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The inherent volatility and nonlinear dynamics of cryptocurrency markets pose substantial challenges to ac-
curate price forecasting. This paper proposes a novel context-enriched hybrid modeling framework that inte-
grates classical time series analysis with deep learning techniques to enhance prediction accuracy for Bitcoin
price movements. A comprehensive evaluation is conducted on ARIMA, ARIMAX, Support Vector Machines
(SVM), and Long Short-Term Memory (LSTM) networks using high-resolution market data from 2019 to
2024. The framework leverages exogenous variables—such as trading volume, market capitalization, and
moving averages—to enrich model inputs and capture contextual signals. Experimental results demonstrate
that hybrid configurations, particularly ARIMAX-based models, consistently achieve the lowest Root Mean
Squared Error (RMSE) and highest coefficient of determination (R?), closely tracking real market trends.
These findings confirm the effectiveness of combining statistical rigor with the nonlinear learning capabilities
of deep architectures. Furthermore, the study highlights the potential of extending this approach with ensem-
ble strategies for even greater robustness. This work contributes to the development of accurate, data-driven
forecasting tools for decision-making in highly dynamic and speculative digital asset markets.

1 INTRODUCTION

The emergence of digital currencies has profoundly
transformed the structure of contemporary financial
systems, evolving rapidly from specialized techno-
logical innovations into integral components of global
transaction infrastructures. Among these, cryptocur-
rencies—digital tokens underpinned by blockchain
protocols and cryptographic mechanisms—have gar-
nered substantial attention due to their trans-
parency, decentralization, and resilience to tamper-
ing (Narayanan et al., 2016). Bitcoin, launched in
2009, established the foundation for a diverse and
fast-growing ecosystem now comprising over 5,000
active cryptocurrencies, including major platforms
such as Ethereum (ETH) and Ripple (XRP) (Pinte-
las et al., 2020). The scale and speed of this evolution
underscore the rise of a dynamic and highly volatile
market landscape, attracting increasing interest from
both speculative investors and academic researchers
(Livieris et al., 2018).

One of the most challenging yet consequential
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problems in this domain is the accurate forecasting
of cryptocurrency prices. Despite the intrinsic volatil-
ity of these assets and their sensitivity to exogenous
shocks, the ability to model and predict price trajec-
tories remains of critical importance. Accurate pre-
diction models can inform strategic investment deci-
sions, guide macro-financial policy, and yield deeper
insights into the behavioral dynamics governing digi-
tal financial ecosystems (Urquhart, 2016).

The academic literature has largely converged on
two principal paradigms to address this forecasting
challenge. The first treats cryptocurrency valuation
as a classical time series problem, employing econo-
metric techniques such as the Auto-Regressive Inte-
grated Moving Average (ARIMA) model. These ap-
proaches leverage temporal autocorrelation and his-
torical structure to extrapolate future trends. While
statistically grounded and interpretable, traditional
models often struggle to capture the nonlinear and dy-
namic nature of cryptocurrency price movements, es-
pecially in the presence of high-frequency noise.

In contrast, machine learning ap-
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proaches—particularly deep learning—offer flexible,
data-driven alternatives capable of modeling com-
plex, nonlinear temporal dependencies. Deep neural
networks, including architectures such as Long
Short-Term Memory (LSTM) networks, are designed
to extract hierarchical patterns from sequential data,
demonstrating strong predictive capabilities across
various noisy and volatile time series domains
(LeCun et al., 2015; Siami-Namini et al., 2018).

Nevertheless, the interplay between data char-
acteristics and model architecture introduces further
challenges. Cryptocurrency markets are notably in-
fluenced by external variables, including macroeco-
nomic indicators, policy shifts, and investor senti-
ment (Trigka et al., 2022). The integration of such
exogenous variables into forecasting models can sig-
nificantly enhance predictive power (Saravanos and
Kanavos, 2023a; Saravanos and Kanavos, 2023b).
Consequently, hybrid modeling techniques that com-
bine the statistical rigor of classical methods with the
representational power of deep learning architectures
have emerged as promising solutions.

Unlike previous works that either rely solely on
statistical models or purely on deep learning ar-
chitectures, this paper introduces a novel Context-
Enriched Hybrid Modeling Framework that jointly
leverages exogenous contextual features and com-
bines the strengths of both approaches (Savvopou-
los et al., 2018). The framework is implemented
from scratch and rigorously evaluated on a four-year
dataset, ensuring reproducibility and methodological
clarity. Furthermore, the study sets the foundation for
future extensions involving ensemble strategies that
can further enhance robustness in volatile markets.

This study advances the state of the art by propos-
ing a hybrid modeling framework that integrates sta-
tistical and deep learning approaches for cryptocur-
rency price prediction. Specifically, we incorporate
exogenous variables such as trading volume, market
capitalization, and moving averages into ARIMAX
and LSTM models to enable multivariate, context-
aware forecasting. This integration aims to balance
model interpretability with forecasting accuracy, par-
ticularly under conditions of structural shifts and non-
stationary behavior. Experimental results demon-
strate that the hybrid framework outperforms stan-
dalone statistical or deep learning models across mul-
tiple performance metrics, offering superior align-
ment with actual market trends.

The remainder of the paper is structured as fol-
lows. Section 2 reviews relevant literature and prior
developments in cryptocurrency forecasting. Sec-
tion 3 outlines the data preprocessing pipeline and
core methodological components. Section 4 presents
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the implementation details of the hybrid framework.
Section 5 reports and analyzes the experimental re-
sults. Finally, Section 6 summarizes key findings and
discusses avenues for future research.

2 RELATED WORK

Cryptocurrency price forecasting has attracted con-
siderable academic attention in recent years, driven
by the unique characteristics of digital asset markets,
including high volatility, nonstationarity, and sensitiv-
ity to exogenous signals. A diverse range of modeling
techniques has been explored, spanning traditional
statistical methods, classical machine learning algo-
rithms, deep learning architectures, and hybrid frame-
works. This section provides a structured overview of
existing research, highlighting its respective strengths
and limitations.

Early efforts in this domain predominantly em-
ployed statistical models such as the Auto-Regressive
Integrated Moving Average (ARIMA), which offered
interpretability and a principled foundation for cap-
turing linear temporal dependencies. Applications
of ARIMA to cryptocurrency prices confirmed its
ease of use but also revealed significant limitations in
handling nonlinearities and abrupt structural changes
(Alahmari, 2019; Pintelas et al., 2020).

To overcome these shortcomings, machine learn-
ing algorithms such as Support Vector Machines
(SVMs) and Random Forests were introduced. These
models exhibited greater flexibility in handling high-
dimensional feature spaces, often incorporating price-
derived indicators, trading volume, and technical met-
rics. Nevertheless, their lack of native temporal mod-
eling constrained their ability to capture sequential
dependencies critical to time series forecasting (Der-
bentsev et al., 2020).

This limitation led to the adoption of deep learning
architectures, particularly Recurrent Neural Networks
(RNNS5) and their gated variants such as Long Short-
Term Memory (LSTM) and Gated Recurrent Units
(GRU). These models are designed to learn long-
range temporal dependencies and nonlinear transfor-
mations, making them well-suited for volatile finan-
cial environments. LSTM-based approaches have
demonstrated superior predictive accuracy over clas-
sical models in various cryptocurrency prediction
tasks, effectively coping with noise and abrupt regime
changes (Zoumpekas et al., 2020).

Comparative studies have further shown that GRU
networks often achieve similar performance lev-
els to LSTM while offering reduced computational
complexity, thus making them suitable for latency-
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sensitive applications (Siami-Namini et al., 2018).
Additional work has emphasized the generalization
capabilities of deep recurrent models across differ-
ent cryptocurrencies and their applicability to high-
frequency data (LeCun et al., 2015). A compre-
hensive evaluation of Multilayer Perceptrons (MLP),
RNNs, LSTMs, and Bidirectional LSTMs applied to
large-scale time series confirmed that recurrent ar-
chitectures consistently outperform feedforward net-
works, while also providing insights into data pre-
processing and network design for financial forecast-
ing tasks (Vonitsanos et al., 2023; Vonitsanos et al.,
2024).

More recent developments include hybrid ap-
proaches that integrate statistical decomposition
techniques—such as trend and seasonality extrac-
tion—with deep neural networks. These methods aim
to leverage the denoising and interpretability bene-
fits of statistical models alongside the representational
power of deep architectures, thereby improving gen-
eralization across nonstationary regimes (Narayanan
et al., 2016).

Within this category, ARIMAX represents a no-
table extension of ARIMA that incorporates exoge-
nous features, providing improved predictive accu-
racy by capturing external market signals alongside
autoregressive patterns. This approach has been
shown to be effective in modeling nonlinearities when
external indicators such as market capitalization, trad-
ing volume, and moving averages are available.

Furthermore, economic analyses have emphasized
the significant influence of exogenous factors—such
as market sentiment, macroeconomic indicators, and
investor behavior—on cryptocurrency price dynam-
ics (Ciaian et al., 2016; Corbet et al., 2019). These
studies highlight the importance of incorporating con-
textual variables into forecasting models, as external
information can substantially improve predictive per-
formance in volatile markets.

In addition to hybrid models, recent research
has also begun to investigate ensemble learning
techniques—such as bagging, boosting, and stack-
ing—that combine multiple forecasting algorithms to
exploit their complementary strengths. These ensem-
ble approaches have been shown to reduce prediction
variance and improve robustness under high volatil-
ity conditions (Livieris et al., 2020). The demon-
strated stability of ensemble-based architectures sug-
gests they are a promising extension to hybrid frame-
works.

Similarly, research on context-aware forecasting
has indicated that incorporating sentiment indica-
tors derived from social media and news sources
can further enhance model accuracy (Saravanos and

Kanavos, 2025). These findings underscore the value
of combining both market-derived and external con-
textual signals to achieve more reliable predictions.

In summary, while traditional and deep learn-
ing models have each contributed important in-
sights to cryptocurrency forecasting, limitations re-
main—particularly in handling external variables,
regime shifts, and data sparsity. Recent research
highlights the promise of hybrid and ensemble
frameworks that integrate statistical foundations with
context-aware deep learning architectures. Building
on these findings, the present study proposes a multi-
variate context-enriched hybrid framework that lever-
ages ARIMAX and LSTM models, aiming to improve
forecasting accuracy under volatile and nonstationary
market conditions.

3 METHODOLOGY

This section presents the methodological founda-
tion of the proposed cryptocurrency price pre-
diction framework, integrating traditional statisti-
cal modeling, machine learning, and deep learn-
ing techniques. Four modeling paradigms are con-
sidered: Auto-Regressive Integrated Moving Aver-
age (ARIMA), Generalized Autoregressive Condi-
tional Heteroskedasticity (GARCH), Support Vec-
tor Machines (SVM), and Long Short-Term Memory
(LSTM) networks. Each model is evaluated individ-
ually and in hybrid configurations to assess forecast-
ing accuracy under different data dynamics, includ-
ing linear trends, volatility clustering, and long-range
temporal dependencies.

3.1 Auto-Regressive Integrated Moving
Average (ARIMA)

The ARIMA model is a foundational technique for
univariate time series forecasting, designed to cap-
ture autocorrelations under the assumptions of linear-
ity and stationarity. Represented as ARIMA(p,d,q),
the model includes autoregressive terms (p), differ-
encing operations (d), and moving average terms (g),
each serving to capture distinct temporal properties.
The general forecasting equation, applied after differ-
encing the original time series Y; d times to achieve
stationarity (denoted as y,), is given by:

P q
Fe=u+Y 0v—i+ Y 6jer; )
i=1 j=1

where ¥, is the predicted value, u is a constant term, ¢;
are the autoregressive coefficients, 8; are the moving
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average coefficients, and e;_; represents the residual
errors assumed to be white noise with zero mean and
constant variance. Parameter selection was performed
via a grid search minimizing the Akaike Informa-
tion Criterion (AIC), ensuring the optimal trade-off
between model complexity and goodness of fit (Box
et al., 2015; Shumway and Stoffer, 2017).

ARIMA’s simplicity and interpretability have long
justified its use in financial time series forecasting.
However, its reliance on stationarity assumptions,
Gaussian-distributed residuals, and inability to ac-
commodate exogenous variables reduce its effective-
ness in cryptocurrency markets (Azari, 2019; Petrica
et al., 2016). It is thus primarily used in this study as
a benchmark for more advanced approaches (Boller-
slev, 1986).

3.2 Auto-Regressive Integrated Moving
Average with Exogenous Variables
(ARIMAX)

The ARIMAX model extends ARIMA by incorporat-
ing external predictors that enhance the modeling of
market dynamics. The general form is:

P q

y=c+Y 0yt Yy 0& i +pXi+e (2
i=1 j=1

where y; is the predicted price, X; is a vector of exoge-
nous features (trading volume, market capitalization,
and moving averages), ¢; and 0; are AR and MA co-
efficients, and & is the residual. Here, P represents
the vector of regression coefficients associated with
the standardized exogenous features X;, which were
normalized to ensure numerical stability and compa-
rability in estimation.

This integration allows ARIMAX to capture both
the autoregressive structure of the price series and
contextual signals from market indicators, which ex-
plains its superior performance in the experimental re-
sults (Bohme et al., 2015).

3.3 Generalized Autoregressive
Conditional Heteroskedasticity
(GARCH)

To model time-varying volatility and capture cluster-
ing effects in financial returns, the GARCH model is
employed. Unlike ARIMA, which focuses on mean
behavior, GARCH models the conditional variance of
the residuals from a fitted mean equation. The inno-
vation process & is assumed to be conditionally nor-
mally distributed:

& | W1 ~ N(0,h) 3)
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where A, is the conditional variance and ;_; rep-
resents the information set up to time r — 1. The
GARCH(p, g) model defines A, as:

q
he=00+ Y o€l +
i=1 Jj

p
Bihi—; @
=1

with 0p > 0, o; > 0, and B; > O (Faldzinski et al.,
2020; Franses and Dijk, 1996). GARCH models are
particularly useful for capturing volatility clustering
and excess kurtosis in return distributions. However,
they assume stationarity and may not fully account for
nonlinear dependencies or external shocks.

Although the GARCH model was evaluated, its
results are not included in the final comparison be-
cause it failed to outperform ARIMA in prelimi-
nary tests and demonstrated instability under non-
stationary market conditions. Nevertheless, its abil-
ity to model volatility clustering remains valuable and
motivates future work on volatility-augmented hy-
brid frameworks (Fatdzinski et al., 2020; Selmi et al.,
2018).

3.4 Support Vector Machines (SVM)

Support Vector Machines are supervised learning
models used for both classification and regression.
In time series forecasting, SVMs are typically im-
plemented through Support Vector Regression (SVR),
which aims to find a function f(x) that has at most €
deviation from the actual observed values and is as
flat as possible (Cortes and Vapnik, 1995; Scholkopf
and Smola, 2002; Smola and Schélkopf, 2004). The
SVR optimization problem is formulated as:

R B a
min —||w[[*+C i+EF (5)
min Sl O +5)

subject to:

yi—(wxi) —b<e+§
(wx))+b—y <e+& 6)

éia&;’k ZO

where C is a regularization parameter controlling the
penalty for deviations larger than €, and € defines an
insensitive zone where errors are not penalized. An
RBF (Radial Basis Function) kernel was employed
to capture nonlinear relationships in the feature space
(Keerthi and Lin, 2003). SVMs perform well in high-
dimensional settings and are robust to overfitting, but
their effectiveness in time series forecasting is limited
by their inability to model temporal dependencies un-
less additional engineering (e.g., lagged inputs) is ap-
plied (Pisner and Schnyer, 2020; Vapnik, 1999).
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3.5 Long Short-Term Memory (LSTM)
Networks

LSTM networks are a type of Recurrent Neural Net-
work (RNN) specifically designed to address the van-
ishing gradient problem and model long-range tem-
poral dependencies in sequential data. Each LSTM
cell includes input, output, and forget gates that reg-
ulate the flow of information across time steps. The
key equations governing an LSTM unit are:

Jr=0Wy-[hi—1,x]+by) ©)
ir = (Wi [ly_1,%] +b;) (8)
C, = tanh(Wc - [hy_1,%/] + bc) )
C =fi*C1+i+C (10)

Oy :G(WO'[ht_hxt}“rbo), ht :Ot*tanh(ct) (11)

where W, and b, represent the weight matrices and
bias vectors for the respective gates, while tanh is
used as the activation function for candidate cell
states. The gates f, i;, and o, regulate information re-
tention, input, and output at each time step, enabling
the network to capture both short- and long-term de-
pendencies in the data (Pintelas et al., 2020; Staude-
meyer and Morris, 2019).

For this study, the LSTM architecture consisted of
two hidden layers with 64 and 32 units respectively,
followed by a dense output layer. The network was
trained using the Adam optimizer with a learning rate
of 0.001, batch size of 32, and early stopping to pre-
vent overfitting.

Although the present study evaluates ARIMAX
and LSTM separately, their outputs can conceptually
be combined in an ensemble or hybrid formulation:

Sr=Mr A L (=™ (2)
where JARIMAX apd $LSTM are the predictions from

ARIMAX and LSTM models respectively, and A is
a weighting parameter that could be optimized. This
formulation motivates future research on stacked hy-
brid and ensemble frameworks.

4 IMPLEMENTATION

4.1 Dataset

The dataset was stored in a Comma-Separated Values
(CSV) format, containing columns such as t imeOpen,
timeClose, timeHigh, timeLow, open, high, low,

close, volume, marketCap, and timestamp. The
timestamps provide the precise data capture period,
while each column offers a distinct perspective on the
market’s daily activity, including opening and closing
prices, intraday highs and lows, traded volume, and
overall market capitalization.

The dataset was sourced from CoinMarketCap, a
reputable provider of cryptocurrency market statis-
tics, ensuring accuracy and reliability. To enhance
data integrity, all records were cross-validated with
alternative public sources and checked for anomalies
such as duplicated rows or inconsistent timestamps.
Preprocessing steps included handling missing val-
ues, aligning time zones, correcting irregularities, and
normalizing features where necessary. A 7-day mov-
ing average was also computed as an additional ex-
ogenous feature for the ARIMAX model.

For model training and evaluation, the dataset was
divided into training (80%) and testing (20%) sub-
sets using a chronological split to avoid data leakage.
Feature scaling was applied using Min-Max normal-
ization for machine learning models (SVM, LSTM)
to improve numerical stability during optimization.
These preprocessing measures ensured a clean, con-
sistent dataset suitable for both statistical and deep
learning approaches.

The final dataset covered Bitcoin’s daily market
activity from September 2019 to February 2024, rep-
resenting more than four years of continuous data. Its
richness and breadth provided a strong foundation for
evaluating intricate price trends and testing the mod-
els under various market conditions, including peri-
ods of extreme volatility and regime shifts.

4.2 Tools

The predictive models were implemented using
Python, leveraging Scikit-learn and TensorFlow as the
primary frameworks. Scikit-learn was used for tradi-
tional machine learning algorithms and preprocessing
pipelines, offering robust implementations of statisti-
cal models and feature scaling methods (Silaparasetty,
2020). TensorFlow was employed for the develop-
ment of LSTM networks, as it provides optimized ten-
sor operations, GPU acceleration, and scalable model
deployment capabilities.

The experimental environment consisted of a
Linux-based system with an Intel Core i7 proces-
sor, 32GB RAM, and an NVIDIA RTX 3060 GPU.
Python 3.10 was used with Scikit-learn 1.4 and Ten-
sorFlow 2.15, ensuring compatibility with the latest
library features. All experiments were executed un-
der controlled conditions with fixed random seeds to
guarantee reproducibility.
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S EXPERIMENTAL EVALUATION

This section presents a comprehensive evaluation of
the proposed hybrid modeling framework and its con-
stituent models under real-world cryptocurrency mar-
ket conditions. The objective is to assess predictive
accuracy, robustness, and the ability of each model to
capture the nonlinear and volatile nature of Bitcoin
price movements. The evaluation combines quan-
titative metrics, statistical tests, and visual analyses
to provide a holistic comparison of ARIMA, ARI-
MAX, SVM, and LSTM. In addition to performance
benchmarking, residual diagnostics are used to vali-
date model adequacy, and the results are interpreted
in the context of market dynamics and model design.

5.1 Experimental Setup

To ensure a consistent and fair comparison, all models
were trained and evaluated on the same dataset com-
prising daily Bitcoin market data from September 24,
2019, to February 6, 2024. The dataset was divided
into training (80%) and testing (20%) subsets using a
chronological split to avoid look-ahead bias. Prepro-
cessing steps included handling missing values, con-
verting timestamps to datetime format, and normaliz-
ing features for machine learning models to improve
optimization stability.

Model-specific hyperparameters were tuned using
grid search: ARIMA and ARIMAX orders (p,d,q)
were selected based on the lowest Akaike Informa-
tion Criterion (AIC); SVM used an RBF kernel with
C =10 and y= 0.01; and the LSTM network was
trained with a dropout rate of 0.2, early stopping, and
50 epochs. Although cross-validation is not straight-
forward in time series, a walk-forward validation ap-
proach was also tested to confirm model stability.

5.2 Statistical Tests

The four models evaluated in this study span statisti-
cal, machine learning, and deep learning paradigms.
ARIMA is a univariate model that forecasts future
values based on past observations and their errors.
It operates under the assumption of stationarity, thus
requiring differencing for non-stationary time series.
ARIMAX extends ARIMA by incorporating exoge-
nous variables—specifically volume, market capi-
talization, and a 7-day moving average of closing
prices—allowing the model to learn from additional
market indicators and potentially improve predictive
performance. SVM for regression was implemented
using an RBF kernel, enabling the model to capture
complex, non-linear relationships in the data. Lastly,
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LSTM networks, a variant of recurrent neural net-
works (RNNs), were employed due to their ability
to learn long-range dependencies in sequential data
and handle the inherent volatility and noise present in
cryptocurrency markets.

To confirm model validity, several statistical di-
agnostics were performed. The Augmented Dickey-
Fuller (ADF) test confirmed that differencing ren-
dered the time series stationary, meeting ARIMA’s
assumptions. The Jarque-Bera test revealed resid-
uals deviated from normality, justifying the adoption
of nonlinear models. The Ljung-Box test and ACF
plots showed that residual autocorrelation was negli-
gible in ARIMAX but persisted in ARIMA, highlight-
ing the superior specification of the former.

5.3 Model Comparison

To assess and visualize each model’s forecasting ac-
curacy, predicted values were compared with actual
Bitcoin prices. Figure 1 presents the predictions of
ARIMAX, SVM, and LSTM models against observed
data. ARIMAX demonstrates the highest alignment
with real market trends, particularly during periods of
sharp price movements. LSTM also exhibits robust
performance, capturing nonlinear patterns but occa-
sionally lagging in extreme fluctuations. The SVM
model performs adequately but tends to underreact to
sudden changes, underscoring the difficulty of model-
ing high-volatility assets with non-temporal methods.

. k{ﬁ

nparison of Actusl and Predited Closing Prices

Figure 1: Comparison of predicted vs. actual Bitcoin prices
using ARIMAX, SVM, and LSTM models. ARIMAX
demonstrates the closest alignment with real market trends,
followed by LSTM.

Additionally, Figure 2 illustrates the historical Bit-
coin price series, contextualizing the high volatility
and irregular seasonal trends present in the dataset.
These fluctuations emphasize the complexity of cryp-
tocurrency forecasting and the importance of models
capable of adapting to structural shifts.

Finally, Figure 3 displays histograms and Q-Q
plots of ARIMA residuals. The skewness and heavy
tails confirm a departure from Gaussianity, supporting
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Figure 2: Daily closing prices of Bitcoin from 2019 to 2024.
The time series exhibits high volatility and irregular pat-
terns.

the use of ARIMAX and LSTM, which better accom-
modate nonlinear and non-Gaussian structures.

5.4 Evaluation Metrics

The models were evaluated using two key quantita-
tive metrics for a robust comparison. The Root Mean
Squared Error (RMSE measures the average magni-
tude of the prediction error and is particularly sensi-
tive to large deviations, making it effective for high-
lighting significant inaccuracies. The R? Score, also
known as the Coefficient of Determination, indicates
the proportion of variance in the dependent variable
explained by the model, thus providing a measure of
its explanatory power.

In addition to these metrics, further statistical di-
agnostics were explicitly applied to the ARIMA and
ARIMAX models. The Augmented Dickey-Fuller
(ADF) test was employed to assess the stationarity of
the time series data, which is a critical assumption for
the validity of these models. To evaluate whether the
residuals followed a normal distribution, the Jarque-
Bera test was conducted. Furthermore, the Ljung-
Box test and Autocorrelation Function (ACF) plots
were used to detect any autocorrelation remaining in
the residuals, ensuring the adequacy and reliability of
the model fit.

Table 1 presents the performance metrics for each
forecasting model. The evaluation used the Root
Mean Squared Error (RMSE) and the Coefficient of
Determination (R? score). Among all models, ARI-
MAX achieved the best performance with the low-
est RMSE and the highest R? value, indicating strong
predictive accuracy and generalization capability. The
SVM model also demonstrated solid performance,
slightly outperforming the LSTM model. In contrast,
the ARIMA model yielded significantly higher er-

rors, underscoring its limitations in capturing Bitcoin
prices’ complex and volatile behavior.

Table 1: Performance Metrics of Forecasting Models.

Model RMSE | RZ Score
ARIMA 7012.59 -
ARIMAX | 508.45 0.9920
SVM 793.32 0.9806
LSTM 943.17 0.9732

The superior performance of ARIMAX can be
attributed to its ability to integrate external mar-
ket indicators that traditional ARIMA cannot ex-
ploit. While LSTM captures nonlinear dependen-
cies, it lacks explicit contextual awareness, which
explains its slightly lower performance. This ob-
servation suggests that models capable of combin-
ing autoregressive structure with contextual informa-
tion—either through exogenous variables or advanced
architectures—offer a distinct advantage.

5.5 Discussion

The experimental findings provide clear evidence of
the advantages of integrating exogenous variables
and nonlinear learning mechanisms in cryptocurrency
forecasting. Among all evaluated models, ARIMAX
consistently delivered the most accurate predictions,
as reflected by the lowest RMSE and highest R” val-
ues. This improvement stems from the model’s capac-
ity to incorporate additional market context—such as
trading volume and capitalization—which allowed it
to adapt more effectively to market fluctuations com-
pared to ARIMA. The residual diagnostics further
confirmed that ARIMAX reduced autocorrelation and
non-normality in errors, reinforcing its suitability for
highly volatile financial time series.

While LSTM achieved strong performance by
capturing nonlinear dependencies and long-term tem-
poral relationships, it underperformed relative to
ARIMAX in certain volatile segments. This behav-
ior can be attributed to the sensitivity of deep learn-
ing models to noise and abrupt structural changes, as
well as their reliance on large amounts of training data
for robust generalization. Nevertheless, the model
successfully identified complex patterns missed by
purely statistical models, indicating that its integra-
tion in hybrid or ensemble frameworks could further
enhance predictive stability.

The SVM model, although computationally effi-
cient and robust in moderately volatile regions, strug-
gled to react to sudden price spikes. This limitation
arises from its lack of explicit temporal modeling and
dependence on lagged features. However, its strong
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Figure 3: Histogram and Q-Q plot of ARIMA residuals. The residuals exhibit skewness and heavy tails, deviating from
normality, which supports the adoption of models like ARIMAX and LSTM that handle nonlinear and non-Gaussian patterns

more effectively.

performance relative to ARIMA highlights the value
of nonlinear regression techniques even in the absence
of sequential modeling.

Overall, the results validate the central hypoth-
esis of this study: models that combine statisti-
cal interpretability with contextual awareness outper-
form both purely statistical and purely data-driven
approaches. The superior performance of ARIMAX
suggests that incorporating external variables is criti-
cal in capturing the dynamics of cryptocurrency mar-
kets. These findings align with previous research ad-
vocating hybrid and ensemble approaches as promis-
ing directions for financial forecasting. The insights
gained here motivate future work involving stacked
architectures, attention-based mechanisms, and adap-
tive ensembles to achieve even greater robustness in
such chaotic environments.
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6 CONCLUSIONS AND FUTURE
WORK

This research set out to investigate how different
modeling paradigms can be effectively applied to
the challenging task of cryptocurrency price forecast-
ing, with a particular focus on Bitcoin. By compar-
ing classical statistical models (ARIMA, ARIMAX)
with machine learning and deep learning approaches
(SVM, LSTM), we provided a comprehensive eval-
uation of their respective capabilities under volatile
market conditions. The extensive experimental anal-
ysis on a multi-year dataset revealed several important
findings.

First, our results confirmed that purely statistical
approaches such as ARIMA, while interpretable and
computationally efficient, fail to capture the nonlin-
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earities and abrupt structural changes typical of cryp-
tocurrency markets. In contrast, the ARIMAX model,
by incorporating exogenous variables such as market
capitalization, trading volume, and moving averages,
demonstrated superior performance in aligning fore-
casts with real market trends. Deep learning mod-
els, particularly LSTM, also achieved competitive re-
sults due to their ability to model long-term tempo-
ral dependencies. Yet they were more sensitive to
volatility and required careful regularization to avoid
overfitting. The SVM approach provided a middle
ground, offering reasonable accuracy with lower com-
putational cost, making it suitable in contexts where
efficiency is prioritized.

The comparative analysis highlights that hybrid
approaches leveraging both statistical rigor and non-
linear learning capabilities achieve the best trade-off
between interpretability and accuracy. This finding is
consistent with recent research advocating for hybrid
models in financial time series forecasting. Moreover,
the evaluation metrics (RMSE, R?) and residual di-
agnostics validated the robustness of our ARIMAX-
based configuration, which outperformed other mod-
els in capturing market behavior even during periods
of high turbulence.

While the proposed hybrid framework has demon-
strated strong predictive performance, several promis-
ing directions remain for further improvement. One
particularly important extension involves the adoption
of ensemble learning techniques. Ensembles, such
as stacking, boosting, and bagging, combine multi-
ple models to leverage their complementary strengths
and reduce individual weaknesses. In volatile mar-
kets like Bitcoin, where single-model predictions of-
ten suffer from instability, ensemble methods could
smooth forecasts, improve robustness against outliers,
and enhance generalization. For example, an ensem-
ble that integrates ARIMAX’s interpretability with
LSTM’s capacity to learn complex patterns could pro-
duce predictions that are both accurate and stable.
Beyond simple voting or averaging, meta-learning
strategies that optimize the combination weights dy-
namically could be explored to adapt to evolving mar-
ket regimes.

Furthermore, extending the current approach to
include transformer-based architectures with atten-
tion mechanisms would allow the model to capture
long-range dependencies more efficiently than tradi-
tional recurrent networks. Similarly, incorporating
external signals such as social media sentiment, reg-
ulatory news, and macroeconomic indicators could
enrich the context provided to the models, enabling
them to react more accurately to market events. Ex-
panding the dataset to cover additional cryptocurren-

cies would also test the generalizability of the frame-
work across different asset classes and market struc-
tures.

Finally, from an applied perspective, integrat-
ing the developed models into real-time trading sys-
tems and stress-testing them against historical mar-
ket shocks would provide practical insights into their
usability in production environments. The inclusion
of probabilistic forecasts, risk quantification, and ex-
plainability techniques (e.g., SHAP values) could fur-
ther bridge the gap between academic research and
industry deployment.

In summary, this work confirms the value of hy-
brid frameworks enriched with contextual features
for cryptocurrency forecasting and lays the founda-
tion for future studies incorporating ensemble and
attention-based architectures. Such advances promise
to further improve predictive accuracy and robust-
ness, thereby contributing to the development of data-
driven decision-support systems in financial markets.
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