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Abstract: Production scheduling has become an integral component of next-generation industrial systems during the era 
of Industry 5.0, which emphasizes collaboration between humans and machines, sustainability, and hyper-
personalization. To address complex scheduling challenges, this paper presents a smart scheduling framework 
based on metaheuristic optimization tailored for manufacturing environments incorporating 3D printing 
technologies. The proposed framework addresses several key objectives, including the optimization of energy 
consumption, efficient utilization of raw materials, and minimization of total production time. By 
incorporating metaheuristic algorithms such as Genetic Algorithms, Particle Swarm Optimization, and Ant 
Colony Optimization, the system demonstrates adaptability to multiple constraints and competing priorities. 
Experimental evaluations confirm the framework’s effectiveness in enhancing operational efficiency, 
flexibility, and sustainability, in alignment with the core principles of Industry 5.0. 

1 INTRODUCTION 

With Industry 5.0, manufacturing has entered a new 
era, where humans-centric design, sustainability, and 
resilience are now equally important. Instead of 
focusing solely on smart automation, cyber-physical 
systems, and IoT integration, Industry 5.0 promotes a 
symbiotic collaboration between humans and 
machines. A flexible, adaptive, and intelligent 
production system is essential in this dynamic 
environment to meet demand for personalization, 
real-time responsiveness, environmental 
responsibility, and flexibility (Ghoujdam,2024).  
     An important enabling technology of Industry 5.0 
is 3D printing, also known as additive manufacturing 
(AM) (Dehghan,2025). In addition to its ability to 
allow complex geometries, material efficiency, and 
minimal tooling, it also supports decentralized, on-
demand, and sustainable manufacturing. Integration 
of 3D printing into broader industrial production 
workflows, however, presents complex scheduling 
challenges. There are numerous factors to consider, 
including variable job geometry, multiple material 
requirements, fluctuating energy availability, and the 
need to coordinate dynamically with other production 
units, including robotic arms, inspection systems, and 

finishing processes. The traditional deterministic 
scheduling algorithms are often inadequate in this 
context since they are poorly suited to cope with 
multi-objective, combinatorial, and dynamic 
production in Industry 5.0 (Chen,2024). 
Consequently, meta-heuristic optimization 
algorithms such as Genetic Algorithms (GA), Particle 
Swarm Optimization (PSO), and Ant Colony 
Optimization (ACO) are often considered effective 
alternatives. In NP-hard problems, these algorithms 
offer near-optimal solutions within a reasonable 
amount of time even if the data is incomplete or 
changing. We propose an intelligent production 
scheduling framework that uses metaheuristics and 
artificial intelligence algorithms to intelligently 
schedule 3D printer jobs in a cyber-physical 
production environment. It supports the following 
features: 

• Optimization with multiple objectives, 
including energy efficiency, material use, 
and production delays. 

• Interaction with operators, which allows 
them to intervene or guide scheduling 
decisions. 
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2 RELATED WORKS 

In manufacturing research, particularly in Industry 
4.0, the issue of production scheduling has received 
considerable attention. For scheduling in static 
environments, linear programming, constraint-based 
optimization, and heuristic rules have long been used. 
The growing complexity of modern factories, 
especially those that use additive manufacturing 
(AM) often makes these methods unsuitable for real-
time, multi-objective optimization. As a powerful 
tool for solving complex scheduling problems, 
metaheuristic algorithms have gained a lot of 
attention in recent years. In industrial scheduling 
problems, Genetic Algorithms (GA), Particle Swarm 
Optimization (PSO), Simulated Annealing (SA), and 
Ant Colony Optimization (ACO) have been used 
because they are capable of escaping local optima. 
Accordingly, [Zhao et al., 2021] applied PSO for 
optimizing job-shop scheduling under energy 
constraints, whereas [Li and Wang, 2020] used GA in 
cloud-based smart factories for dynamic scheduling.  

3 PROBLEM DEFINITION AND 
OBJECTIVES 

3.1 Problem Definition  

Since 3D printers are becoming increasingly 
integrated into production workflows, task 
scheduling has become increasingly difficult. 
Because 3D printing involves layer-by-layer 
geometry, extended production times, and high 
resource sensitivity - particularly filament availability 
- it presents unique challenges. In addition to static 
job allocation, scheduling must take into account 
fluctuating material stocks, tight delivery deadlines, 
and energy limitations, as well as the continuous 
influx of customer orders in real-time. The majority 
of existing research has focused on optimizing 
makespan and minimizing resource usage in 
controlled environments, often overlooking the 
dynamic nature of additive manufacturing. In most 
models, energy and material consumption are 
assumed to be constant, disregarding geometry 
complexity and machine state for their variability. It 
is also rare for conventional scheduling approaches to 
accommodate the need to reprioritize tasks in 
response to incoming orders or real-time disruptions. 
A novel scheduling framework for 3D printing 
environments is presented in this paper that takes into 
account raw material availability, energy constraints, 

delivery deadlines, and handling of orders in real-
time. Using intelligent computational methods, we 
aim to ensure both operational efficiency and 
responsiveness in resilient, human-centric 
manufacturing systems. 

3.2 Objectives 

Scheduling tasks for 3D printing is aimed at 
optimizing efficiency, reliability, and quality in the 
production process. In order to minimize production 
times (makespan), print jobs must be ordered and 
allocated effectively across available printers. To 
accomplish this, machines, materials, and energy 
must be utilized most efficiently, while idle time and 
waste must be minimized. Moreover, meeting 
deadlines and prioritizing urgent tasks are essential to 
timely delivery. As well as reducing energy 
consumption and optimizing material usage, 
sustainability is also dependent on minimizing carbon 
emissions. A scheduling system must also guarantee 
a balanced workload among printers, adapt 
dynamically to unexpected changes such as machine 
failures or urgent jobs, and minimize setup and 
transition times. Furthermore, smart scheduling 
strategies contribute to a robust and efficient 
workflow for 3D printing by maintaining high 
product quality (Kantaros,2025). 

3.3 Proposed Smart Scheduling 
Solution 

3.3.1 Smart Scheduling Framework  

Specifically, the Smart Scheduling Framework aims 
to optimize task allocation in Industry 5.0 
environments through intelligent, modular systems. 
Dynamically generated task schedules are generated 
utilizing computational intelligence approaches such 
as Ant Colony Optimization, Artificial Bee Colony, 
or Discrete Particle Optimization. 

Essentially, the framework consists of four 
components: 

Input Layer: This layer collects information about 
printing jobs, materials, deadlines, machine 
availability, and filament types.  

Optimisation Engine: Explores scheduling solution 
space using metaheuristic algorithms. In each 
algorithm, delays are minimized and filament 
changes are minimized. 

Evaluation Module: This module provides a multi-
criteria evaluation system for assessing the quality of 
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the generated schedules (e.g., number of delays, total 
delay, filament changes, execution time). As a result, 
operational efficiency and real-time manufacturing 
goals are aligned. 

Decision & Execution Interface: It provides a 
schedule for 3D printing, which can be re-evaluated 
or re-optimized in response to unexpected events. 

3.3.2 3d Printing Task Scheduler Functional 
Diagram 

The description of 3D Printing Task Scheduler 
Functional Diagram is provided in figure.1. 

 
Figure 1: 3D Printing Task Scheduler Functional Diagram. 

The diagram illustrates a multi-objective 
optimization system that balances competing 
priorities (speed, material efficiency, and deadline 
compliance) while staying within physical and 
resource constraints. In additive manufacturing, the 
arrows illustrate the flow of information from inputs 
through processing to final outputs. 

Inputs: 
Tasks T = {t₁, t₂, ..., tₙ}: Set of printing tasks to be 
scheduled Task Durations: Estimated time required 
for each printing task. 
Task Deadlines: Delivery deadlines for each task 
Task Filament Requirements: Amount of filament 
material needed per task 
Total Filament Capacity: Total available filament 
stock/capacity 

Central Processing Unit: The 3D Printing Task 
Scheduler serves as the core optimization engine that 
processes all input data to generate an optimal 
printing schedule. 

Optimization Objectives: The proposed system is 
designed to simultaneously optimize four key 
performance criteria that reflect both efficiency and 

sustainability in modern manufacturing. First, it seeks 
to minimize the overall completion time (makespan) 
in order to accelerate project delivery and improve 
throughput. Second, it aims to minimize the total 
delay, thereby reducing cumulative lateness across all 
scheduled tasks and ensuring smoother operations. 
Third, the system focuses on minimizing the number 
of filament changes, which not only shortens material 
changeover time but also decreases material waste 
and energy consumption. Finally, it strives to 
minimize the number of delayed jobs, ensuring that 
tasks are completed within their respective deadlines 
to enhance reliability and customer satisfaction. 

System Constraints: 
The scheduler operates under strict limitations: 

Filament Limitations: 
Material availability constraints 
Sequential Processing: Tasks must be processed one 
at a time per printer 
Deadline Requirements: Hard deadlines that must be 
respected 

Outputs The system generates:  

Optimized Task Sequence: The optimal order for 
executing printing tasks 

Performance Metrics: Key performance indicators 
measuring schedule effectiveness 
To ensure consistency and enable fair comparisons, 
all developed algorithms use a unified 
implementation framework. As a result of this 
standardization, all algorithms operate under the same 
conditions and can be evaluated equally (Figure 2). 

__________________________________________ 
Algorithm 1: Unified Job Processing Method. 

 
Figure 2: Algorithm to process a job on a printer, updating 
its timing and filament state. 
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4 METAHEURISTIC 
ALGORITHMS USED 

4.1 Ant Colony Optimization (ACO) 

An Ant Colony Optimization (ACO) algorithm is a 
powerful metaheuristic algorithm that can be used to 
assign print jobs to available printers with the best or 
near-optimal sequence while satisfying a variety of 
constraints such as time, material availability, and 
energy consumption in the context of 3D printing task 
scheduling. The ACO model is based on the foraging 
behaviour of ants, where each node represents a 
specific task or decision point (e.g., assigning a job to 
a printer at a certain time). Pheromone trails (which 
encode past schedule quality) and heuristic 
information (such as estimate printing time) are used 
to allow artificial "ants" to explore different 
scheduling combinations. Pheromone levels are 
updated after solutions are constructed to reinforce 
the paths that lead to better performance - like 
reduced total production time, balanced printer loads, 
or lower energy consumption - while allowing less 
effective paths to fade over time (Sarder,2023).  

4.2 Particle Swarm Optimizer (PSO) 

For solving optimization problems, PSO uses a 
nature-inspired, population-based metaheuristic 
algorithm. Using this method, animal groups such as 
bird flocks or fish schools can be simulated 
(Gad,2022). In PSO, each possible solution is 
modeled as a moving "particle" guided by both its 
own best position and the best known position found 
by the swarm. Through these interactions, particles 
are able to converge towards optimal or near-optimal 
solutions over time. Each particle's position and 
velocity are determined by equations that take into 
account inertia, cognitive properties, and social 
factors.  

4.3 Greedy Algorithm 

In Greedy Algorithm, we select the locally optimal 
choice at each decision point as we build a solution 
step by step (Zhao, 2021). 3D printing task 
scheduling algorithms that prioritize immediate 
gains, such as minimizing machine idle time or start 
time, utilize greedy algorithms to assign tasks to the 
earliest available slot and printer. Despite being 
computationally efficient and able to produce 
acceptable schedules in very short periods of time, 
this method ignores the global structure of the 

problem, resulting in suboptimal long-term results. It 
may, for example, result in many delays or excessive 
filament changes due to short-sighted decisions.  

4.4 Migratory Bird Optimisation 
(MBO) 

Using the Migratory Bird Optimization algorithm, we 
can simulate the migration behavior of migratory 
birds in V-formations using a population-based 
metaheuristic. This algorithm represents each 
solution as a "bird" in a formation, with the best 
performing solution taking the lead. To avoid 
stagnation, birds periodically change positions based 
on local and global neighborhood evaluations 
(Wei,2023). Using MBO, scheduling problems can be 
balanced between exploration and exploitation, with 
the aim of finding globally efficient task sequences. 
Although it avoids extremes, MBO rarely achieves 
optimal performance in any single metric: in practice, 
it tends to yield average results across all metrics.  

4.5 Discrete Particle Optimisation 
(DPO) 

Particle Swarm Optimization (PSO) is adapted for 
discrete and combinatorial problems, such as task 
scheduling, by Discrete Particle Optimization (DPO) 
(Franzoi,2022). Each particle represents a possible 
sequence or configuration of scheduled tasks, with 
the particle's movement determined by discrete 
operators (e.g., swap, insertion) instead of continuous 
velocity updates. Using both personal (personal best) 
and collective (global best) experiences, DPO guides 
the search for optimal outcomes. While DPO has an 
intelligent search mechanism, it may suffer from 
premature convergence or reduced diversity in 
discrete spaces, reducing its effectiveness when 
scheduling scenarios are highly constrained. We 
found that DPO generated a relatively high number of 
delayed tasks and a high total delay in our 
experiments, showing that it had difficulty optimizing 
task sequences under practical constraints.  

5 RESULTS AND DISCUSSION 

As part of this study, we utilized the Raise3D Pro2 
(figure 3), a high-performance Fused Deposition 
Modeling (FDM) 3D printer that was well-suited for 
industrial-grade applications. Dual extrusions allow 
the printer to print multi-materials or colors, which 
introduces an additional level of complexity in 
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scheduling tasks. A 305 mm x 305 mm x 300 mm 
build volume allows for the printing of medium to 
large-sized parts that often require lengthy print 
times. In addition to standard 0.4 mm nozzles, a range 
of diameters can be selected based on the throughput 
required. A wide range of filament types can be used 
with Raise3D Pro2, including PLA, ABS, PETG, 
TPU, and Nylon, each of which has its own thermal 
and handling parameters. It also features a filament 
run-out detection system and power loss recovery, 
which enhance the reliability and resilience of the 
production workflow. A heated bed and enclosed 
build chamber ensure better print stability, but they 
also add energy consumption constraints. The 
printer's integrated touchscreen interface, remote 
monitoring capabilities, and network and cloud 
connectivity enable it to communicate with centrally 
managed or artificially intelligent scheduling 
systems.  

 
Figure 3: Raise3D Pro2 printer. 

5.1 Evaluation of Metaheuristics for 3D 
Printing Task Scheduling 

As part of the evaluation of metaheuristic algorithms 
for 3D printing task scheduling, a number of key 
performance metrics were considered to assess both 
the quality and applicability of the solutions. The key 
metrics for our framework are filament changes, total 
delay, and execution time. Delays indicate the 
system's ability to respect timing constraints, an 
essential factor in high-speed production. 
Furthermore, the total delay provides a deeper 
understanding of the extent of disruptions, even when 
the number of delays remains low. Material 
efficiency and machine downtime are also affected by 
the number of filament changes, which lead to higher 
operational costs and reduced printer availability. As 
a final consideration, the algorithm's execution time 
determines its suitability for real-time or near-real-

time scheduling, particularly in Industry 5.0 
environments. We gain a comprehensive view of each 
algorithm’s performance by analyzing these metrics 
together: some methods reduce total delay but 
produce excessive filament changes or compute too 
slowly, while others balance speed, precision, and 
resource efficiency better. Through table 1 and table 
2, we ensure that both technical constraints and 
industrial objectives are aligned with the scheduling 
strategy chosen. 

Table 1: Evaluation of metaheuristics for 3d printing task 
scheduling. 

Algorithm No. of 
Delays 

Number 
of 

Filament 
Changes 

Total Delay 
(s) 

Execution 
Time (s) 

Greedy 142 38 184,579.709 13,846.793
Artificial 

Bee Colony
60 37 307,032.071 13,816.793 

Migratory 
Bird 

Optimisation

67 38 434,737.523 13,846.793 

Ant Colony 
Algorithm

49 38 249,998.075 13,846.793 

Discrete 
Particle 

Optimisation

89 37 467,556.575 13,816.793 

Table 2: Summary Analysis. 

Algorithm Summary Analysis 
Greedy Lowest total delay, but too many 

individual delays 
Artificial Bee 

Colony
Good trade-off: fast, few delays 

Migratory Bird 
Optimisation 

Average performance, not optimal in 
any specific criterion 

Ant Colony 
Algorithm

Best overall compromise 

Discrete Particle 
Optimisation 

Globally inefficient despite good 
execution time 

5.2 Discussion 

Based on the comparability of the five algorithms, 
distinct performance characteristics can be identified 
in terms of scheduling efficiency, resource 
optimization, and execution time. It is clear from the 
Greedy algorithm's results (184,579.709) that it 
successfully prioritizes task allocation in the short 
run. Despite this, it exhibits a very high number of 
individual delays (142), indicating poor robustness in 
situations with tight deadlines. Compared to other 
algorithms, the Artificial Bee Colony (ABC) has 
relatively few delays (60) and the shortest execution 
time (13,816.793), making it an ideal choice for real-

Smart Optimized Scheduling Under Constraints in Industry 5.0 Through Intelligent Computational Methods

515



 

time or near-real-time scheduling in Industry 5.0. The 
slightly higher total delay (307,032.071) can be 
attributed to the algorithm's efficiency. There is no 
clear advantage in any of the metrics in the Migratory 
Bird Optimization (MBO) algorithm. There is a 
possibility that its lack of specialization could limit its 
applicability in situations where specific performance 
objectives are important (e.g., minimizing delays or 
changing resource allocations). In terms of global 
efficiency, the Ant Colony Algorithm (ACO) stands 
out as the most balanced approach. Providing the best 
overall balance between delay minimization and 
stability, it has the least number of delays (49) and a 
moderate total delay (249,998.075). 

 
Figure 4: Results of metaheuristic Algorithms. 

Thus, it is a good candidate for scheduling systems 
that are adaptive and dynamic in smart 
manufacturing. As a result, Discrete Particle 
Optimization (DPSO), though slightly faster in 
execution, exhibits a relatively high number of delays 
(89) and a higher total delay (467,556.575). Despite 
its speed, it cannot optimize task sequencing 
effectively, making it less practical for industrial 
applications requiring quality and timeliness. As a 
result, the Ant Colony Algorithm is the most robust 
and consistent approach, followed by the Artificial 
Bee Colony algorithm, which offers good speed-to-
effectiveness tradeoffs. In general, the Greedy and 
DPSO methods are unreliable. Figure 4 shows these 
results. 

5.3 Results 

An overview of the 3D printing job schedule is 
provided by a Gantt chart, which makes it easy to see 
which jobs are running, waiting, or finished, and how 
resources are allocated. The use of this type of 
visualization helps production managers optimize 
printer utilization, minimize idle time, and meet 
deadlines by adjusting job sequences accordingly. A 
gantt chart in 3D printing scheduling offers several 
key features that enhance management and planning. 
Their timelines provide a clear picture of when each 

job begins and ends. Additionally, they help to 
understand task relationships and potential conflicts 
by displaying work dependencies and overlaps. In 
addition to highlighting current progress and resource 
usage, Gantt charts facilitate effective monitoring of 
ongoing jobs. Using this visualization, planners can 
identify bottlenecks or scheduling conflicts quickly 
and make interactive adjustments, making it easier to 
improve efficiency and meet deadlines. Each green 
bar represents a print job in a horizontal Gantt chart 
labeled "Print Job Schedule." Each bar corresponds to 
the job's start and end times on the timeline below, 
visually identifying when each job begins and ends 
(Figure 5 and figure 6). Using the chart, you can see 
how jobs overlap or are sequenced, providing a clear 
view of the schedule. Users can also track progress in 
real time by using a "Current Time" marker. 

 
Figure 5: Scheduling interface for 3D printing tasks. 

 

 
Figure 6: Gantt chart-based scheduling interface for 3D 
printing tasks. 
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6 CONCLUSIONS 

This study evaluated and compared several 
metaheuristic algorithms (greedy, artificial bee 
colony, migratory bird optimization, ant colony 
algorithm, and discrete particle optimization) for the 
complex task of scheduling 3D printing operations. 
Our evaluation relied on four critical performance 
metrics: number of delays, filament changes, total 
delay, and execution time. The results demonstrate 
that no single algorithm excels in all aspects, 
highlighting the trade-offs between speed, accuracy, 
and operational efficiency.  

Overall, these findings emphasize the importance 
of multi-criteria evaluation when selecting a 
scheduling strategy for industry 5.0 systems, where 
real-time responsiveness, material efficiency, and 
reliability are key. Future work may explore hybrid 
metaheuristics, reinforcement learning, or adaptive 
scheduling frameworks that can dynamically respond 
to changing constraints and workload priorities in 
cyber-physical environments. As a perspective for 
this work, Artificial Intelligence (AI) will play a 
strong role in enhancing our system. AI techniques 
can be integrated to model and optimize energy 
consumption (Nakkach, 2023), (Nakkach, 2024) 
enabling more sustainable and efficient production 
planning. Moreover, predictive maintenance based on 
computer vision and deep learning (Nakkach, 2022) 
can be employed to detect early signs of wear, 
anomalies, or defects in machines and 3D-printed 
parts. Such capabilities will help anticipate failures, 
minimize downtime, and improve overall system 
reliability. Together, these AI-driven approaches will 
reinforce the adaptability, efficiency, and 
sustainability of cyber-physical production 
environments in line with the vision of Industry 5.0. 
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