topics: Artificial Intelligence ; Computational Intelligence ; Evolutionary Computing ; Memetic Algorithms ; Representation Techniques ; Soft Computing ; Swarm/Collective Intelligence

Abstract: EvoloPy is an open source and cross-platform Python framework that implements a wide range of classical and recent nature-inspired metaheuristic algorithms. The goal of this framework is to facilitate the use of metaheuristic algorithms by non-specialists coming from different domains. With a simple interface and minimal dependencies, it is easier for researchers and practitioners to utilize EvoloPy for optimizing and benchmarking their own defined problems using the most powerful metaheuristic optimizers in the literature. This framework facilitates designing new algorithms or improving, hybridizing and analyzing the current ones. The source code of EvoloPy is publicly available at GitHub (https://github.com/7ossam81/EvoloPy).

PDF ImageFull Text

Download
CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 18.232.124.77

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Faris, H.; Aljarah, I.; Mirjalili, S.; Castillo, P. and Merelo , J. (2016). EvoloPy: An Open-source Nature-inspired Optimization Framework in Python.In Proceedings of the 8th International Joint Conference on Computational Intelligence - Volume 1: ECTA, (IJCCI 2016) ISBN 978-989-758-201-1, pages 171-177. DOI: 10.5220/0006048201710177

@conference{ecta16,
author={Hossam Faris. and Ibrahim Aljarah. and Seyedali Mirjalili. and Pedro A. Castillo. and Juan J. Merelo .},
title={EvoloPy: An Open-source Nature-inspired Optimization Framework in Python},
booktitle={Proceedings of the 8th International Joint Conference on Computational Intelligence - Volume 1: ECTA, (IJCCI 2016)},
year={2016},
pages={171-177},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006048201710177},
isbn={978-989-758-201-1},
}

TY - CONF

JO - Proceedings of the 8th International Joint Conference on Computational Intelligence - Volume 1: ECTA, (IJCCI 2016)
TI - EvoloPy: An Open-source Nature-inspired Optimization Framework in Python
SN - 978-989-758-201-1
AU - Faris, H.
AU - Aljarah, I.
AU - Mirjalili, S.
AU - Castillo, P.
AU - Merelo , J.
PY - 2016
SP - 171
EP - 177
DO - 10.5220/0006048201710177

Login or register to post comments.

Comments on this Paper: Be the first to review this paper.