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Database conversational agents support dialogues to help users interact with databases in their jargon. A

strategy to construct such agents is to adopt an LLM-based architecture. However, evaluating agent-based
systems is complex and lacks a definitive solution, as responses from such systems are open-ended, with
no direct relationship between input and the expected response. This paper then focuses on the problem of
evaluating LLM-based database conversational agents. It first introduces a tool to construct test datasets for
such agents that explores the schema and the data values of the underlying database. The paper then describes
an evaluation agent that behaves like a human user to assess the responses of a database conversational agent on
a test dataset. Finally, the paper includes a proof-of-concept experiment with an implementation of a database
conversational agent over two databases, the Mondial database and an industrial database in production at an

energy company.

1 INTRODUCTION

Database conversational agents support dialogues to
help users interact with databases in their jargon.
They typically accept user questions formulated as
natural language (NL) sentences and return results
phrased in NL. Such agents should also help users
formulate a question step-by-step and express a new
question by referring to an older one or to a previously
defined context.

In general, a conversational agent must maintain
the dialogue state and resolve, among other problems,
anaphora, ellipsis, ambiguities, and topic shifts (Gal-
imzhanova et al., 2023). Large Language Models
(LLMs) fine-tuned to follow instructions help address
these challenges, exactly because they are trained to
maintain context and resolve anaphora, among other
nuances of user dialogues.

In addition, a database conversational agent must
translate user questions, explicitly submitted as NL
sentences in the dialogue or inferred from the dia-
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logue, into SQL queries over the underlying database.
This translation task is often referred to as fext-to-
SQOL. Therefore, tools that address such task help con-
struct database conversational agents because they are
designed to match user terms with the database vocab-
ulary and perform the translation.

Evaluating database conversational agents, espe-
cially those executing tool calls based on natural lan-
guage dialogues, is crucial to validate their effective-
ness and reliability in real-world scenarios. It is there-
fore necessary to adopt a systematic evaluation pro-
cess capable of measuring the alignment between user
intentions and the database conversational agent’s ac-
tions, including the correctness of the SQL queries
generated.

This paper then focuses on the problem of eval-
uating a database conversational agent over a given
database D.

To address this problem, the paper introduces a
dialogue generation tool that creates a dialogue test
dataset Tp for D, an evaluation agent that simulates
a user interacting with the database conversational
agent over D, guided by the dialogue test dataset
Tp, and a collection of dialogue performance met-
rics. This contribution is essential to verify the per-
formance of a database conversational agent over a
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given database before it goes into production.

The dialogue generation tool traverses the
database schema and generates a set of joins that in-
duce a natural and coherent conversation flow. Fur-
thermore, the set of dialogues the tool generates cov-
ers all database tables. The evaluation agent simu-
lates realistic user interactions, incorporates iterative
feedback mechanisms, and leverages LLMs to judge
a database conversational agent’s ability to align with
the user’s intentions. The dialogue performance met-
rics cover the database conversational agent’s abil-
ity to handle realistic dialogues, and measure if the
text-to-SQL tool produced correct SQL queries when
compared to a set of ground-truth SQL queries.

The second contribution of the paper is a proof-
of-concept experiment with an implementation of a
database conversational agent over two databases, the
Mondial database! and an industrial database in pro-
duction at an energy company. The implementation
uses the LangGraph ReAct (Reasoning and Acting)
template, which features action planning (Yao et al.,
2023) and a memory component that stores the con-
versation history, and LLM-based text-to-SQL tools
(Oliveira et al., 2025; Nascimento et al., 2025a). The
experiment suggests that the dialogue test datasets the
dialogue generation tool creates and the user simu-
lations the evaluation agent implements are valuable
in assessing the performance of a database conversa-
tional agent over a given database, which is the central
problem the paper addresses.

This paper is organized as follows. Section 2 cov-
ers related work. Section 3 details the dialogue gener-
ation tool. Section 4 focuses on the evaluation agent.
Section 5 describes the proof-of-concept experiment.
Finally, Section 6 contains the conclusions.

2 RELATED WORK

Conversational Interfaces. Conversational inter-
faces support user dialogues and may be classified
as task-oriented or chatbots (Jurafsky and Martin,
2024). Task-oriented conversational interfaces sup-
port user dialogues to accomplish fixed tasks. Chat-
bots are designed to mimic the unstructured conversa-
tions characteristic of human-human interaction. The
database conversational agent used in the experiment
falls into the second category.

Quamar et al. (Quamar et al., 2020) proposed an
ontology-driven task-oriented interface, which uses a
classifier to identify user intentions and a set of tem-
plates to generate database queries. The siwarex plat-

https://www.dbis.informatik.uni-
goettingen.de/Mondial/
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form (Fokoue et al., 2024) enables seamless natural
language access to both databases and APIs, typical
of an industrial setting, and was tested on an exten-
sion of the Spider text-to-SQL benchmark.

Wei et al. (Wei et al., 2024) explored what prompt
design factors help create chatbots. The authors as-
sessed four prompt designs in an experiment involv-
ing 48 users. The results indicated that the chatbots
covered 79% of the desired information slots during
conversations, and the designs of prompts and topics
significantly influenced the conversation flows and the
data collection performance.

There are many libraries to help build chat-
bots, such as Google’s DialogFlowz, the AmazonLex
(LexBot) framework>, Rasa*, and the Xatkit Bot Plat-
form>. For example, a chatbot that combines the flex-
ibility of an LLM with the LexBot framework is de-
scribed in (Boris, 2024).

The implementation of the database conversa-
tional agent used in Section 5 adopted the LangGraph
ReAct agent template®. The ReAct (“reasoning and
acting”) framework (Yao et al., 2023) combines chain
of thought reasoning with external tool use. ReAct
served as a basis for several conversational frame-
works. For example, ReAcTable (Zhang et al., 2024b)
is a framework designed for the Table Question An-
swering task inspired by ReAct and relying on exter-
nal tools such as SQL and Python code executors. It
achieved an accuracy of 68.0% on the WikiTQ bench-
mark (Pasupat and Liang, 2015). RAISE (Liu et al.,
2024) is an enhancement of the ReAct framework
and incorporates a dual-component memory system
to maintain context and continuity in conversations.

Text-to-SQL Tools. Comprehensive surveys of text-
to-SQL strategies can be found in (Hong et al., 2025;
Shi et al., 2025), including a discussion of benchmark
datasets, prompt engineering, and fine-tuning meth-
ods. The Awesome Text2SQL Web site” lists the best-
performing text-to-SQL tools on several text-to-SQL
benchmarks, and the DB-GPT-Hub® project explores
how to use LLMs for text-to-SQL. It should also be
remarked that the text-to-SQL problem is considered
far from solved for real-world databases (Floratou
et al., 2024; Lei et al., 2025).

The text-to-SQL tools (Nascimento et al., 2025a;
Oliveira et al., 2025) used in Section 5 achieved good

Zhttps://github.com/langchain-ai/react-agent
3https://aws.amazon.com/lex/
“https://github.com/RasaHQ/
Shttps://github.com/xatkit-bot-platform
Ohttps://github.com/langchain-ai/react-agent
Thttps://github.com/eosphoros-ai/Awesome-Text2SQL
8https://github.com/eosphoros-ai/DB-GPT-Hub



results over challenging benchmarks based on the in-
dustrial database and on the Mondial database, re-
spectively.

Benchmarks for Conversational Interfaces. There
are currently several datasets appropriate for training
and evaluating models for conversational interfaces.
Examples are the TREC Conversational Assistance
Track (CAsT) and the TREC Interactive Knowledge
Assistance Track (iIKAT) 2023 (Aliannejadi et al.,
2024). MultiwOZ (Budzianowski et al., 2020) is a
fully labeled collection of human-human written con-
versations spanning multiple domains and topics. The
task-oriented dialogues were created from task tem-
plates using an ontology of the back-end database,
which turns out to be very simple. The Awesome NLP
benchmarks for intent-based chatbots Web site® lists
benchmarks to evaluate user intent matching and en-
tity recognition.

DialogStudio (Zhang et al., 2024a) unified several
dataset collections and instruction-aware models for
conversational interfaces. The authors also developed
conversational Al models, using the dataset collection
to fine-tune TS5 and Flan-T5. They also report the use
of ChatGPT to evaluate the quality of the responses
generated.

Contributions. The above conversational bench-
marks typically favor model fine-tuning and are not
designed to test conversational agents over more com-
plex databases. Thus, rather than relying on such
generic benchmarks, Section 3 introduces a dialogue
generation tool to create a dialogue test dataset Tp
specifically to assess the performance of a database
conversational agent over a given database D. The ap-
proach taken is rather different from any of the above
efforts to create benchmarks for conversational inter-
faces, insofar as the dialogue generation tool starts
from the selected database D for which one wants to
create a conversational interface and uses the database
schema and the data stored to synthesize a dataset Tp
containing dialogues that traverse D. The tool auto-
matically extends the synthetic dialogues to include
the user’s intentions and the expected SQL queries.
The procedure is generic and automated, working
with minimal human intervention.

Section 4 describes an evaluation agent to auto-
mate performance assessment, using 7p. The evalua-
tion agent simulates realistic user behavior and sys-
tematically interacts with a database conversational
agent, querying and providing feedback when nec-
essary, following an experimental protocol that con-

9https://github.com/xatkit-bot-platform/awesome-nlp-
chatbot-benchmarks
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sumes the dialogues in 7p. The evaluation agent in-
corporates an “Al as Judge” mechanism (Zheng et al.,
2023) to assess a database conversational agent’s abil-
ity to align with the user’s intentions.

The performance metrics cover the database con-
versational agent’s ability to handle dialogues involv-
ing context-dependent follow-up questions and in-
complete information that require inference based on
dialogue memory. They also measure if the text-to-
SQL tool produced correct SQL queries when com-
pared to a set of ground-truth SQL queries. These
metrics are novel and a contribution of the paper to the
assessment of database conversational agents working
over databases.

The procedure to generate a dialogue test dataset
Tp for a given database D and the evaluation
agent then help address the problem of evaluating a
database conversational agent over D.

The experiment in Section 5 tested a database
conversational agent over two databases, the Mon-
dial database and an industrial database in produc-
tion at an energy company. It adopted the evaluation
agent and dialogue test datasets created by the dia-
logue generation tool specifically for these databases.
Therefore, the experiment illustrates how to evaluate
a database conversational agent over a given database
using the techniques introduced in the paper.

3 DIALOGUE TEST DATASETS

3.1 Definitions of Dialogue and
Extended Dialogue

For the purposes of this paper, a turn is either a user
turn or a system turn, each composed of NL sen-
tences, called utterances, produced by the user or by
the system. An interaction is a sequence of two or
more turns, starting with a user turn, ending in a sys-
tem turn, and alternating between a user turn and a
system turn. A dialogue is a sequence of interactions.

Intuitively, an interaction is a goal-oriented ex-
change between the user and the system and is typ-
ically centered around a specific question or task,
which may span several turns. Figure 1 shows a di-
alogue with four interactions, corresponding to Lines
1-4, 5-7, 8-12, and 13—-15. All interactions consist
of a user turn followed by a system turn, except that
in Lines 8—12, which has two pairs of a user turn fol-
lowed by a system turn.

The utterances in a user turn express:

* A greeting, that optionally signals the start of a
dialogue or an interaction.
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User: "Can you show me a list of the major airports,
along with the names and capitals of the countries
they are located in?"

System: [The first 10 major airports are...]

User: "Now, can you show me the border details for
these countries?"

System: [A description of the data requested]

User: "I will now focus on The Ville Lumiere."

© ® N L R W N =

System: "I am sorry. I have no location called

10 | Ville Lumiére."

User: "I meant Paris."
12| System: "OK."
13 | User: "What is the population?"

14 | System: Paris has an estimated population of about

15| 2 million residents.

Figure 1: Example of a dialogue.

* A question, that specifies a database request, such
as that in Lines 1-3.

* A partial question, that partially specifies a
database request and that must be expanded into
a (complete) question using the dialogue context,
such as that in Lines 5-6 and Line 13.

* A context modification, that modifies the next
questions in the dialogue, such as that in Line 8.

* A clarification, that responds to a request from the
system for information, such as that in Line 11.

The utterances in a system turn express:

* An acknowledgment, that signals that the system
understood the user, such as that in Line 12.

* A response, that describes data retrieved from the
database, such as that in Lines 14—15.

* A request, that asks the user to clarify his utter-
ance, such as that in Lines 9-10.

* An error message, that signals when the user’s ut-
terance cannot be processed.

The notion of dialogue, introduced above, cap-
tures what the user observes when interacting with
the interface to retrieve data from the database. Still,
it is insufficient to capture what is needed to test a
database conversational agent. The notion of dialogue
is then extended so that a turn now includes additional
fields to help assess the dialogue performance metrics
introduced in Section 4.3:

* The intention, which is an NL sentence describing
what the user’s utterance expresses.

* A ground truth SQL query, which translates the
user utterance to SQL and, therefore, describes
the system response when the user utterance is a
question or a partial question.

Figure 2 shows, in JSON format, the extended di-
alogue corresponding to the dialogue of Figure 1 (for
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brevity, the figure shows only the first two interac-
tions).

3.2 Generation of Dialogue Test
Datasets

A natural language database conversational agent
must perform two challenging tasks: (1) Transform
partial questions into complete questions; and (2)
Modify questions to include explicitly defined con-
text. A dialogue test dataset must then contain dia-
logues that test the ability of an interface to perform
such tasks. This section explains how to create dia-
logues to test an interface for the first task and outlines
how to test for the second task.

3.2.1 Testing the Processing of Partial Questions

The strategy to test the processing of partial questions
consists of generating dialogues that traverse valid
join combinations'®. Given a valid join combination
¢, adialogue d, is generated so that: (1) Each question
in d, is partial, incorporates a new join in ¢, and has
as context the previous questions; (2) The final ques-
tion corresponds to an SQL query expressing c. Thus,
the dialogue d,. progressively incorporates the joins in
¢ to induce a natural and coherent conversation flow.
Furthermore, the set of dialogues must cover a diverse
set of valid join combinations, that is, it must traverse
the database schema.

The process of creating a dialogue test dataset
starts by identifying the valid join combinations,
which is implemented by an LLM prompt with the
following steps:

1. Define a structured format for the LLM output.

2. Instantiate an LLM model with advanced reason-
ing capabilities.

3. Provide the database schema.

4. Describe the task to the LLM, including examples
from the database and explaining how the joins
should be constructed.

This approach is based on the premise that an
LLM can effectively reason about the schema and the
task described to generate a list of valid join combina-
tions, as demonstrated by the successful use of LLMs
in tasks such as Named Entity Recognition (Wang
et al., 2025).

However, merely selecting a fixed number of join
combinations without additional constraints results in

10A valid join combination is a set of joins that induces a
connected subgraph of the referential integrity graph of the
database schema.
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1 { "experiment_id": "1",

2 "total_expected_interactions": 3,

3 "interactions": [

4 {

5 "utterance": "Can you show me a list of airports along with the names and
6 The capitals of the countries they are located in?",

7 "intention": "Show me a list of airports and include the country’s name and
8 capital for each airport.",

9 "ground_truth_sql":

10 "SELECT A.NAME AS airport_name, A.CITY AS airport_city,

11 C.NAME AS country_name, C.CAPITAL

12 FROM MONDIAL_AIRPORT A JOIN MONDIAL_COUNTIRY C

13 ON A.COUNTRY = C.CODE;"

14 b

15 {

16 "utterance": "Now, can you show me the border details for these countries,
17 such as which countries they border and the length of those borders?",

18 "intention": "Using the list of countries from the previous query (those with
19 airports), show me their bordering countries and the border lengths.",

20 "ground_truth_sql":

21 "SELECT C.NAME AS country_name,

22 B.COUNTRY2 AS neighboring_country,

23 B.LENGTH AS border_length

24 FROM MONDIAL_COUNTRY C JOIN MONDIAL_BORDERS B

25 ON C.CODE = B.COUNTRY1

26 WHERE C.CODE IN (SELECT DISTINCT COUNTRY

27 FROM MONDIAL_AIRPORT);"

28 Fh

29

Figure 2: Example of an extended dialogue.

an imbalanced dataset. Some tables become overrep-
resented, while others remain underrepresented or ab-
sent. This imbalance can introduce bias in evaluation,
affecting the database dialogue interface’s ability to
generalize across different SQL queries. A structured
strategy for generating balanced join combinations is
then introduced, ensuring that:

* Each join combination results in a unique ex-
tended dialogue.

* The number of joins per dialogue varies to cover
different levels of complexity.

* The selection of join combinations maintains a
balanced distribution of tables, preventing biases
in dataset representation.

After implementing the balanced join selection
strategy, the final join combinations are evaluated
based on three main criteria: (a) ensuring full schema
coverage; (b) achieving a balanced distribution of the
number of joins per combination; (c) distributing ta-
ble usage fairly to avoid overuse of specific tables.

The final process of creating dialogues to test the
processing of partial questions is implemented by an
LLM prompt with the following steps (see Figure 3):

1. Extract the required table definitions.

2. Collect sample rows to be incorporated when for-
mulating queries.

3. Load the set C of balanced join combinations.

4. For each join combination ¢ in C, instruct the
LLM to create an extended dialogue d.. The in-
structions include:

(a) The table definitions and sample data involved
in c.

(b) A brief explanation of c.

(c) A clarification indicating that, for each join ¢;
in ¢, there should be one interaction in d., with
just one turn #;, using the previous interactions
as context.

(d) Indications to include in #; the user utterance,
the intention, and the ground-truth SQL query,
and their descriptions.

5. Instruct the LLM on the required output format.

3.2.2 Testing the Processing of Context
Modifications

Very briefly, the strategy to test the processing of con-
text modifications consists of generating dialogues
that: (1) Define contexts by NL sentences that express
SQL restrictions, such as that in Line 8 of Figure 1;
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Figure 3: Architecture of the dialogue generation tool.

(2) Include subsequent partial questions that implic-
itly refers to the context defined, as in Line 13.

The process of creating such dialogues starts by
sampling the database schema and the data values to
generate restrictions. The sampling process must gen-
erate restrictions from a wide selection of tables in the
schema, and not concentrate on just a few tables. The
process is implemented by an LLM prompt very sim-
ilar to that which creates dialogues to test the process-
ing of partial questions, and is omitted for brevity.

3.2.3 Constructing the Final Dialogue Test
Dataset

Finally, in its simplest form, the final dialogue test
dataset will contain dialogues that test the processing
of partial questions and dialogues that test the pro-
cessing of context modifications. A more sophisti-
cated strategy can also be developed by combining
both approaches to create dialogues, each of which
tests both tasks.

3.2.4 Implementation Details

The construction of the dialogue test datasets used in
Section 5 adopted the OpenAl 03-mini model (with
high reasoning effort mode) with a Pydantic output
template requiring a list of joins. The model yields
unique single- and multi-joins with an error rate. Sim-
ilar structured prompting proved effective for schema
reasoning tasks (Wang et al., 2025; Aquino, 2024).

A greedy heuristic incrementally selects joins
while optimizing three objectives: (1) 100% table
coverage; (2) near-uniform distribution over 2-, 3-,
and 4-way joins; and (3) bounded per-table frequency.

For each join, a prompt was assembled containing:
the join context; CREATE TABLE DDLs; and up to 20
sample values per column. The LLM was prompted
to produce k user turns—one per hop—together with
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validated SQL queries.
schema forces compliance.

A Pydantic Experiment

4 EVALUATION OF DATABASE
CONVERSATIONAL AGENTS

4.1 Overview

The methodology uses an evaluation agent that sim-
ulates realistic user behavior. This agent systemati-
cally interacts with the database conversational agent,
querying and providing feedback when necessary,
following an experimental protocol that consumes
predefined extended dialogues from a database test
dataset. Such an approach ensures the standardization
of interactions, enabling controlled evaluation condi-
tions across different queries and scenarios.

To determine whether the database conversational
agent’s responses fulfill the intentions, the evaluation
agent incorporates an automatic judgment mechanism
utilizing an LLM acting as evaluator, which is re-
ferred to as the “Al as Judge” methodology. This
methodology has been shown to effectively identify
alignment and correctness between generated queries
and user intentions, reducing human effort and poten-
tial biases during the evaluation process (Zheng et al.,
2023).

The evaluation agent leverages a state-based eval-
uation graph implemented using LangGraph, a frame-
work that orchestrates complex interactions among
language models, agents, and tools. LangGraph is
particularly suitable for managing stateful interac-
tions involving language models and external tools,
enabling the precise orchestration of complex con-
versational evaluation workflows (Chase and Team,
2023).

At the core of the evaluation architecture is a care-



fully designed internal state representation, defined as
a strongly typed dictionary that encapsulates all rele-
vant information and parameters needed to manage
the evaluation interactions.

To control the evaluation flow, conditional edges
determine whether the evaluation process should con-
tinue or be concluded. These decisions depend on
clearly defined criteria, such as exceeding the maxi-
mum allowed retries for a given interaction or com-
pleting all intended interactions within an experiment
scenario.

To summarize, the implementation of the evalua-
tion agent using LangGraph facilitates precise control
over the evaluation workflow. This design decision
contributed to the reproducibility, clarity, and scal-
ability of evaluation experiments, offering valuable
insights into the performance of a database conver-
sational agent under varied interaction scenarios and
conditions.

4.2 Evaluation Agent

Figure 4 shows the architecture of the evaluation
agent, illustrating how each interaction progresses
through specific nodes and decision points within the
evaluation graph.

The evaluation agent receives as input a dialogue
test dataset Tp for a database D, prefixed by control
data.

It begins at the Test Control Node, which first
initializes and configures all relevant parameters and
states needed for the evaluation, using the control data
in the prefix of Tp. The parameters include the maxi-
mum allowed retries per interaction, debugging pref-
erences, and model version. The node also initializes
detailed metrics and tracking fields, such as interac-
tion metrics, timestamps, and initial debug states. Af-
ter initialization, the Test Control Node passes each
extended dialogue d; in Tp to the User Interaction
Node.

The User Interaction Node simulates user behav-
ior by presenting the database conversational agent
with a predefined natural language question from a
turn of d; (the ‘utterance’ field in Figure 2). The
decision on which natural language question to send
to the database conversational agent depends on an
internal evaluation state. Specifically, the evaluation
could proceed to a new interaction, or feedback could
be required, based on the previous responses. The
User Interaction Node manages these internal deci-
sions based on the value of a Boolean state variable,
called ‘state["go_next_interaction"]’.

Upon receiving a response from the database con-
versational agent, the evaluation moves to the Check

Automated Evaluation of Database Conversational Agents

Response Node to analyze the response (see also the
definition of the dialogue performance metrics in Sec-
tion 4.3):

Successful Intention Alignment: the Check Re-
sponse Node evaluates whether the natural
language interpretation u’' of the user input u
successfully aligned with the intention u”. The
interpretation u’ is the NL sentence sent to be
translated to SQL to create a response for u, if u is
a question or partial question, or the NL sentence
sent back to the user, in all other cases. The
intention u” associated with u is obtained from
the ‘intention’ field (see Figure 2). The NL
sentences «’ and u” are compared using the “Al
as Judge” approach, employing an LLM (Zheng
et al., 2023).

SQL Query Correctness: the Check Response Node
evaluates whether the SQL query Qsg;., generated
by the database conversational agent, reflects the
SQL ground truth query Q;QL, obtained from the
‘ground_truth_sqgl’ field (see Figure 2). The
verification process compares Qgg; and Q/SQL as
in (Nascimento et al., 2025b).

If the database conversational agent’s response is
inadequate, the Check Response Node records the
cause of failure (e.g., alignment failure, SQL correct-
ness failure, decoding errors), incrementing the retry
count accordingly. At the end, the Check Response
Node updates several variables that will define the
following steps, such as ‘state["proceed"]’ and
‘state["go_next_interaction"]’.

The final step of the evaluation workflow for d;
involves determining whether the evaluation of d;
should continue to the next interaction or be con-
cluded. This decision is primarily based on two crite-
ria:

Retries Exceeded: If the maximum number of re-
tries for a particular interaction is exceeded with-
out achieving a satisfactory response, the eval-
uation process terminates for that interaction,
recording it as unsuccessful.

Completion of Interaction Sequence: If all prede-
fined interactions within d; have been successfully
evaluated or have reached termination conditions,
the evaluation of d; is concluded.

Finally, the evaluation agent outputs an evalu-
ation report with the result of processing the dia-
logue test dataset 7p. The report contains JSON ob-
jects, one for each extended dialogue in Tp, with
experiment_id, total_expected_interactions,
and an interactions list. Every interaction contains
the user’s utterance, a refined infention, and a gold
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Figure 4: The architecture of the evaluation agent and its relation to the database conversational agent.

SQL query. This structure permits computing the di-
alogue performance metrics for 7p.

4.3 Dialogue Performance Metrics

The dialogue performance metrics should cover the
database conversational agent’s ability to handle re-
alistic dialogues, especially those involving context-
dependent follow-up questions and incomplete infor-
mation that require inference based on dialogue mem-
ory. They should also measure if the text-to-SQL tool
produced correct SQL queries when compared to a set
of ground-truth SQL queries.

Given a dialogue test dataset Tp for a database D,
the following metrics cover this evaluation scenario.

SQOL Query Correctness Rate: The percentage of
questions in the user turns of the extended dialogues
in Tp that were correctly translated to an SQL query.

The notion that a user question was correctly
translated into an SQL query was explained in Sec-
tion 4.2.

User Turn Intention Alignment Rate: The percentage
of successfully aligned user turns of the extended di-
alogues in Tp.

The notion that a user turn was successfully
aligned was also explained in Section 4.2.

Dialogue Intention Alignment Rate: The percentage
of successfully aligned extended dialogues in 7p. An
extended dialogue d; is successfully aligned iff every
interaction in d; has at least one successfully aligned
user turn.

Note that there might be several user turns in an in-
teraction before reaching a correctly aligned one, but
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these extra user turns do not affect the dialogue inten-
tion alignment rate, although they are accounted for
in the user turn intention alignment rate. Therefore, a
dialogue is considered successful only when all its in-
teractions have been adequately understood and han-
dled by the agent. This stringent measure ensures that
the agent can comprehend and appropriately respond
to all user requests within a dialogue.

Average Number of Turn Pairs per Interaction: The
average number of turn pairs (a user turn followed by
a system turn) per interaction in all dialogues in Tp.

This metric quantifies the efficiency of interac-
tions in terms of turns, providing insight into how
many exchanges are typically needed to satisfy a user
request. A lower average indicates better user inten-
tion comprehension, as the agent can understand and
execute the appropriate action with fewer clarifica-
tions or follow-ups.

5 A PROOF-OF-CONCEPT
EXPERIMENT

5.1 A Database Conversational Agent
Implementation and a Baseline
Agent

Figure 5 depicts the architecture of the database con-
versational agent used in the experiments, organized
around the following components:
* Dialogue Control Agent: controls the dialogue,
reformulates the user question, stores the dialogue
state, and interacts with the text-to-SQL tool.



o Text-to-SQL Tool: controls the compilation of a
user question into SQL and passes the results back
to the dialogue control agent. It has three major
components (Shi et al., 2025): Schema-Linking,
SQL Compilation, and SQL Execution.

* LILM: executes the tasks passed, guided by
prompts. The dialogue control agent and the text-
to-SQL tool may use different LLMs.

As mentioned in Section 2, the implementation of
the dialogue control agent was based on the Lang-
Graph ReAct agent template, which provides short-
and long-term memory to retain data from recent and
past user sessions. The experiment adopted a different
LLM-based text-to-SQL tool tuned to each database
(Coelho et al., 2024; Oliveira et al., 2025).

The experiment compared the database conversa-
tional agent implementation just described against a
baseline agent without dialogue memory to demon-
strate the critical importance of context retention in
conversational interfaces.

5.2 Experiment with the Mondial
Database

5.2.1 The Mondial Dialogue Test Dataset and
Use of the Evaluation Agent

The experiments used a Mondial dialogue test
dataset, generated from the Mondial database, as ex-
plained in Section 3.2, with 50 extended dialogues
and a total of 149 interactions, where 17 extended di-
alogues have two interactions, 17 have 3, and 16 have
4. All 40 Mondial tables were covered, with a stan-
dard deviation of 1.8 in table frequency. Compared to
a naive sampling baseline, coverage improved from
68% to 100% of the Mondial tables.

The test dataset was manually analyzed to verify
how much its dialogues covered the Mondial schema,
how realistic the automatically generated user utter-
ances and intentions were, and whether the automati-
cally synthesized SQL ground truth queries were cor-
rect. The analysis indicated that the dialogues cov-
ered the Mondial schema, the user utterances and in-
tentions were adequate, but 5 of the 149 ground truth
SQL queries had to be redefined. Minor edits also im-
proved discourse coherence and question variety (ag-
gregations, subqueries, limits).

The experiments evaluated the database conversa-
tional agent implementation and the baseline agent
with the help of the evaluation agent of Section 4.2,
using the Mondial dialogue test dataset. Again, the
evaluation logs were manually analyzed to check if
the evaluation agent properly verified the intention
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alignment and the SQL query correctness. The results
were manually adjusted, when deemed necessary, be-
fore computing the dialogue performance metrics.

A detailed analysis of the Mondial dialogue test
dataset and the evaluation agent logs can be found in
(Silva, 2025).

5.2.2 Results

Table 1 summarizes the results obtained with the
database conversational agent implementation, with
dialogue memory, and the baseline agent, without di-
alogue memory.

User Turn Intention Alignment Rate and SQL Query
Correctness Rate.  The results demonstrate that
the memory-enabled database conversational agent
achieved an alignment rate of 100% to properly inter-
pret the user’s intention and an SQL query correctness
rate of 90%.

In stark contrast, the baseline agent, without dia-
logue memory, achieved only a 59.7% user turn align-
ment rate and a 32.6% SQL query correctness rate,
highlighting the severe degradation in performance
when the dialogue context is not maintained.

Dialogue Intention Alignment Rate. The memory-
enabled database conversational agent successfully
processed all dialogues (100%), reinforcing its ro-
bust ability to understand and correctly process user
requests across entire conversations, even in chal-
lenging scenarios involving context-dependent and
follow-up questions.

By comparison, without dialogue memory, the
baseline agent achieved only an 86% dialogue inten-
tion success rate, with nearly a third of all conver-
sations failing to meet the user’s information needs.
This difference emphasizes how crucial conversa-
tional memory is for maintaining dialogue coherence
and successfully handling multi-turn interactions.

Average Number of Turn Pairs per Interaction. The
results show that the memory-enabled database con-
versational agent reached an average of 1.01 turns per
interaction, which is close to the ideal of 1.0. This
indicates that the agent almost always correctly un-
derstood user requests on the first attempt, rarely re-
quiring additional turns for clarification or correction.

For the baseline agent, without dialogue memory,
the results reveal an average of 1.59 turns per in-
teraction. This significantly higher number of turns
demonstrates how the lack of dialogue memory im-
pacts dialogue efficiency, requiring more back-and-
forth exchanges to satisfy user information needs, and
sometimes not helping the agent to understand the
user’s real intention.
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Figure 5: Experimental setup.
Table 1: Results of the database conversational agent for the Mondial database.
Metric With Memory | Without Memory | Improvement
User Turn Intention Alignment Rate 100.0% 59.7% +40.3%
SQL Query Correctness Rate 90.8% 32.6% +58.2%
Dialogue Intention Alignment Rate 100% 68.0% +32.0%
Average Number of Turn Pairs per Interaction 1.01 1.73 -42.0%
Table 2: Results of the database conversational agent for the industrial database.

Metric With Memory | Without Memory | Improvement
User Turn Intention Alignment Rate 95.3% 69.0% 26.3%
SQL Query Correctness Rate 82.6% 41.3% 41.3%
Dialogue Intention Alignment Rate 100% 92% 8%
Average Number of Turn Pairs per Interaction 1.06 1.45 -27%

Dialogue Memory Impact Analysis. The compara-
tive results between the memory-enabled agent and
the baseline agent without dialogue memory provide
clear evidence of the critical role that dialogue mem-
ory plays in text-to-SQL interfaces. Without the abil-
ity to maintain context across turns, the baseline agent
struggled with:

1. Follow-up questions: Unable to connect questions
to previous context, leading to misinterpreted in-
tentions.
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2. Incomplete queries: Unable to fill in missing in-
formation from previous turns.

3. Conversational references: Failed to resolve ref-
erences like “their” and “that result”.

4. Query refinement: Unable to build upon or refine
previous queries.

These challenges resulted in the substantially
lower performance metrics observed in the baseline
agent, confirming the hypothesis that dialogue mem-
ory is essential for building conversational agents.



5.3 Experiment with an Industrial
Database

The industrial database chosen for the experiments
(Izquierdo et al., 2024) is in production at an energy
company and has a relational schema with 27 tables
and a total of 585 columns and 30 foreign keys, where
the largest table has 81 columns.

The experiments based on the industrial database
used the database conversational agent with the KwS-
assisted text-to-SQL tool described in (Nascimento
et al., 2025a). They applied the evaluation agent of
Section 4.2 to a dialogue test dataset generated as ex-
plained in Section 3.2, with 50 extended dialogues
and a total of 140 interactions, where 10 extended di-
alogues had two interactions, and 40 had 3.

As in the experiment with Mondial, the dialogue
test dataset was manually analyzed. The analysis
found that a few golden standard SQL queries were
repeated in some turns, which does not represent a
problem, and two golden standard SQL queries were
incorrect and had to be manually rewritten.

Also, the evaluation agent log was manually ana-
lyzed. In the experiment with the database conversa-
tional agent with memory, the evaluation agent cor-
rectly classified all alignments. In the experiments
with the database conversational agent without mem-
ory, the evaluation agent correctly clarified most of
the user questions in the first attempt, when the dia-
logue agent returned “I am sorry, but your question
seems incomplete. Could you please provide more
details or rewrite the question.”, or when the align-
ment was false. However, in three cases, the evalua-
tion agent made a mistake when simulating the user,
and, consequently, the dialogue control agent and the
text-to-SQL tool also failed.

Table 2 summarizes the results of the experiments,
which were similar to those in Table 1 and, therefore,
require no further comments.

6 CONCLUSIONS

This paper addressed the problem of testing a
database conversational agent for a given database D.
To achieve this goal, the paper introduced a tool to
create a dialogue test dataset Tp for D, a collection
of performance metrics, and an evaluation agent that
simulates a user interacting with the database con-
versational agent over D, guided by the dialogue test
dataset Tp. This contribution is essential to verify the
performance of a database conversational agent over
a given database before it goes into production.

Automated Evaluation of Database Conversational Agents

The paper concluded with a proof-of-concept ex-
periment with a database conversational agent over
two databases, the Mondial database and an industrial
database. The implementation used the LangGraph
ReAct framework and LLM-based text-to-SQL tools
designed for the databases.

The experiment suggests that the dialogue test
datasets the dialogue generation tool creates and the
user simulations the evaluation agent implements are
valuable in assessing the performance of a database
conversational agent over a given database, which is
the central problem the paper addresses.

Lastly, as future work, experiments along the lines
of the setup described in Section 5 will be conducted
with other real-world databases that are in production
to equip them with a natural language conversational
interface.
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