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Abstract: Data offers a strong potential for advanced, data-driven services such as in-vehicle hazard warning systems. 
As data spaces and ecosystems mature, access to relevant assets for these applications will grow. This paper 
reviews the state of driver warning and reports on a project that developed a prototypical data-driven hazard 
warning system to alert drivers to potential route dangers. We present its architecture and key implementation 
challenges, including backend event generation, frontend warning mechanisms, data availability and 
integration, transformation of heterogeneous inputs into actionable warnings, definition of warning logics, 
handling of data validity and expiration, and human factors such as modality and user acceptance. By 
addressing these challenges through our prototype, the paper highlights technical and systemic requirements 
for dependable, data-driven warning applications in the evolving mobility data ecosystem. 

1 INTRODUCTION AND 
MOTIVATION 

The rapid digitalization of mobility and transport is 
generating vast amounts of data (Möller et al., 2024), 
now a key asset for stakeholders. This data enables 
new services (Zambetti et al., 2021) and business 
models (Stocker et al., 2024), as the automotive 
industry shifts from viewing vehicles as standalone 
products to connected ecosystem components 
(Nischak & Hanelt, 2019). This evolution supports 
data-driven, software-defined vehicles (Sterk et al., 
2024; Otto et al., 2025) and services such as driver 
warning systems, especially when vehicle data is 
combined with contextual information and integrated 
into driver-facing systems (Kaiser et al., 2018, 2021). 

Driver warning systems (Driver et al., 2021), a 
subclass of advanced driver assistance systems 
(ADAS), aim to enhance safety and situational 
awareness (Schömig & Metz, 2013). They include 
collision and lane departure warnings, blind spot 
detection (Kashevnik et al., 2021), drowsiness 
monitoring, speed and sign recognition, pedestrian 
and cyclist alerts, and hazard warnings. 
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In this paper, we focus on hazard warning systems 
(Xu et al., 2024; Ryder et al., 2016), a category of 
driver warning systems designed to alert drivers to 
emerging dangers based on external data and risk-
relevant information. Such data may include weather 
conditions, accident hotspots, or signals from other 
vehicles (e.g., distracted drivers or stability control 
activation on slippery roads). We present the 
architectural design of our data-driven, in-vehicle 
hazard warning system and analyse key 
implementation challenges. 

Despite advances in automated driving (Ebinger 
et al., 2024), driver warning systems remain essential 
(European Commission, 2025), as human drivers will 
continue to bear responsibility for vehicle operation 
(Stocker, 2025).  

Our contribution offers insights into developing 
data-driven hazard warning systems, relevant for 
researchers, developers, and practitioners. The paper 
is structured as follows: Section 2 reviews the state of 
the art, Section 3 details our approach and 
architecture, Section 4 discusses implementation 
challenges, and Section 5 presents results, limitations, 
and an outlook for future research. 
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2 RELATED WORK 

2.1 Driver Warning Systems 

The driver remains a central factor in road safety and 
a leading cause of accidents, with human errors such 
as speeding and risky driving (Sagberg et al., 2015; 
Kaiser et al., 2020), distraction (Regan et al., 2011), 
and misjudgement (Paker et al., 1995) contributing 
significantly. Driver warning systems address these 
risks by providing timely alerts to enhance awareness 
and support safer decisions. 

As a subclass of driver assistance systems 
(Bengler et al., 2014), warning systems aim to prevent 
accidents by alerting rather than taking control. 
Examples include collision warnings (Jameson et al., 
2008), lane departure warnings (Chen et al., 2020), 
blind spot detection (Liu et al., 2017), and drowsiness 
monitoring (Kashevnik et al., 2021). Other functions 
include speed limit and sign recognition, as well as 
pedestrian or cyclist alerts. 

A key category is hazard warning systems (Xu et 
al., 2024; Ryder et al., 2016), which detect 
unexpected dangers like slippery roads, stationary 
vehicles, or accident hotspots (Ryder et al., 2016). 
Unlike traditional sensor-based systems, these 
increasingly integrate external data from vehicles, 
infrastructure, or cloud services, providing broader 
situational awareness. By combining vehicle and 
contextual data (Kaiser et al., 2018; Stocker et al., 
2013), hazard warning systems enable earlier, 
proactive responses in complex traffic environments. 

2.2 Factors Influencing Driving Safety 

Driving safety is shaped by three categories: 
individual, route-related, and environmental factors. 
Individual factors involve the driver’s state (Regan et 
al., 2011) and behaviour (Sagberg et al., 2015), 
including distraction, fatigue (Young et al., 2007), 
emotions, impairments (e.g., alcohol, medication), 
and risky driving. Route-related factors concern road 
characteristics (Intini et al., 2019; Bogenreif et al., 
2012) such as layout, surface condition, signage, 
traffic density, and temporary hazards. 
Environmental factors include weather, lighting, 
visibility, other road users, and unexpected events 
(Maze et al., 2006; Malin et al., 2019). 

Human behaviour is the dominant cause of 
accidents, accounting for over 70% of cases 
(McCarty & Kim, 2024). Risky actions such as 
speeding or aggressive manoeuvres directly 
contribute to crashes (Osafune et al., 2017), with 
young drivers (16–25) particularly vulnerable due to 

higher risk-taking (Jonah, 1986). Sagberg et al. 
(2015) propose a framework to better classify such 
driving styles. 

Weather is another critical influence: snowstorms, 
low visibility, and wind increase accident risks (Maze 
et al., 2006), while rainfall and temperature also 
correlate with crash likelihood (Bergel-Hayat et al., 
2013; Malin et al., 2019). However, some datasets 
suggest weather is not always significant 
(Theofilatos, 2017). Road geometry also matters, 
including curvature, lane width, shoulders, and 
pavement. Narrow lanes, poor surfaces, and complex 
layouts are linked to higher crash risk (Rengarasu et 
al., 2009), with curves or bends especially hazardous 
(Bogenreif et al., 2012; Dantas et al., 2007). 

3 SYSTEM ARCHITECTURE 
AND APPROACH 

In this section, we present the architecture of our in-
vehicle, data-driven hazard warning system (Figure 1 
and 2), designed to alert drivers to potential dangers. 
The architecture follows a generic, technology-
agnostic design for broad applicability. After this 
overview, Section 4 discusses implementation 
challenges and prototype-specific design decisions. 

Our driver warning system operates as follows: an 
in-vehicle client (edge component) computes a Geo-
Spatial Key (GSK) from the vehicle’s position and 
speed, transmitting it to the central hazard warning 
platform. The platform queries internal and external 
data sources for relevant safety events, which are then 
cleaned, consolidated, enriched, and sent back to the 
client. The client compares this data with real-time 
driving conditions (e.g., position, speed, heading) 
and, if risk is detected, triggers a warning—adaptable 
to driver preferences. As the vehicle reaches the 
boundary of a GSK, a new one is generated, and the 
process repeats. The following subsections describe 
each system component (Figure 1). 

3.1 In-Vehicle Client 

The in-vehicle client, such as a smartphone app or 
embedded infotainment application, serves as the 
driver’s interface to the hazard warning platform. It 
fulfils three main roles: (1) providing the user 
interface for login, warning configuration, and 
connectivity, while delivering warnings visually, 
acoustically, or haptically; (2) acting as an edge-
computing node that evaluates received events 
against real-time driving conditions to decide whether  
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Figure 1: System Architecture. 

to issue a warning; and (3) serving as a data source by 
sending safety-relevant events or issued warnings 
back to the platform, supporting the refinement of 
driving risk models..  

3.2 Data Source and Data Topic 

A data source is any device or service providing 
safety-relevant information, such as in-vehicle 
sensors, data from other vehicles, third-party weather 
services, or government accident statistics. Since 
sources often lie outside the core platform and may 
incur access costs, minimizing requests is essential. 
The platform must also remain flexible to integrate 
new feeds or retire obsolete ones.  

A data topic, by contrast, is a logical grouping of 
related sources (e.g., all weather feeds). While not 
physical components, topics simplify management, 
querying, and aggregation of multiple feeds on the 
same subject. 

3.3 Data Service 

A data service encapsulates a single data topic, 
providing a unified interface to all its underlying 
sources. Each topic has exactly one data service, 
making it a core platform component. When queried 
with a Geo-Spatial Key (GSK), it returns relevant 
events, re-indexing incoming data and merging 
overlapping or redundant feeds for consistency.  

The service also maintains a local cache of 
incoming data (e.g., weather), reducing repeated 
external calls, improving response times, and 
abstracting the complexity of heterogeneous sources. 
By normalizing, deduplicating, and caching feeds, it 
ensures higher-level components can access 

harmonized, up-to-date data without handling source-
specific idiosyncrasies. 

3.4 Situational Inference and Event 
Computation Service 

This service is the core component, assembling and 
refining all relevant events for a given Geo-Spatial 
Key (GSK). It queries all data services to retrieve 
their event collections, then reconciles cross-topic 
conflicts to produce a unified dataset.  

Expert-defined rules are applied to infer 
additional risk-relevant events and enrich existing 
ones. For instance, a sharp curve may be considered 
more hazardous in rain or snow, generating a 
composite event with a condition-specific safe speed. 
The service outputs a consolidated set of observed 
and inferred events, ready for transmission to the in-
vehicle client. 

3.5 Broker 

The Broker acts as the communication hub between 
the platform and the in-vehicle clients. As a core 
component of the system, it manages and maintains 
client connections, receives Geo-Spatial Keys 
(GSKs) transmitted by the clients, and ensures that 
the corresponding sets of computed events are 
reliably routed back to the appropriate originating 
vehicles.  

By handling message coordination and delivery, 
the broker enables timely, bidirectional 
communication between the edge and backend 
components of the hazard warning system. 
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4 IMPLEMENTATION 
CHALLENGES 

4.1 Backend and Event Generation 

A major implementation challenge is ensuring that all 
data services can process and respond to queries 
within a bounded, fast timeframe, allowing the 
system to generate timely and relevant warnings for 
the driver. This requires orchestrating asynchronous 
requests, efficient data retrieval and caching, and 
robust timeout mechanisms to handle slower or 
temporarily unavailable sources. 

In our prototype, multiple independent data 
services run in Docker containers, including external 
weather data, vehicle crash and traffic data, accident 
hotspots, harsh braking, and road geometry. The 
event inference service queries these services within 
a defined GSK (currently 4 km²), allocating about 
20 seconds per service and one second for final 
merging. Related events, such as curves combined 
with adverse weather, are merged into single, 
meaningful events with safe speed recommendations, 
improving warning coherence while reducing event 
volume. 

Importantly, highly relevant information—like 
weather—must not be filtered out, as it can serve both 
as standalone spatial events or as context for other 
warnings, enabling early alerts for drivers in 
hazardous conditions such as snow, ice, or heavy 
precipitation. 

4.2 Frontend and Warning Mechanism 

A major implementation challenge lies in designing 
how data is accessed, processed, and transformed into 
actionable warning events that reach drivers in a 
timely manner. While drivers expect prompt alerts to 
react appropriately to potential hazards in near to real-
time, the reality is that not all relevant data may be 
immediately available to generate such warnings. 
Additionally, low or unstable internet connectivity 
can further delay data transmission to the vehicle.  

To address the challenge of timely and reliable 
driver warnings under variable connectivity and data 
availability, we implemented a two-step mechanism. 
Warning-relevant events are first generated on the 
server side using a Geo-Spatial Key (GSK), which 
defines a broader area of potential relevance. These 
events are then validated on the in-vehicle client 
using a driving corridor-based mechanism that 
focuses on the vehicle’s real-time trajectory. This 
dual architecture is shown in figure 2 and balances 

data efficiency, connectivity limitations, and warning 
relevance. 

In our prototypical implementation, the GSK is 
represented as a configurable square region (in our 
case currently a 4 km² area) surrounding the vehicle’s 
current GPS position. The in-vehicle client sends a 
GSK to the server, which queries all relevant data 
services for potential warning events in that area. 
Aggregated warning events are returned and cached 
locally on the in-vehicle client for low-latency access.  

On the client side, a dynamic driving corridor is 
constructed as a triangle aligned with the vehicle’s 
position, speed, and heading. This corridor is used to 
filter the cached events in real time. If a relevant event 
falls within this corridor, and certain local conditions 
are fulfilled (e.g. vehicle speed is above a threshold 
for a particular event), a warning is issued.  

To ensure uninterrupted service, the in-vehicle 
client proactively requests data for the next GSK 
region before exiting the current one, allowing 
seamless preloading of warning events. Key 
parameters - including GSK size, driving corridor 
geometry, and update intervals - are configurable to 
support different operational scenarios and allow 
more frequent updates in high-risk areas, such as 
during evolving weather conditions or traffic 
incidents. 

4.3 Availability and Use of Data  

Accessing relevant data for driver warning is 
challenging, and a key implementation issue is how 
to use limited, costly sources efficiently to generate 
timely, actionable warnings. Queries to third-party 
data, such as weather or vehicle telemetry, must be 
minimized to reduce cost while ensuring relevant 
events are delivered to the vehicle. 

In our prototype, weather data is collected from 
100 spatially distributed points across a defined 
driving region, each treated as a virtual weather 
station representing localized conditions including 
precipitation, temperature, wind, visibility, and 
severe weather alerts.  

Vehicle telemetry is ingested in real time via a 
Kafka-based stream from a connected vehicle data 
marketplace, providing position data and risk-
relevant events such as crash detections or activation 
of safety systems like ABS or ESP. The incoming 
streams are filtered and cached for rapid access by the 
event inference service, allowing enrichment, 
merging, or generation of new hazard events. 

In addition, historical vehicle trip data is 
leveraged to generate curve information, including 
radius and maximum recommended safe speeds 
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under various surface conditions. Sudden braking 
events are clustered to identify brake hotspots, while 
historical accident data is clustered to define accident 
hotspots. These dedicated data services, together with 
the curve data service, enrich the platform with both 
real-time and context-aware, locally derived insights, 
supporting more accurate and actionable hazard 
warnings for drivers. 

4.4 Event Data Processing: Balancing 
Between Server and Client 

Another key implementation challenge is deciding 
where data processing should take place—on the 
server or in the in-vehicle client—and how warning 
events should be structured and delivered. This 
requires careful coordination of data availability and 
timing to ensure the system remains performant, 
fault-tolerant, and capable of generating warnings 
even if certain data services are temporarily 
unavailable. Balancing the division of labor between 
platform and client is critical for maintaining 
responsiveness, reliability, and overall system 
robustness. 

A typical scenario illustrates this approach: 
warning a driver approaching a curvy curve too 
quickly during adverse weather. The server 
independently queries weather and curve data, then 
combines them to adjust the recommended safe 
speeds for each curve under current conditions, such 
as lowering speeds due to rain. These updated curve 
events are sent to the in-vehicle client, which 
continuously monitors the vehicle’s speed, position, 
and driving corridor. If the vehicle exceeds the safe 
speed for the curve and weather conditions, a warning 
is issued. 

Decision-making is distributed across 
components based on data availability. The in-vehicle 
client has access to real-time vehicle data, enabling it 
to infer higher-level events, such as hazardous driving 
behavior, locally. Meanwhile, external data like 
weather, accident hotspots, or icy road conditions can 
be processed server-side and either merged with 
curve data or issued as standalone warnings. This 
distributed approach ensures warnings are timely, 
context-aware, and resilient to delays or temporary 
unavailability of individual data services. 

4.5 Warning Logics Defined by Experts 

Many types of meaningful warnings can, in principle, 
be generated using existing data sources—ranging 
from infrastructure and weather information to real-
time vehicle telemetry—as well as future sources. A 

key challenge is translating these diverse data points 
into effective warnings, designing logic that converts 
raw data into actionable, context-aware alerts without 
causing overload or false alarms. This requires robust 
methods and algorithms capable of interpreting 
heterogeneous inputs and triggering clear messages 
that enhance driver awareness and safety. 

In our prototype, we focused on relatively simple 
warning logics to validate core functionality. Experts 
initially create “warning stories,” fictional but 
plausible hazardous events at specific locations—
such as distracted drivers or high-risk intersections—
which serve as a foundation for designing and testing 
alert logic in real-world or simulated scenarios. 

For example, a warning for drivers approaching a 
tight curve too fast under adverse weather merges 
static road geometry (curve radius and location), 
dynamic weather data (rain or snow), and real-time 
vehicle speed to determine if a warning is necessary. 
General weather-based alerts, like icy road warnings, 
are implemented using geographic overlays. If 
historical accident data or real-time vehicle signals—
such as ESP activation, distraction, or an ongoing 
accident—are present, the hazard level increases, but 
even a single additional risk signal may suffice to 
classify the curve as hazardous. 

The central challenge is designing hazard logic 
flexible enough to incorporate a broad, dynamic 
range of input signals, both historical and real-time, 
without relying on a fixed rule set. At the same time, 
the system must generate meaningful warnings even 
with limited data, e.g., using only curve geometry or 
weather, while remaining robust against false 
positives. Balancing richness and robustness requires 
careful, data-aware design of event fusion and 
decision logic, supported by heuristics and expert 
knowledge, to weigh signals and determine urgency 
and warning necessity. 

4.6 Data and Event Invalidation 

Another key implementation challenge is the 
handling of data and event invalidation. Not all 
safety-relevant data remains valid indefinitely: 
Weather conditions evolve, distraction events are 
transient, and incidents such as accidents or 
roadworks have limited temporal and spatial 
relevance. The system must therefore continuously 
assess the validity period of each event and ensure 
that outdated or no longer applicable information is 
removed or updated in a timely manner to avoid 
misleading or unnecessary warnings. 

In our current prototype, many events span the full 
duration of the evaluation period and are derived from  
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Figure 2: GSK, Driving Corridor, Hazardous events and warnings. 

historical datasets, explicit deletion or expiration has 
not been required. However, for few dynamic data 
types such as weather and vehicle-related events, we 
have implemented basic invalidation strategies. 
Weather data is refreshed hourly, while vehicle-
related events are streamed continuously. Events 
from the vehicle stream are cached in a database for 
the data service and invalidated after a maximum of 
two hours, ensuring that only recent, potentially 
relevant incidents are retained for warning evaluation. 

4.7 Human Factor: Vehicle Integration 
and Warning Modality 

As the platform scales, handling more data sources or 
time-sensitive use cases like real-time driver 
distraction detection, effective data and event 
invalidation becomes crucial. One approach is to 
timestamp each event and assign a type-specific 
validity period after which it’s excluded from 
processing. While simple in concept, choosing 
appropriate expiration intervals is challenging. For 

instance, a distraction alert may be valid for seconds, 
weather data for up to an hour, while events like road 
construction lack predictable durations, requiring 
adaptive or manual invalidation strategies. 

Another key implementation challenge is how to 
integrate the warning mechanism into the vehicle in a 
way that does not distract the driver. The system must 
alert drivers to hazards while minimizing cognitive 
load and avoiding any increase in distraction.  

This implementation challenge involves deciding 
whether to use a mounted smartphone or integrate the 
system into the in-vehicle infotainment system, as 
well as determining the most effective modality for 
delivering warnings, visual, acoustic, haptic, or a 
combination. The challenge lies in striking a balance 
between providing timely and relevant information 
and ensuring the warning mechanism remains subtle 
and non-intrusive, so that it genuinely improves 
safety rather than undermines it. 

For simplicity, our prototype uses a smartphone as 
the in-vehicle client, displaying visual warnings via 
an on-screen triangle and brief message. We also 
explored integration as an Android Automotive OS 
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(AAOS) app to show alerts within the infotainment 
system. To reduce distraction, we considered 
alternative modalities like ambient lighting, haptic 
feedback (e.g., steering wheel vibrations), or audio 
cues, leveraging in-vehicle actuators for more 
intuitive driver alerts. 

5 DISCUSSION & CONCLUSION 

We introduced hazard warning as a category of driver 
warning systems, presented our architectural and 
procedural approach, and discussed the 
implementation challenges and solutions in our 
prototypical system. We acknowledge several 
limitations: the system is a prototype and not a fully 
operational solution with guaranteed availability or 
formal service-level agreements. 

Our prototype is tailored for rural areas and not 
yet optimized for urban settings, where limited 
positioning precision and overlapping events near 
intersections or roundabouts make hazard detection 
more challenging. Highways and urban roads also 
require wider driving corridors for timely warnings at 
higher speeds, increasing the risk of false positives. 
Connectivity gaps, such as long tunnels or areas with 
poor internet, can cause update failures. Large update 
areas (GSKs) add computational overhead, increase 
data transfer, and lengthen update intervals, reducing 
the accuracy and timeliness of soft real-time 
warnings. The system is intended as a driver-
assistance or comfort feature rather than a safety-
critical component. Barriers to large-scale 
deployment include high costs of accessing and 
licensing diverse data sources, which require 
continuous streaming and high-volume API requests 
for many connected vehicles. Privacy is also a key 
concern (Lechte et al., 2023): the in-vehicle client 
transmits only a generalized Geo-Spatial Key (GSK), 
with no speed or direction data sent to the backend. 
GSKs are cached temporarily and processed locally, 
and all speed and direction computations occur within 
the vehicle. This privacy-by-design approach 
minimizes transmitted PII and ensures sensitive data 
remains within the vehicle. 

In conclusion, we presented the architecture and 
workflow of a data-driven, in-vehicle hazard warning 
system. Our prototype highlighted key challenges, 
including data acquisition, integration, real-time 
processing, warning logic, and client-side evaluation. 
These insights guide researchers and offer practical 
value for automotive OEMs and Tier-1 suppliers. 
Unlike commercial solutions focused on static events, 
our approach demonstrates how dynamic, 

situationally enriched warnings can better enhance 
driver awareness and road safety. 
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