
From Algebraic Synthesis and GRAFCET to Logical Controller 
Design in ST Code (IEC 61131-3)  

Mathieu Roisin1 a, Dimitri Renard1 b, David Annebicque1 c, Bernard Riera1 d  
and Pierre-Alain Yvars2 e 

1CReSTIC, University of Reims Champagne-Ardenne, Reims, France 
2QUARTZ, ISAE-Supméca, Saint-Ouen, France 

Keywords: PLC, Control Design, GRAFCET, Algebraic Synthesis. 

Abstract: This paper addresses the problem of logic controller synthesis and the automatic generation of code compliant 
with the IEC 61131-3 standard, specifically Structured Text (ST) code. From a methodological perspective, 
two complementary approaches can be used to tackle this problem. The extensional approach explicitly 
represents the solution using models such as GRAFCET or Petri nets. In contrast, the intensional approach 
defines the solution space through a set of rules or constraints, without enumerating all possible solutions. 
Among intensional techniques, algebraic synthesis stands out as a formal method to derive controllers from 
specifications. We argue that combining extensional and intensional approaches leads to more efficient and 
robust controller design. To this end, we propose a hybrid workflow that integrates an extensional model 
(GRAFCET) with an intensional method (algebraic synthesis), enabling the automatic generation of IEC 
61131-3 ST code. To support this workflow, we have developed two software tools: GReSTIC, for code 
generation and simulation, and BooG, for the algebraic synthesis and fusion of the two approaches. The 
proposed methodology is validated through a case study, demonstrating the automatic generation of reliable 
and standard-compliant ST code. 

1 INTRODUCTION 

The advent of Industry 4.0 (Koren, 2010) is 
transforming industrial system design and operation. 
As production systems grow more complex, robust, 
integrated, and automated methods are essential to 
account for technical, logical, and physical 
constraints early on. Automation relies on developing 
reliable and safe logic controllers tailored to system 
needs. 

In this context, our work focuses on synthesizing 
logic controllers and automatically generating PLC 
code (Jones, 1998) compliant with IEC 61131-3 
(John & Tiegelkamp, 2001) We explore intensional 
approaches, which define control problems through 
rules and constraints rather than explicitly 
representing solutions (e.g., GRAFCET (IEC 60848, 

 
a  https://orcid.org/0009-0009-7182-1205 
b  https://orcid.org/0009-0009-2265-9176 
c  https://orcid.org/0000-0002-0706-0714 
d  https://orcid.org/0000-0003-1294-874X 
e  https://orcid.org/0000-0002-7131-6796 

2012) (Schumacher, 2013), or Petri nets (Teng & 
Black, 1990), allowing solvers to compute solutions 
without exhaustive enumeration. We argue that 
integrating both extensional and intensional methods 
enables more efficient and robust controller design. 

This article is structured as follows. We first 
present extensional and intensional approaches to 
logic control synthesis, then focus on an intensional 
method based on algebraic synthesis. Next, we 
introduce a workflow combining GRAFCET 
(extensional) and algebraic synthesis (AS) 
(intensional) (Ranger, 2021), supported by two tools: 
GReSTIC, for generating ST code from GRAFCET, 
and BooG, for merging GRAFCET and AS results. 
Finally, the workflow is applied to a case study, 
generating ST code for a virtual PLC controlling a 
simulated manufacturing system. 

494
Roisin, M., Renard, D., Annebicque, D., Riera, B. and Yvars, P.-A.
From Algebraic Synthesis and GRAFCET to Logical Controller Design in ST Code (IEC 61131-3).
DOI: 10.5220/0013817800003982
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 22nd International Conference on Informatics in Control, Automation and Robotics (ICINCO 2025) - Volume 1, pages 494-501
ISBN: 978-989-758-770-2; ISSN: 2184-2809
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.



2 MODELLING METHODS AND 
TOOLS FOR LOGIC 
CONTROLLER SYNTHESIS 

According to the literature, there are two general 
ways of solving a problem: by extension or by 
intension (Peregrin, 2007). The distinction lies in how 
the set of possible solutions is represented and 
processed. 

The extensional approach explicitly describes 
candidate solutions. In logic controller design, 
GRAFCET diagrams graphically specify action 
sequences and transitions, representing a concrete 
solution. 

In contrast, the intensional approach specifies 
rules or constraints that valid solutions must satisfy 
without enumerating them. In controller synthesis, 
algebraic modeling expresses desired behavior as 
logical constraints, and a solver generates correct-by-
construction implementations. 

Logic controller design can use extensional, 
intensional, or both approaches. Extensional methods 
are directly interpretable and align with industry, 
while intensional methods offer flexibility and 
automation for complex systems. Combining them 
leverages both strengths for more efficient and 
reliable control logic synthesis. 

This dual perspective lays the foundation for the 
methodology proposed in this paper, which leverages 
both extensional and intensional models to support 
automated and robust controller generation. 

2.1 Extensional Approach 

Extensional logic controller design involves formally 
specifying a candidate solution, including system 
states and transitions, and systematically verifying its 
behavior against functional and safety requirements. 
GRAFCET (Schumacher, 2013), Petri nets (Teng & 
Black, 1990) and state machines (Rabin & Scott, 
1959) are all based on this approach, which is widely 
used to control discrete-event systems. Today, this 
method is the most widely used in the industrial world 

2.2 Intensional Approach 

The intensional approach to logic controller design 
consists in formulating system requirements as a set 
of constraints on variables representing the unknowns 
of the problem. One or more admissible solutions can 
then be generated using an automatic solver, which 
ensures that each solution satisfies all the defined 
constraints. 

In the field of automation engineering, methods 
such as Supervisory Control Theory (SCT) (Ramadge 
& Wonham, 1987) or Algebraic Synthesis (AS) 
(Hietter, 2009) follow this intensional paradigm. 
However, these methods are still rarely used in 
industry, where they are often overshadowed by more 
operational, but often empirical, extensional 
approaches. 

A key advantage of intensional methods is that 
they guarantee correct solutions: if the specification 
is valid, any derived solution satisfies it. 

2.3 Advantages and Disadvantages 

Both extensional and intensional approaches have 
advantages and limitations. Extensional methods use 
intuitive graphical models and generate logic 
efficiently implementable on a PLC, but require 
manually specifying a single solution, which is error-
prone, needs to be verified (e.g., GRAFCET 
verification, Roussel & Lesage, 1996), and hard to 
generalize. Intensional methods are declarative and 
provide formally correct solutions, but defining 
constraints is complex, PLC implementation can be 
less efficient, and sequential or procedural behaviors 
are harder to represent. 

Given their complementary strengths, we propose 
combining extensional and intensional approaches. 
GRAFCET handles simple action sequences well, 
while intensional methods better address complex 
requirements like safety constraints or task 
synchronization. 

3 ALGEBRAIC SYNTHESIS OF 
LOGICAL CONTROLLER 

In this section, we discuss the algebraic synthesis 
(AS) method, which plays a key role in the broader 
workflow that will be presented later in this paper. 

Algebraic synthesis uses an intensional approach, 
defining constraints over known variables (e.g., 
sensors) and unknown variables (e.g., actuators) to 
identify all valid solutions (by solving the problem). 
Developed for controller synthesis, it expresses 
output variables as logical functions of inputs and 
internal states (Hietter, 2009) (Roussel & Lesage, 
2012) (Roussel & Lesage, 2014). 

3.1 Fundamental Principles 

The algebraic synthesis (AS) method is based on 
 

From Algebraic Synthesis and GRAFCET to Logical Controller Design in ST Code (IEC 61131-3)

495



Boolean algebra. It operates over a set of Boolean 
variables divided into two categories: 
- Known Variables: Read-only inputs, such as 
sensors or previous controller states. 
- Unknown Variables: Write-only outputs, such as 
actuators or internal controller states. 

A set of Boolean constraints is defined over these 
variables using connectors (equality (=), implication 
(=>)) and logical operators (OR (+), AND (.) and 
NOT (-). The goal of algebraic synthesis is to 
compute all Boolean expressions for each unknown 
variable as a function of the known variables, in such 
a way that all constraints are satisfied. 

The method consists of different steps presented 
in the (Hietter, 2009) thesis. In the end each unknown 
variable is ultimately expressed as a function of 
known variables and a set of Boolean parameters. 
Different parameter values yield different solutions. 
The complete set of parameter assignments represents 
all possible solutions that satisfy the original 
constraints. 

To select a unique, implementable PLC solution, 
Boolean parameters must be defined either by an 
expert or via formal methods such as Boolean 
lexicographic optimization (Marques-Silva, 2011). 

Boolean lexicographic optimization (Leroux, 
2010) (Leroux & Roussel, 2012) lets users define 
Boolean objectives, and the solver assigns parameter 
values to optimize them in order, ensuring a correct 
and design-optimized solution. 

3.2 Problem Modelling 

For any problem, we consider the following elements: 
• Unknown Boolean Variables: PLC outputs 

(actuators) and internal controller states. 
• Alias Boolean Variables: named 

expressions to simplify constraints. 
• Known Boolean Variables: PLC inputs 

(sensors) and previous controller states. 
• Constraints involving these variables. 

The constraints can be of the following types: 
• Equality Constraint: Equality between two 

Boolean expressions. 
• Alias Constraint: Assigns a Boolean 

expression to an alias variable, which is 
replaced by the expression during solving. 

• Implication Constraint: A logical 
implication between two Boolean 
expressions. 

These constraints (excluding alias constraints) can be 
classified into two categories: 

• Assumptions: Involve only known 
variables and are assumed to hold, ensuring 
a solution exists. 

• Constraints to be Solved: Involve 
unknown variables and must be satisfied to 
compute their values. 

Unless explicitly restricted by assumptions, 
known variables are considered free (0 or 1). In some 
cases, this can lead to combinations of known 
variable values for which no valid solution exists. To 
avoid this, additional assumptions may be required 
to restrict the value of the known variables and avoid 
"no solution" cases. 

The model can also determine a unique solution 
by defining an optimization order over Boolean 
expressions. Parameters introduced during synthesis 
are then assigned values that respect this order, 
yielding the most desirable solution. 

3.3 Solving with a Solver 

After modeling the problem, the BESS solver 
(Boolean Equation System Solver) can be used to 
compute a solution. The problem model must be 
expressed in the BESS format, which is specifically 
designed for algebraic synthesis based on Boolean 
logic. 

Figure 1 illustrates an example of a model written 
in BESS format. Operators AND, OR and NOT are 
respectively represented by “.”, “+” and “/”. Logical 
connectors equality and implication are represented 
by “=” and “<=”. 

The solver applies algebraic synthesis principles, 
including variable substitution. It checks for 
solutions, then computes unknowns as functions of 
known variables and Boolean parameters. If an 
 

 
Figure 1: Example of a BESS model. 

<PROBLEM> <SYMBOLS> #Name:[Unknown|Known|Alias](*Optional comment *); Y : Unknown (**) ; </SYMBOLS> <ALIASES> # Name = BooleanFormula (* Optional comment *) ; </ALIASES> <REQUIREMENTS>  # Name : BooleanFormula [=<|=] BooleanFormula (* Optional comment *) ; R1 : (**)    Y <= 1; </REQUIREMENTS> <OPTIMUM CRITERIA> # Name : [Minimal|Maximal] (* Comment *) M1 : Maximal (**)   Y; </OPTIMUM CRITERIA> </PROBLEM> 

ICINCO 2025 - 22nd International Conference on Informatics in Control, Automation and Robotics

496



optimization strategy is defined, it assigns parameter 
values accordingly to select a solution. The solver 
thus returns one or more correct-by-construction 
solutions that satisfy the constraints and any 
optimization objectives. 

4 WORKFLOW TO MODEL A 
PROBLEM USING ALGEBRAIC 
SYNTHESIS AND GENERATE 
ST CODE  

4.1 Modelling Steps 

To solve a logic controller synthesis problem, it is 
first necessary to define a formal model representing 
the problem. The proposed method is based on a 
hybrid approach combining: 

• an extensional representation using a 
GRAFCET model, 

• and an intensional representation using 
algebraic synthesis techniques. 

These two representations are then integrated to 
automatically generate Structured Text (ST) code. 

4.2 Workflow for Generating ST Code 
that Can Be Executed by a PLC 

The proposed workflow (see Figure 2) allows logic 
control problems to be addressed by combining 
intensional and extensional methods. It is 
structured into six main steps: 
1. Specification of the Logic Controller 
The first step defines the controller’s behavior using 
extensional and/or intensional approaches. The 

extensional part is modeled in SFC-EDIT, which 
edits and exports GRAFCETs in XML, while the 
intensional part specifies logical constraints from 
functional requirements and solves them 
algebraically (Hietter, 2009). The controller then 
operates on a physical or virtual system, whose 
operational part (OP) is modeled, in our case, using 
Factory I/O (Riera & Vigario, 2017). 

2. Modeling in BESS Format. 
The logical constraints are translated into a model 

written in BESS (Boolean Equation System Solver) 
format (Ranger, 2022). 

3. Algebraic Synthesis and GRAFCETs Merging. 
The BooG tool, developed in-house, uses the BESS 
solver for algebraic synthesis. The solution is 
converted into a GRAFCET (XML format) and 
merged with fragments from the extensional 
approach, producing a complete and consistent 
GRAFCET model. 

4. ST Code Generation. 
The GReSTIC software, also developed in our 
laboratory, generates ST (Structured Text) code for 
the logic controller from the Factory I/O (Riera & 
Vigario, 2017) scene and the complete GRAFCET 
model in XML format. 
5. Virtual Commissioning 
GReSTIC includes a soft PLC for simulating the 
controller and interacting in real time with Factory 
I/O, enabling virtual commissioning to test and 
validate the control logic before deployment. 
6. Deployment on a Physical PLC 
Once validated, the ST code can be deployed on a real 
PLC, ensuring consistency between simulation and 
operation. 

 
Figure 2: Workflow for ST code generation from algebraic synthesis (AS) and GRAFCET. 

 

From Algebraic Synthesis and GRAFCET to Logical Controller Design in ST Code (IEC 61131-3)

497



5 SOFTWARE TOOLS 

5.1 GReSTIC Software 

GReSTIC (GRAFCET to ST, Integration, and 
Commissioning) is a code generator and simulator for 
Structured Text (ST), based on GRAFCET 
specifications, developed in the laboratory. GReSTIC 
is a Windows application developed in C# using the 
.NET Framework 4.8. 

As input, it uses a GRAFCET specification 
described in an open XML format. The tool used to 
graphically represent GRAFCETs is called SFCEdit. 
This editor was chosen because of its ability to export 
to an open XML format and its compliance with the 
standard (International Electrotechnical Commission, 
2013b). 

GReSTIC has a strong integration with the 
Factory-I/O simulator, abstracting the configuration 
of communication driver settings. The GRAFCETs 
contained in the XML file are analyzed, and the 
communication driver information from the Factory-
I/O scene is incorporated. PLC code in Structured 
Text (ST) is then generated. This code can be either 
simulated directly within the integrated simulator or 
exported to various software targets. 

5.2 BooG Software 

BooG (Renard, 2024) is an application that enables 
the transcription of the resulting unknown equations 
from BESS into a format compatible with GReSTIC. 
It is a Python-based application provided as an 
executable with a graphical user interface to improve 
user experience. It is configured by entering two 
fields: one corresponding to the BESS file and the 
other to the export from SFCEdit in XML format. The 
insertion index allows placing the filter generated by 
BESS at a specific location within the set of 
GRAFCETs contained in the SFCEdit XML 
specification file. 

As input, the specification file to be solved by 
BESS must be provided. Additionally, an optional file 
exported from SFCEdit can be included. After BESS 
solves the system of equations, the equations are 
retrieved and transformed into GRAFCET format. 
Figure 3 illustrates the GRAFCET model used to 
integrate the equations produced by BESS (example 
with two equations). For each equation returned in the 
solution by BESS, two GRAFCET steps are created, 
one representing the equation being true and the other 
representing it being false. Two transitions allow 
looping between the true and false states. These 
transitions respectively correspond to the equation 

and its negation. In this way, the equation is 
represented in GRAFCET form. This step-based 
representation makes it possible to position the 
equations precisely within the program. In contrast, 
representing equations as actions would imply that 
they are calculated at the end of the cycle. The symbol 
E1V corresponds to the symbol of the unknown 
associated with the equation. Thus, as soon as the step 
is evaluated, its value is already updated for the rest 
of the ongoing cycle's calculations. 

  
Figure 3: GRAFCET model generated by BooG. 

The resulting GRAFCET is returned to the user. 
If an SFCEdit file has been provided, the generated 
GRAFCET is inserted into the set of GRAFCETs in 
the SFCEdit file at the specified position. 

6 CASE STUDY 

We illustrate our approach to algebraic synthesis 
using a system involving the crossing of two 
conveyors (see Figure 4 from the Discrete Event 
System (SED) 2023 school (Riera & Renard, 2024)). 
Each flow is regulated by a traffic light (red or green), 
and pallets must wait for a green light before crossing 
the shared zone, which is made accessible by a 
turntable. This example is a simple proof of concept 
in order to demonstrate the proposed workflow. 

Two sensors indicate the position of the turntable: 
• TTLimit12: Turntable is in position 12 
• TTLimit34: Turntable is in position 34 

Pallets are autonomous—meaning they stop when 
the light is red and proceed when it is green. This 
behavior is implemented via a dedicated control 
(described in GRAFCET, see Figure 5), which 
manages the back-and-forth movement of the two 
pallets. The intent to cross is represented by four 
GRAFCET steps: XR12, XR21, XR34, and XR43. 

ICINCO 2025 - 22nd International Conference on Informatics in Control, Automation and Robotics

498



 
Figure 4: Case study system. 

Two global variables (ZC12, ZC34) indicate the 
presence of a pallet in the shared area. A user-
activated button determines the default position of the 
turntable (ValDefaut). 

Nine actuators must be controlled, including the 
green/red traffic lights and the turntable actuator: 

• Traffic lights: FV12, FR12, FV21, FR21, 
FV34, FR34, FV43 and FR43 

• TTTurn: Single-acting turntable rotation 
(Active = position 12, Inactive = position 
34) 

The control objective is to synchronize the lights 
and turntable to avoid collisions, while ensuring the 
automatic return of the turntable to its default position 
(ValDefaut = 0 corresponds to turntable position 34). 

6.1 Bess Model Creation 

In the Algebraic Synthesis (AS) formalism, the 
problem is reduced to constraints from requirements 
and assumptions, with a solution criterion usually 
maximizing unknown variables. 

For the case study, we defined fifteen requirement 
constraints, three assumption constraints, and four 
maximization constraints to ensure a unique solution 
(see Figure 6). Currently, no method exists to 
systematically derive the constraint set directly from 
the requirements. 
  

Figure 5: Pallets control GRAFCET. 

From Algebraic Synthesis and GRAFCET to Logical Controller Design in ST Code (IEC 61131-3)

499



 
Figure 6: Extraction of the BESS constraint model for the 
case study problem. 

6.2 BooG Software Solving 

We obtained this set of Boolean expressions (Figure 
7) using the BooG software to solve the BESS model 
of the case study for each unknown variable 
(intermediate and actuator variables) in terms of 
known variables (sensors and GRAFCET states). 

Then, by merging the BESS model solution with 
the pallet control GRAFCET, we obtain a complete 
GRAFCET, This complete GRAFCET is not 
intended for human reading. 

 
Figure 7: Algebraic Synthesis solution. 

6.3 ST Code Generated from GReSTIC  

Using GReSTIC, we generate ST code from the 
complete GRAFCET and the Factory I/O scene. Its 
PLC simulator interacts with Factory I/O, allowing us 
to validate the constraints used in the model. The 
solution for this case study is valid. A video 
demonstrates the full workflow from the BESS model 
to simulation: https://youtu.be/Q6IbG3DUudY 

6.4 Case Study Conclusion 

The workflow combines intensional (SA) and 
extensional (GRAFCET) approaches for controller 
synthesis. The BESS model from the intensional part 
is automatically solved and merged with the 
GRAFCET to generate ST code that can be used in an 
API. We can simulate that ST code on the Factory I/O 
scene to evaluate the validity of the model. 

7 CONCLUSION AND OUTLOOK 

This paper presented a workflow combining algebraic 
synthesis with extensional modeling (GRAFCET) for 
logic controller synthesis. Controller specifications 
are defined via a BESS model and a GRAFCET 
diagram. BooG software automatically solves the 
BESS model and integrates it with the GRAFCET, 
while GReSTIC software uses the combined 
GRAFCET and a Factory I/O scene to generate ST 

(*----------------Constraints------------------*) 
(*Red light opposite of green light*) 
FV12 = /(FR12);  FV34 = /(FR34); 
(*Can have green light in direction X if pallet in common
zone (ZC) with direction X or if authorizing the pallet with 
direction X to go in the common zone AND if the 
Turntable is in the X position*) 
FV12 <= (TTLimit12 . (AUT12 + ZC12)); 
FV34 <= (TTLimit34 . (AUT34 + ZC34)); 
(FV12 . FV34) = 0; (*Cannot have both green light*) 
(*If a pallet is in the ZC with X direction then the X green 
light must be on*) 
(ZC12 . /(FV12)) = 0;  (ZC34 . /(FV34)) = 0; 
(*The turntable turn (actuator) according to the direction
of the pallet in ZC or the authorized direction*) 
(ZC12 + AUT12) <= TTTurn; 
(ZC34 + AUT34) <= /(TTTurn); 
(*Can have an authorization of a pallet in direction X if a
pallet wants to cross the turntable in direction X AND if 
there is not a pallet in ZC in the other direction AND if we 
don’t authorize the pallet in the other direction to cross*)
AUT12 <= (((XR12 + XR21) . /(ZC34)) . /(AUT34)); 
AUT34 <= (((XR34 + XR43) . /(ZC12)) . /(AUT12)); 
(*The light value in a direction are the same*) 
FV21 = FV12;  FR21 = FR12; 
FV43 = FV34;  FR43 = FR34; 
(*-----------------Assumptions---------------*) 
(TTLimit34 . TTLimit12) = 0;(*Cannot have the turntable
in both position at the same time*) 
(ZC12 . TTLimit34) + (ZC12 . /(TTLimit12)) + (ZC34 .
/(TTLimit34)) + (ZC34 . TTLimit12)) = 0; (*Necessary 
hypothesis for coherence.*) 
(*---------Maximization-----------*) 
M0 : Maximal (*Maximize authorization of a pallet in the 
34 direction*) 
AUT34; 
M1 : Maximal (*Maximize authorization of a pallet in the 
12 direction*) 
AUT12; 
M2 : Maximal (*Maximize the green lights on*) 
FV12 + FV34;  
M3 : Maximal (*Maximize default position*) 
TTTurn . ValDefaut +/TTTurn . /ValDefaut; 

FV12 = ZC12+TT_Limit12.XR12./XR34./XR43 
+TT_Limit12./XR34./XR43.XR21 
 

FV34 = ZC34+TT_Limit34.XR34+TT_Limit34.XR43 
 

FR12 = ZC34+TT_Limit34+/TT_Limit12+ 
/ZC12.XR34+/ZC12.XR43+/ZC12./XR12./XR21 
 

FR34 = ZC12+/TT_Limit34+TT_Limit12 
+/ZC34./XR34./XR43 
 

FV21 = ZC12+TT_Limit12.XR12./XR34./XR43 
+TT_Limit12./XR34./XR43.XR21 
 

FV43 = ZC34+TT_Limit34.XR34+TT_Limit34.XR43 
 

FR21 = ZC34+TT_Limit34+/TT_Limit12+/ZC12.XR34 +
/ZC12.XR43+/ZC12./XR12./XR21 
 

FR43 = ZC12+/TT_Limit34+TT_Limit12 
+/ZC34./XR34./XR43 
 

TT_Turn = ZC12+/ZC34.XR12./XR34./XR43 
+/ZC34./XR34./XR43.XR21 
+/ZC34./XR34./XR43.ValDefaut 
 

AUT12 = ZC12.XR12+ZC12.XR21 
+/ZC34.XR12./XR34./XR43+/ZC34./XR34./XR43.XR21
 

AUT34 = /ZC12.XR34+/ZC12.XR43 

ICINCO 2025 - 22nd International Conference on Informatics in Control, Automation and Robotics

500



code, which can then be implemented on a PLC and 
simulated. 

The current approach lacks a structured 
representation, relying on variables and Boolean 
constraints that are hard to interpret for new users.. 
Understanding the complete system based solely on 
these constraints and variables can be challenging. 
Since the BESS model uses problem-specific 
constraints, adding new requirements often requires 
major changes, limiting extensibility and 
generalizability. 

We argue that overcoming these limitations 
requires a structured approach for constructing a 
generic set of elements and structured constraints 
with a generic language adapted to any logic 
controller synthesis problem. This approach involves 
a clear definition and application of various types of 
constraints to the distinct components of the 
controller synthesis problem. 

ACKNOWLEDGEMENTS 

This research was funded by the French National 
Research Agency (ANR) under the Digital Twins for 
Cyber-Physical Systems project (ANR-23- CE10-
0010-01). The authors would like to thank the ANR. 

REFERENCES 

Hietter, Y. (2009). Synthèse algébrique de lois de 
commande pour les systèmes à évènements discrets 
logiques. Phd. École normale supérieure de Cachan - 
ENS Cachan.  

IEC 60848, (2012). GRAFCET specification language for 
sequential function charts. (3rd ed.).  

John, K.-H., & Tiegelkamp, M. (2001). IEC 61131-3: 
Programming Industrial Automation Systems. 
Springer. 

Jones, C. T. (1998). Programmable Logic Controllers: The 
Complete Guide to the Technology. Brilliant-Training. 

Koren, Y. (2010). The Global Manufacturing Revolution: 
Product-Process-Business Integration and 
Reconfigurable Systems. John Wiley & Sons. 

Leroux, H. (2011) Algebraic Synthesis of Logical 
Controllers with Optimization Criteria. ENS Cachan, 
Cachan, France. 

Leroux, H., & Roussel, J. -M. (2012) Algebraic synthesis 
of logicalcontrollers with optimization criteria. 
Proceedings of the 6th International Workshop on 
Verification and Evaluation of Computer and 
Communication Systems (VECOS ’12),  pp. 103–114. 

Marques-Silva, J., et al (2011). Boolean lexicographic 
optimization: algorithms & applications. Annals of 
Mathematics and Artificial Intelligence, pp. 317-343. 

Peregrin, J. (2007). Extensional vs. Intensional Logic. In 
Philosophy of Logic (pp. 913-942). Elsevier. 

Rabin, O. M., & Scott, D. (1959). Finite Automata and 
Their Decision Problems. IBM Journal of Research and 
Development, pp. 114-125. 

Ramadge, P. J., & Wonham, W. M. (1987). Supervisory 
Control of a Class Of Discret Event Processes. SIAM 
Journal on Control and Optimization, pp. 206-230. 

Ranger, T., et al (2021). Manufacturing Tasks 
Synchronization by Algebraic Synthesis. 4th IFAC 
Conference on Embedded Systems, Computational 
Intelligence and Telematics in Control CESCIT 2021, 
pp. 226-231. 

Ranger, T. (2022). Approche par synthèse algébrique et 
filtre logique pour la commande des systèmes 
manufacturiers cyber-physiques. Phd. Université de 
Reims Champagne-Ardenne, Reims. 

Renard, D., et al (2024). From Reinforcement Learning to 
Reality: Generating Structured Text Logic Controller. 
2024 10th International Conference on Control, 
Decision and Information Technologies (CoDIT), pp. 
1269-1274. 

Riera, B., & Renard, D. (2024). École SED et plateforme de 
formation en ligne : une dynamique pour la diffusion 
des systèmes à événements discrets https://fad.univ-
lorraine.fr/pluginfile.php/158867/mod_label/intro/UT
L_CTRL_SA_Application.pdf 

Riera, B., & Vigario, B. (2017). HOME I/O and FACTORY 
I/O: a virtual house and a virtual plant for control 
education. 20th IFAC World Congress, pp. 9144-9149. 

Roussel, J.-M., & Lesage, J. (1996). Validation and 
verification of grafcets using state machine. 
Proceedings of IMACS-IEEE ”CESA'96”, pp. 758-764. 

Roussel, J.-M., & Lesage, J.-J. (2012). Algebraic synthesis 
of logical controllers despite inconsistencies in 
specifications. IFAC Proceedings Volumes, pp. 307-
314. 

Roussel, J.-M., & Lesage, J.-J. (2014). Design of Logic 
Controllers Thanks to Symbolic Computation of 
Simultaneously Asserted Boolean Equations. 
Mathematical Problems in Engineering, pp. 1-15. 

Schumacher, F., et al (2013). Tool support for an automatic 
transformation of GRAFCET specifications into IEC 
61131-3 control code. 2013 IEEE 18th Conference on 
Emerging Technologies & Factory Automation 
(ETFA). 

Teng, S.-H., & Black, J. T. (1990). Cellular manufacturing 
systems modeling: The Petri net approach. Journal of 
Manufacturing Systems, pp. 45-54. 

From Algebraic Synthesis and GRAFCET to Logical Controller Design in ST Code (IEC 61131-3)

501


