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1 INTRODUCTION
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Cognitive overload significantly affects human performance in complex interaction settings, making its early
detection essential for designing adaptive systems. This study investigated whether gaze-derived features can
reliably predict overload states using supervised machine learning (ML). The analysis was conducted on an
eye-tracking dataset from a cognitively demanding visual task that incorporated fixations, saccades, and pupil
diameter measurements. Five classifiers, namely, Logistic Regression (LR), Naive Bayes (NB), Support Vector
Machine (SVM), XGBoost (XGB), and Multilayer Perceptron (MLP), were evaluated using stratified train/test
splits and 5-fold cross-validation. XGB achieved the best performance, with an accuracy of 0.902, a precision
of 0.958, a recall of 0.821, an F1 score of 0.884, and an area under the ROC curve (AUC) of 0.956. These
findings confirm that gaze-derived features alone can reliably distinguish between cognitive overload states.
The results also revealed trade-offs between simple models, which are easier to interpret but more conservative,
and complex models, such as XGB and MLP, which achieved stronger predictive performance. Future studies
should address subject-independent validation, incorporate temporal modeling of gaze dynamics, and explore
personalization and cross-task generalization to advance robust and adaptive cognitive monitoring.

minimal burden on users. Research has shown that

The ability to monitor users’ cognitive states during
task execution is increasingly essential in domains
such as human-computer interaction (HCI), educa-
tion, simulation training, and safety-critical opera-
tions. When cognitive demand surpasses an individ-
ual’s capacity, performance degradation is likely to
occur, a phenomenon referred to as cognitive over-
load. Detecting this overload in real time enables sys-
tems to adapt their complexity, pacing, or feedback,
thereby reducing user frustration and enhancing over-
all system usability (Kosch et al., 2023).

Recent advances in eye-tracking technology have
made it feasible to noninvasively capture detailed
gaze behavior, offering insights into attention, in-
formation processing, and cognitive effort. Com-
pared with physiological measures such as electroen-
cephalography (EEG) or functional near-infrared
spectroscopy (fNIRS), gaze-based features are easier
to integrate into practical environments and impose
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saccade patterns, fixation durations, pupil dilation,
and blink rates are modulated by cognitive load, mak-
ing them useful input signals for classification models
(Abbad-Andaloussi et al., 2022),(Gorin et al., 2024).

ML has become the predominant approach for
modeling the relationship between gaze behavior and
the cognitive state. Classical models, such as SVM
and LR, as well as more recent deep learning and en-
semble methods, have been applied to various cogni-
tive estimation tasks. However, many studies rely on
multimodal inputs or domain-specific datasets, which
limit their generalizability (Aksu et al., 2024) (Skara-
magkas et al., 2023).

Despite the growing body of literature on cog-
nitive state monitoring, a gap remains in evaluating
how well ML models can generalize cognitive over-
load detection using only gaze data. Existing studies
often involve complex sensor setups or focus on spe-
cific environments (e.g., virtual reality (VR) or driv-
ing), which limits their applicability to more general
HCI scenarios (Ghosh et al., 2023).

This study was motivated by the need to support
the design of cognitively ergonomic interfaces for
professional human-machine interactions. Predict-
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ing cognitive overload from eye-tracking data enables
system designers to align interface complexity with
user capabilities better, thereby minimizing cognitive
strain and preserving interaction fluency for optimal
performance. By identifying when users experience
mental overload, designers can proactively adjust the
information flow and visual load, preventing frus-
tration, reducing negative emotional responses, and
maintaining effective decision-making. Such predic-
tive insights are critical for ensuring that high-demand
operational environments remain user-centered, with-
out hindering human cognition or compromising task
performance.

A supervised learning framework was adopted to
infer whether cognitive overload occurred based on
gaze-derived features, assuming a unified and effi-
cient pipeline. To position this work within the cur-
rent research landscape and clarify its methodological
scope, the key contributions are as follows:

* Investigation of cognitive overload prediction us-
ing gaze-derived features (fixations, saccades,
pupil dynamics) in a visually demanding interac-
tion task.

* Application of a structured preparation pipeline,
including feature standardization for model train-
ing and statistical/visual analysis to confirm the
relevance of gaze-based metrics.

» Comparative evaluation of five supervised learn-
ing models (LR, NB, SVM, XGB, MLP) with
stratified validation and multiple performance
metrics.

* Demonstration that gaze-only features can reli-
ably predict overload, with XGB achieving high
accuracy and AUC without requiring multimodal
inputs.

The remainder of this paper is organized as fol-
lows. Section 2 reviews the relevant literature on
cognitive workload estimation using gaze-based fea-
tures and ML techniques. Section 3 details the pro-
posed methodology, including dataset overview, pre-
processing, feature analysis, model formulation, and
evaluation strategies. Section 4 presents and analyzes
the experimental results and provides a comparative
assessment of model performance across key metrics.
Section 5 discusses the limitations and future direc-
tions of this study. Finally, Section 6 summarizes the
main findings of this study and outlines key directions
for future research.
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2 RELATED WORKS

Recent research on cognitive workload estimation has
increasingly focused on gaze-based indicators owing
to their unobtrusive nature and applicability in real-
time applications. Several studies have utilized ML
to model the relationship between eye behavior and
cognitive demand in various domains, including VR,
driving simulations, and tasks that require attention.

A foundational dataset in this area is COLET,
which captures gaze behavior under multitasking and
time pressure across multiple task conditions (Ktis-
takis et al., 2022). By training classical classifiers
on fixation, saccade, and pupil-related features, the
authors reported classification accuracies of nearly
88%, validating gaze signals as effective predictors of
cognitive load. To advance generalization in uncon-
strained settings, the CLERA framework was intro-
duced as a unified deep model for eye-region track-
ing and load estimation (Ding et al., 2023). It in-
tegrates keypoint localization with workload regres-
sion in a single trainable architecture and outperforms
SVM-based approaches in naturalistic environments.
In the context of immersive training, cognitive load
was modeled during VR-based disassembly tasks us-
ing fixation duration and pupil dilation as inputs for
MLP classifiers (Nasri et al., 2024). The results indi-
cated a high F1, underscoring the discriminative value
of gaze dynamics as task complexity increased.

Multimodal approaches have also been explored
for this purpose. One study combined gaze fea-
tures with fNIRS signals and driving dynamics within
a Convolutional Neural Network (CNN) and Long
Short-Term Memory (LSTM) pipeline, achieving
near-perfect classification performance across n-back
difficulty levels (Khan et al., 2024). This integration
of physiological and behavioral data demonstrates the
benefits of signal fusion for robust load inference.

Gaze and pupillary data alone have proven suffi-
cient in low-latency contexts. A CNN-based model
was developed to detect stimulus onset using short
windows of pupil diameter and gaze vectors across
multiple cognitive domains (Dang et al., 2024). De-
spite domain variation, the models maintained re-
liable performance, especially for attention-oriented
tasks.

Workload prediction in gamified VR environ-
ments has also been examined using a combination of
ocular and biosignals, such as heart rate and galvanic
skin response (GSR) (Szczepaniak et al., 2024). Us-
ing SVM and Random Forest (RF) models, the study
reported F1 above 0.90, with interpretability analy-
sis highlighting pupil size and blink rate as dominant
predictors. Finally, a systematic benchmark evaluated
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11 ML algorithms on gaze-derived features extracted
under dual-task and time-pressure conditions (Skara-
magkas et al., 2021). This study demonstrated that
lightweight models, such as RF, can match more com-
plex methods for both binary and multi-class cogni-
tive load classification.

A comparative summary of the aforementioned
studies is provided in Table 1, which outlines the
core elements, including the domain, modality, fea-
ture types, and model classes. As shown in the ta-
ble, most prior work emphasizes VR or driving con-
texts and relies on multimodal instrumentation, often
including biosignals such as EEG, fNIRS, or GSR.
Although such approaches can improve robustness,
they require additional sensors, calibration, and user
compliance, which limit their scalability and every-
day applicability. In contrast, this study demonstrates
that fine-grained gaze-only signals suffice for reliable
overload prediction, offering a lightweight and unob-
trusive alternative particularly suited to adaptive HCI
and web-based interaction scenarios.

3 METHODOLOGY

The methodology follows a structured pipeline (Fig-
ure 1) consisting of dataset description, preprocess-
ing, model training, and evaluation.

3.1 Dataset Overview

This study utilized a dataset collected using the Gaze-
point GP3 eye-tracking system (Mannaru et al., 2017)
during simulated print configuration tasks involving
complex visual interactions. The task required partic-
ipants to navigate menus, adjust parameters, and con-
firm settings under time constraints, thereby induc-
ing either a normal or an overloaded cognitive state.
The device recorded continuous streams of fixations,
saccades, pupil diameter, and gaze coordinates under
ecologically valid conditions. The participants under-
went individual calibration procedures to ensure the
spatial accuracy of gaze mapping.

The dataset included recordings from nine users
supplemented with demographic and interaction-
related metadata, such as age, professional experi-
ence, and task familiarity. The features of the dataset
are summarized in Table 2. The participant demo-
graphics are reported in Table 3, which lists each
user’s age, total and platform-specific experience (in
years), and the proportion of samples per user that
were labeled as cognitively overloaded. The dataset
comprised 2,510 overload samples (43.9%) and 3,207
normal samples (56.1%).

Class labels distinguishing overload from normal
states were assigned based on gaze dynamics, specifi-
cally fixation duration and saccade magnitude, which
are widely recognized in the literature as behavioral
indicators of cognitive load (Rayner, 1998; Holmqvist
et al., 2011; Duchowski, 2007). In this dataset,
the thresholds were defined relative to the empiri-
cal feature distributions, resulting in approximately
balanced class proportions. Although this procedure
provides consistent labeling across participants, it re-
mains heuristic and may limit generalizability.

This dataset ensures validity through standard pre-
processing, including the exclusion of missing or low-
confidence gaze samples (based on system confidence
scores and pupil validity flags), detection and re-
moval of blinks, reconstruction of fixation events, and
derivation of saccade magnitudes from inter-fixation
displacement. All timestamps were aligned with the
session start time to ensure a consistent temporal ref-
erence across participants.

In the next section, the distributions and statistical
properties of the gaze-derived features are examined
to assess their relationship with cognitive overload.

3.2 Exploratory Feature Analysis

We examined gaze-derived features related to fixation
duration, saccadic behavior, pupil size, and gaze dis-
tribution to explore the behavioral signatures of cog-
nitive overloading in this study. These features were
selected based on the literature and empirical variabil-
ity. Our aim was not to reduce dimensionality but to
evaluate the extent to which feature distributions dif-
fered across cognitive states in a statistically and be-
haviorally meaningful way.

Figure 2 shows the kernel density plots of the
distributions of each gaze-derived feature across the
normal and overload conditions. The fixation dura-
tion and saccade magnitude demonstrated the most
distinct separation, with overload samples character-
ized by longer fixation durations and reduced sac-
cade amplitudes. Pupil diameter measurements are
generally elevated under overload conditions, albeit
with a moderate overlap in distribution. Features such
as blink-constricted pupil size, pupil motion magni-
tudes, and gaze coordinates exhibited less separability
but still reflected subtle class-dependent shifts in the
data. These trends are consistent with findings linking
prolonged fixation, reduced eye movement, and pupil
dilation to cognitive load and sustained attention.

To assess the statistical separability of fea-
tures across cognitive states, we applied the
Mann—Whitney U test to all relevant features in the
dataset. This non-parametric test evaluates whether
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Table 1: Comparative overview of related works on cognitive workload estimation.

& e Data

user metada ple-pressssing

(LR, NB, SVM,
XGB, MLP)

Figure 1: Pipeline for eye gaze-based overload prediction.

Study Domain Input Modalities | Features Used Model Type Labels
(Ktistakis Visual Search Eye Tracking Fixations, Sac- | RF,SVM, XGB | NASA  Task
et al., 2022) cades, Pupil, Load Index
Blinks
(Ding et al., | Driving (natu- | Eye region video Keypoints, Pupil, | Deep multitask | Binary
2023) ral) Blinks CNN
(Nasri et al.,, | VR Training Eye Tracking Pupil  Dilation, | MLP, RF NASA  Task
2024) Fixation Duration Load Index
(Binary)
(Khan et al., | Driving Sim Eye + fNIRS + Gaze, HbO2, Ve- | CNN-LSTM N-back levels
2024) Vehicle data hicle
Signals
(Dang et al., | Multi-domain Eye Tracking Pupil, Gaze Vec- | Task-specific Stimulus Onset
2024) tors CNNs
(Szczepaniak VR Game Eye + GSR + | Saccades, Pupil, | SVM, RF Perceived Load
et al., 2024) Heart Rate Heart Rate, Elec-
trodermal Activ-
ity
(Skaramagkas | Visual + Dual | Eye Tracking 29 gaze metrics | RF, Extra Trees | NASA  Task
et al., 2021) Task incl. Blink, Fixa- Load Index
tion (3-class)
This work Visual Task Eye Tracking | Fixation, Sac- | LR, NB, SVM, | Cognitive
only cade, Pupil XGB, MLP Overload
Eye gaze features Model Training Evaluation

»Accuracy, Precision,
Recall, F1, AUC

the values in the two classes originate from distinct
distributions, without assuming a normal distribution.
Features were then grouped based on whether they ex-
hibited statistically significant differences at the p <
0.01 level:

* Significant Features (p < 0.01): Most gaze-
derived features showed strong evidence of dis-
tributional divergence between cognitive states.
These included FPOGD (fixation duration),
SAC_MAG, LPD, RPD (left/right pupil diameter),
LPMM, RPMM, BKDUR, BKPMIN, and gaze
position CX and CY. Other significant features
are AGE, TOT_EXP, EXP_PLAT, TIME, CNT,
FPOGS, FPOGID, BKID, and CS. These results
are consistent with the literature linking these fea-
tures to visual attention and the cognitive load.
The statistical significance of these variables sup-
ports their inclusion in subsequent analyses and
model development.

* Non-Significant Features (p > 0.01): A small
number of features did not show statistically sig-
nificant differences. These include i) eye-specific
gaze coordinates LPCX, LPCY, RPCX, RPCY,
and ii) pupil validity flags LPV, RPV. The lim-
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ited separability of these features is likely due to
their dependence on external factors, such as dis-
play layout or signal quality, rather than the inter-
nal cognitive state. While retained for modeling
purposes, these features were excluded from in-
terpretative and visual analyses because of their
minimal relevance to behavior analysis.

Figure 3 presents the exploratory correlations

between the workload proportion and the selected
participant-level variables.
ciation was observed between overload status and
both total and platform-specific experience, suggest-
ing that greater familiarity with the task environment
may reduce cognitive strain. In contrast, pupil diame-
ter and fixation duration tended to increase with work-
load, which is consistent with the established psy-
chophysiological markers of increased mental effort.
Saccade magnitude showed an inverse trend, indicat-
ing more localized gaze behavior under higher cogni-
tive load.

A weak negative asso-
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Table 2: Structured summary of extracted features from eye-tracking data.

Feature(s) [ Type | Description

Participant Metadata

UID Nominal | Participant identifiers for grouping or stratified sampling, not predictive.
AGE Numeric | Age of the participants in years.

TOT_EXP Numeric | Total professional experience; reflects overall expertise.
EXP_PLAT Numeric | Experience specific to the simulated platform.

Fixation and Saccade Features

CNT Numeric | Frame/sample index; useful for computing fixation order or timing.
TIME Numeric | Time elapsed since the session start; used for temporal analysis.
FPOGID Nominal | Identifier for each fixation event.

FPOGS Numeric | Fixation onset time, marking the start of fixation.

FPOGD Numeric | Fixation duration (ms): key indicator of cognitive effort.
SAC_MAG Numeric | Saccade magnitude: amplitude of movement between fixations.
SAC_DIR Nominal | Saccade direction used in visual-scanning analysis.

Pupil Metrics and Motion

LPD, RPD Numeric | Left and right pupil diameters.

LPV, RPV Nominal | Validity flags for pupil diameter measurements.

LPMM, RPMM Numeric | Eye motion magnitude: may reflect fatigue or stress.

LPMMYV, RPMMV Numeric | Pupil motion velocity: complementary to LPMM, RPMM.

Blink Features

BKID Numeric | Blink ID grouping samples during the same blink.

BKDUR Numeric | Blink duration (ms).

BKPMIN Numeric | Minimum pupil diameter recorded during a blink.

Gaze Coordinates and Confidence

CX, CY Numeric | Central gaze coordinates on screen.

CS Numeric | System-provided confidence score for gaze sample validity.

LPCX, LPCY Numeric | Left eye gaze X/Y screen coordinates.

RPCX, RPCY Numeric | Right eye gaze X/Y screen coordinates.

BPOGX, BPOGY Numeric | Raw base point of gaze coordinates; system-derived, not used directly.

Table 3: Participant demographics and overload proportion.

UID| Age | TotExp | PlatExp | Overload
1 45 21.0 15.00 0.44
2 46 20.0 14.00 0.37
3 24 0.0 0.67 0.45
4 32 10.0 0.00 0.39
5 45 22.0 15.00 0.41
6 21 0.0 0.67 0.42
7 27 0.2 1.00 0.46
8 59 30.0 16.00 0.09
9 42 18.0 12.00 0.26

3.3 Machine Learning Models

Let x € RY denote the feature vector, concatenating
fixation, saccadic, and pupil metrics with participant
metadata, and let y € {0, 1} represent the binary cog-
nitive state label. Five supervised classifiers were em-
ployed for overload detection: LR, SVM, NB, XGB,
and MLP. This configuration yields a compact repre-
sentation of gaze dynamics and user traits, enabling
comparative evaluation across diverse inductive bi-
ases without requiring multimodal inputs.

LR (Das, 2024) provides a linear and interpretable
baseline by mapping features to class probabilities.

SVMs (Pisner and Schnyer, 2020) identify the deci-
sion boundary that maximizes the separation between
classes and can capture nonlinear relationships using
kernel functions. NB (Chen et al., 2020b) offers a
probabilistic approach based on conditional indepen-
dence assumptions and remains efficient even when
these assumptions are violated moderately. XGB
(Chen et al., 2020a) is an ensemble method that se-
quentially combines decision trees, achieving strong
predictive accuracy while sacrificing interpretability.
Finally, the MLP (Cinar, 2020) represents a neu-
ral network—based model, where layered nonlinear
transformations enable the learning of complex in-
put—output mappings.

3.4 Pre-Processing, Training &
Evaluation

All numerical features were standardized using z-
score normalization to ensure optimization stability in
gradient-based models. To minimize sampling bias,
stratified 5-fold cross-validation was applied within
an initial 80/20 training/testing split, which preserved
class balance across the folds. The hyperparameters
were tuned using the training folds, and the final mod-
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Figure 2: Distributions of 9 gaze-derived features across cognitive states (Normal vs. Overload), capturing fixation, saccade,

pupil, and spatial attention dynamics.
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Figure 3: Participant-level correlations between overload proportion and gaze-derived features.

els were retrained on the full training subset before
being evaluated on a held-out test set.

Each algorithm was trained with standard con-
figurations: LR using the L-BFGS optimizer with
£y-regularization, SVM with RBF kernel (default
regularization parameter C = 1.0 and Y = scale),
NB with closed-form Gaussian estimates, XGB with
100 boosted trees (learning rate of 0.1), and MLP
with a single hidden layer (100 units, ReL.U activa-
tions, and Adam optimizer). Performance was as-
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sessed through accuracy, precision, recall, F1 score,
and AUC, defined in terms of the confusion matrix
(TP,TN,FP,FN) as

__ TP4TN
* Accuracy = rprrN i ppiEN
* Precision = %, Recall = TIL%
— . Precision-Recall
* F1=2 Precision+Recall

The AUC was used to quantify threshold-independent
discrimination. The models were implemented in
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scikit-learn 1.3.0 and XGB 1.7.6, executed on
Ubuntu 22.04 with an Intel 17 CPU and 32GB RAM.

4 RESULTS ANALYSIS

The five ML models were evaluated on a stratified
20% test set using accuracy, precision, recall, F1, and
AUC. These metrics capture both overall performance
and sensitivity to cognitive overload. Table 4 summa-
rizes the performance of all evaluated models. XGB
consistently outperformed the other models across all
metrics, achieving the highest accuracy (0.902), F1
(0.884), and AUC (0.956), highlighting its ability to
effectively model non-linear dependencies. The MLP
also yielded strong results, particularly in terms of
recall and F1, indicating its capacity to learn com-
plex interactions among gaze-based features. LR and
SVM demonstrated comparable but more conserva-
tive behavior, with high precision but lower recall,
while NB trailed slightly due to its simplifying inde-
pendence assumptions.

These results illustrate the value of using comple-
mentary metrics beyond accuracy, as F1 and AUC
capture the trade-offs between precision and recall
under class imbalance and subtle cognitive effects.
Such trade-offs are particularly important for deploy-
ment, where factors such as interpretability, respon-
siveness, and tolerance to false negatives must be con-
sidered. XGB was the most reliable model, consis-
tently achieving the best scores for all metrics. The
MLP also performed strongly, particularly in terms of
recall and F1 scores, reflecting its ability to capture
complex feature interactions. LR and SVM showed
higher precision but lower recall, indicating a more
conservative classification behavior, while NB lagged
behind due to its simplifying independence assump-
tions.

Table 4: Experimental results on the test set.

Model Accuracy Precision Recall F1 AUC
XGB  0.902 0.958 0.821 0.884 0.956
MLP  0.870 0.925 0.765 0.837 0918
LR 0.851 0910 0.723  0.805 0.894
SVM  0.846 0.902 0.714 0.797 0.889
NB 0.828 0.872 0.690 0.770 0.871

S DISCUSSION

The results demonstrate that gaze-derived features
alone can provide meaningful indicators of cogni-
tive overload, supporting lightweight and noninva-
sive monitoring for adaptive human—machine inter-

actions. By relying only on fixations, saccades, and
pupil dynamics, this study complements prior work
that depends on multimodal or domain-specific data
and shows that robust detection is feasible without in-
trusive instrumentation.

This study had some limitations. Although the
dataset contains thousands of samples, they origi-
nate from only nine participants. This yields suffi-
cient sample-level power but restricts generalizability
because the models may capture user-specific traits
rather than universal markers of overload. Moreover,
training and testing on the same participants increased
the risk of overfitting because cross-subject validation
was not performed. Although the dataset was approx-
imately balanced between the overload and normal
samples, the confidence intervals could not be reli-
ably estimated because of the limited number of par-
ticipants. This underscores the need for larger and
more diverse cohorts in future studies to enable robust
statistical inferences. Class labels were also derived
heuristically from fixation duration and saccade mag-
nitude distributions. While grounded in established
cognitive science, such labeling remains an indirect
proxy of cognitive state and may limit construct va-
lidity. Therefore, future studies should validate this
approach on datasets in which independent measures,
such as task performance and multimodal markers,
define the labels.

The present analysis relied on feature-based clas-
sifiers that ignored gaze sequential dynamics. Incor-
porating temporal models, such as recurrent or trans-
former architectures, can exploit this structure. Er-
ror analysis through confusion matrices would further
clarify systematic misclassifications, whereas bench-
marking against multimodal baselines would help
quantify the trade-offs of unimodal gaze input. As-
sessing latency and computational costs is also neces-
sary to establish the feasibility of real-time and adap-
tive interface systems. In addition, calibration analy-
sis, which evaluates how well the predicted probabili-
ties reflect the actual outcomes, would strengthen de-
ployment readiness in settings where system actions
depend on confidence thresholds. Overall, these lim-
itations open concrete directions for advancing gaze-
based cognitive state modeling in more realistic set-
tings.

6 CONCLUSIONS

This study examined cognitive overload detection us-
ing only gaze-derived features and applied five ML
models to data from a cognitively demanding visual
task. Among them, XGB delivered the best per-
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formance, achieving an accuracy of 0.902, precision
of 0.958, recall of 0.821, F1 of 0.884, and AUC of
0.956. These results demonstrate that eye-based met-
rics, including fixations, saccades, and pupil diam-
eter, are sufficient for reliable binary classification,
thereby eliminating the need for multimodal inputs.
Beyond predictive performance, the findings high-
light the feasibility of deploying lightweight gaze-
based models in real-time HCI systems. Unlike mul-
timodal approaches, this method offers a focused and
interpretable solution based solely on ocular behavior.
As an exploratory study based on nine participants,
the findings provide initial evidence of the discrimi-
native power of gaze-only features. Larger and more
diverse datasets are necessary to confirm the gener-
alizability and establish statistical reliability. Future
work should also extend the evaluation to subject-
independent scenarios, incorporate temporal model-
ing of gaze dynamics, and explore personalization
and cross-task generalization to advance robust and
adaptive cognitive monitoring systems.
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