Multi-Objective Policy Optimization for Effective and Cost-Conscious Penetration Testing

Xiaojuan Cai¹ a, Lulu Zhu¹ b, Zhuo Li¹ and Hiroshi Koide²

¹Department of Information Science and Technology, Information Science and Electrical Engineering, Kyushu University, Fukuoka, Fukuoka, Japan

²Section of Cyber Security for Information Systems, Research Institute for Information Technology, Kyushu University, Fukuoka, Fukuoka, Japan

Keywords: Internet Security, Penetration Testing, Reinforcement Learning, Constrained Optimization.

Abstract:

Penetration testing, which identifies security vulnerabilities before malicious actors can exploit them, is essential for strengthening cybersecurity defenses. Effective testing helps discover deep, high-impact vulnerabilities across complex networks, while efficient testing ensures fast execution, low resource utilization, and reduced risk of detection in constrained or sensitive environments. However, achieving both effectiveness and efficiency in real-world network environments presents a core challenge: deeper compromises often require more actions and time. At the same time, excessively conservative strategies may miss critical vulnerabilities. This work addresses the trade-off between maximizing attack performance and minimizing operational costs. We propose a multi-objective reinforcement learning framework that minimizes costs while maximizing rewards. Our approach introduces a Lagrangian-based policy optimization scheme in which a dynamically adjusted multiplier balances the relative importance of rewards and costs during learning. We evaluate our method on benchmark environments with varied network topologies and service configurations. Experimental results demonstrate that our method achieves successful penetration performance and significantly reduces time costs compared to the baselines, thereby improving the adaptability and practicality of automated penetration testing in real-world scenarios.

1 INTRODUCTION

Penetration testing is an essential defense strategy in cybersecurity, which identifies network vulnerabilities before malicious actors exploit them. Penetration testing involves simulating realistic attack scenarios, such as unauthorized access, lateral movement, or privilege escalation, to assess the security posture of systems, networks, or applications (Teichmann and Boticiu, 2023; Jeff and Kala, 2024; Hayat and Gatlin, 2025).

As the complexity of network systems grows, the increasing cybersecurity challenges make penetration testing play a more critical role, especially in cloud infrastructures, IoT deployments, and software-defined environments (Skandylas and Asplund, 2025; Ankele et al., 2019). In these dynamic and complex network

^a https://orcid.org/0009-0009-4242-8420

environments, the effectiveness of penetration testing refers to discovering high-impact vulnerabilities and reaching sensitive targets. Effective penetration testing policies help identify vulnerabilities before the deployment of network systems and avoid severe financial loss (Bandar Abdulrhman Bin Arfaj, 2022; Fadhli, 2024; Caddy, 2025). On the other hand, penetration testing must be efficient. The reason is that penetration testing policies have to identify vulnerabilities in sensitive, dynamic, or large-scale systems, while time, bandwidth, stealth, and resource usage are all constrained (Li et al., 2025b; Kong et al., 2025; Li et al., 2025a). Efficient testing minimizes risks, avoids unnecessary exposure, and ensures real-world practicality (Zennaro and Erdődi, 2023).

However, effectiveness and efficiency are often in conflict for penetration testing policies. Achieving deeper compromises typically demands more time and incurs higher risk, while overly conservative strategies may terminate early or fail to identify serious vulnerabilities (Erdődi and Zennaro, 2022; Pham et al., 2024; Luo et al., 2024). Balancing this trade-off

^b https://orcid.org/0009-0001-5889-1374

clb https://orcid.org/0000-0002-0602-7664

^d https://orcid.org/0009-0008-7111-8053

remains a central challenge in the design of automated penetration testing systems.

To enhance the effectiveness, various automated penetration testing techniques have been proposed. Traditional rule-based penetration testing methods often rely on developers' background knowledge and conventional rule-based testing techniques (Ankele et al., 2019; Raj and Walia, 2020; Malkapurapu et al., 2023; Jeff and Kala, 2024; Skandylas and Asplund, 2025; Wieser et al., 2024). However, designing scalable and adaptive testing methods for complex systems remains an open and pressing research challenge. DL-based approaches have been applied to penetration testing, particularly in IoT environments, to improve automation and accuracy (Koroniotis et al., 2021). Recent advances in deep learning (DL) have shown promise in simulating complex attack behaviors and automatically assessing system security (Koroniotis et al., 2021; Alaryani et al., 2024; Deng et al., 2024; Antonelli et al., 2024; Kong et al., 2025; Nakatani, 2025). Nevertheless, adopting DL in real-world penetration testing still faces challenges such as limited generalization and training data dependency.

To further improve effectiveness while increasing efficiency, reinforcement learning (RL) has been increasingly used for penetration testing. RL models penetration testing as a sequential decision-making process, where an agent learns to exploit vulnerabilities through trial-and-error interactions with a simulated environment (Hoang et al., 2022; Bianou and Batogna, 2024; Ahmad et al., 2025). Many prior works have shown strong results (Cody et al., 2022; Li et al., 2025a; Yao et al., 2023; Li et al., 2024a; Zhou et al., 2025; Pham et al., 2024; Li et al., 2025b; Yang et al., 2024; Zennaro and Erdődi, 2023; Li et al., 2024b), mainly because once state and action spaces are well-defined, the learned testing policy can scale across scenarios with limited manual effort, as successful exploit outcomes drive reward signals. However, most RL-based methods optimize a single objective, typically about task success, which makes it challenging to balance effectiveness and efficiency. As a result, jointly optimizing for both penetration success and operational cost remains a critical yet underexplored direction.

To address the conflict and explicitly balance the trade-off between effectiveness and efficiency in penetration testing, this paper proposes a multi-objective RL-based framework for optimizing penetration testing policies that aims to improve testing effectiveness while minimizing operational costs. Unlike classical RL approaches that focus exclusively on reward maximization, our method jointly optimizes two objec-

tives: attack-specific rewards and time-sensitive costs. To balance these competing objectives, we incorporate a Lagrangian multiplier, which is dynamically adjusted during policy training. When the accumulated cost exceeds a high level, the agent shifts its behavior to prioritize cost reduction; conversely, when costs remain low, the agent emphasizes reward maximization. This adaptive mechanism enables efficient and cost-aware penetration strategies in complex network environments.

We validate our method through comprehensive experiments on the *Network-Attack-Simulator* benchmark. To evaluate performance across varying levels of complexity, we select three tasks that differ in the number of hosts, service configurations, sensitivity levels, and network topologies. The experimental results show that our method significantly improves penetration testing effectiveness and efficiency by exploring 3,475 more unique penetration paths, while reducing the operational time cost by 88.27% over the best-performing baseline method in an advanced complex network environment. For more implementation details and experimental results, please refer to our public repository in https://github.com/cxjuan/penetration_test.

2 BACKGROUND

We learn a Lagrangian-based and multi-objective RL policy to maximize rewards, minimize costs, and adaptively balance the trade-off between them during penetration testing. This section outlines the modeling and algorithmic background.

2.1 Markov Decision Process

An Markov Decision Process (MDP) is formally defined by a tuple $(S, \mathcal{A}, P, R, \gamma)$, where, S is the set of possible states, \mathcal{A} is the set of available actions, P(s'|s,a) is the transition probability function representing the probability of transitioning to state s' from state s after taking action a, R(s,a) is the reward function, indicating the immediate reward received after taking action a in state s, $\gamma \in [0,1)$ is the discount factor, which balances the importance of immediate and future rewards.

2.2 Reinforcement Learning

Reinforcement Learning (RL) is a learning paradigm where an agent interacts with an environment to learn a policy that maximizes cumulative rewards over time (Chadi and Mousannif, 2023). The environment is typically modeled as a Markov Decision Process (MDP), which provides a mathematical framework for sequential decision-making under uncertainty (Sutton and Barto, 2018; Chadi and Mousannif, 2023).

At each time step t, the agent observes the current state $s_t \in \mathcal{S}$, selects an action $a_t \in \mathcal{A}$ based on its policy $\pi(a|s)$, receives a reward $r_t = R(s_t, a_t)$, and transitions to a new state $s_{t+1} \sim P(\cdot|s_t, a_t)$. The goal of the agent is to learn a policy π that maximizes the expected return:

$$\mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t})\right].$$

To evaluate policies, the action value functions is commonly used by following demonstrations:

$$Q^{\pi}(s,a) = \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t},a_{t}) \mid s_{0} = s, a_{0} = a \right].$$

A policy is considered optimal if it achieves the highest possible expected return from any initial state. The corresponding optimal value functions, $V^*(s)$ and $Q^*(s,a)$, satisfy the Bellman optimality equations. Various RL algorithms, such as Q-learning, policy gradients, and actor-critic methods, aim to approximate these optimal value functions or policies through interaction with the environment (Wang et al., 2022).

2.3 Constrained Markov Decision Process (CMDP)

While standard MDPs aim solely to maximize rewards, many real-world applications, such as penetration testing and robotics, require satisfying additional constraints, such as limited time, energy, or risk exposure (Li, 2023). The *Constrained Markov Decision Process* (CMDP) (Altman, 1999) extends the MDP framework by introducing one or more cost functions.

A CMDP is defined as $(S, \mathcal{A}, P, R, C, \gamma, d)$, where C(s,a) is a cost function and d is a cost threshold. The objective is to find a policy π that maximizes the expected cumulative reward while satisfying the constraint on cumulative cost:

$$\begin{aligned} & \max_{\pi} \quad \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma' R(s_t, a_t) \right], \\ & \text{subject to} \quad \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma' C(s_t, a_t) \right] \leq d. \end{aligned}$$

2.4 Deep Q-Networks (DQN)

DQN is constructed on the concept of Q-learning. The Q-learning algorithm seeks to learn the optimal action-value function $Q^*(s,a)$, which satisfies the Bellman optimality equation:

$$Q^*(s,a) = \mathbb{E}_{s'} \left[R(s,a) + \gamma \max_{a'} Q^*(s',a') \right].$$

Deep Q-Networks (DQN) (Mnih et al., 2013) approximate $Q^*(s,a)$ using a neural network parameterized by θ , denoted as $Q_{\theta}(s,a)$. The network is trained to minimize the temporal difference (TD) loss:

$$\mathcal{L}(\boldsymbol{\theta}) = \mathbb{E}_{(s,a,r,s') \sim \mathcal{D}} \left[\left(Q_{\boldsymbol{\theta}'}^*(s,a) - Q_{\boldsymbol{\theta}}(s,a) \right)^2 \right],$$

where θ' denotes the parameters of a target network that is periodically updated from θ , s' is the next state of s by executing action a, a' is the action with the highest predicted return and is selected by the policy in state s', and \mathcal{D} is a replay buffer storing past transitions to improve sample efficiency and stability.

DQN has achieved notable success in various domains such as Atari games and network intrusion detection, but it is inherently designed for reward maximization without considering cost or constraints (Guo et al., 2025; Dana Mazraeh and Parand, 2025; Xu et al., 2025).

3 METHODOLOGY

3.1 Policy Optimization Objectives

Each episode yields a sparse reward and one or more cost signals for constraint violations. At each step, the policy receives a state vector that summarizes the network's status, including connectivity, services, privileges, and alerts. Based on this input, action values for expected returns are estimated. The highest-valued action is selected and executed.

Actions include scanning, exploiting, privilege escalation, and lateral movement. These actions are discrete and tailored to penetration testing. Each action incurs a fixed cost of 1, while a reward of 100 is only given upon successful penetration, with no intermediate rewards during the testing phase.

Our approach aims to learn a policy that consistently selects actions that maximize cumulative rewards while minimizing cumulative costs per episode, leading to efficient and constraint-aware penetration strategies.

To estimate the long-term value and cost associated with each state-action pair (s_t, a_t) , we compute

Algorithm 1: Optimizing Penetration Testing Policy with Lagrangian Multiplier.

```
Input: Environment \mathcal{E}, replay buffer \mathcal{B}, episodes N, discount factor \gamma, learning rate \eta
Output: Optimized policy \pi
Initialize Q-networks Q_R, Q_C, and Lagrange multiplier \lambda \leftarrow 1;
Initialize cost history buffer \mathcal{H} \leftarrow \emptyset;
                                                                                 // Track episodic costs for averaging
for k \leftarrow 1 to N do
    Reset environment, get initial state s_0;
    C_k \leftarrow 0;
                                                          // Initialize discounted cumulative cost for episode
     while episode not terminated do
          Select action a_t = \arg\max_a (Q_R(s_t, a) - \lambda Q_C(s_t, a));
                                                                               // Trade off reward and penalized cost
          Execute a_t, observe next state s_{t+1}, reward r_t, cost c_t = 1;
          C_k \leftarrow C_k + \gamma^t c_t;
                                                                                                   // Update discounted cost
          Store transition (s_t, a_t, r_t, c_t, s_{t+1}) in replay buffer \mathcal{B};
         s_t \leftarrow s_{t+1};
    Sample mini-batch from \mathcal{B} and update Q_R, Q_C via Bellman targets;
                                                                                                            // Train Q-networks
    Append C_k to \mathcal{H};
    Compute average cost \bar{C} = \frac{1}{|\mathcal{H}|} \sum C_i;
                                                                                     // Mean episodic cost over history
     Update \lambda \leftarrow \max(0, \lambda + \eta(C_k - \bar{C}));
                                                                                    // Projected gradient ascent update
```

the discounted episodic return and cost as follows:

$$R(s_t, a_t) = \sum_{i=0}^{N-1} \dot{\gamma} r_{t+i},$$

$$C(s_t, a_t) = \sum_{i=0}^{N-1} \dot{\gamma} c_{t+i},$$

Where $r_t \in \{0, 200\}$ is the reward at timestep $t, c_t = 1$ is the fixed cost per action, $\gamma \in [0,1)$ is the discount factor, T is the length of the episode, N is the number of time steps from *t* to end of the episode.

This formulation reflects the sparsity of the reward signal and encourages the agent to reach the penetration goal in as few steps as possible, to minimize the accumulated operational cost. By jointly learning from reward and cost signals, our framework guides the policy toward efficient and stealthy penetration strategies under predefined operational constraints.

Optimization of Value and Cost Functions

Two separate neural networks are used to approximate the action-value and cost-value functions. Each network takes the current state as input and outputs a vector representing the estimated value or cost for every possible action.

Formally, we employ two separate Q-functions:

- $Q_R(s,a)$ estimates the expected return (cumulative reward).
- $Q_C(s,a)$ estimates the expected cumulative cost.

These functions are learned using separate Bellman equations:

Reward Bellman target:

$$y_R = R(s,a) + \gamma \max_{a'} Q_R(s',a'),$$

Cost Bellman target:

$$y_C = C(s, a) + \gamma \max_{a'} Q_C(s', a').$$

a' is the action with the highest action value and cost in the respective Bellman functions. The above Bellman function indicates that, for example, the target of the value function is computed by the sum of the current reward and future action returns. Each Qfunction is trained by minimizing the mean squared temporal difference (TD) error over a batch of transitions:

$$\mathcal{L}_R = \mathbb{E}_{(s,a,r,s')} \left[(Q_R(s,a) - y_R)^2 \right],$$

$$\mathcal{L}_C = \mathbb{E}_{(s,a,c,s')} \left[(Q_C(s,a) - y_C)^2 \right].$$

This dual-Q learning structure allows us to evaluate actions by their expected rewards and the risks or costs they incur, forming the foundation for constraint-aware decision-making.

3.3 Lagrangian-Based Multi-Objective **Optimization**

Our method adopts a Lagrangian-based primal-dual optimization framework to enforce cost constraints during learning. A key distinction of our approach is that the Lagrange multipliers λ are not only used during policy optimization but are also directly incorporated into the action selection process. That is, the policy selects actions by maximizing a reward signal adjusted by the current penalty weights, which

ensures that the agent explicitly considers constraint penalties when choosing actions, even during evaluation:

$$a_t \sim \pi(a \mid s_t; \lambda) = \arg \max_a \left[R(s_t, a) - \lambda C(s_t, a) \right].$$

To enforce long-term constraint satisfaction, the Lagrange multiplier λ_i is modeled as a learnable scalar and updated using projected gradient ascent based on the gap between the current episodic cost and the historical average cost. Specifically, let i denote episode numbers during training, and let k denote the current episode number. The update rule is:

$$\lambda \leftarrow \left[\lambda + \eta \left(C_n - rac{\sum_{i=0}^N C_i}{N}
ight)
ight]_+, \quad \forall i,$$

where η is the dual learning rate and $[\cdot]_+$ projects onto the non-negative reals. C_n is the episodic cost of the current episode, compared with the average of history episodes. If C_n is greater than the historical average, then the λ will increase, strengthening the impact of costs in action selection. It decreases λ when the current episodic cost is lower than its historical average, allowing the agent to adaptively balance task performance and constraint satisfaction over time. Note that λ is set to 1 when the training starts.

3.4 Multi-Objective Policy Optimization

We frame penetration testing as a constrained decision-making problem, where the agent aims to maximize success while minimizing cost. At each step, it selects actions by maximizing the expected reward minus a cost penalty scaled by a learnable Lagrange multiplier.

Rewards are sparse and only given upon successful exploits, escalations, or goal completion, while each action incurs a unit cost. Transitions are stored in a replay buffer to train separate Q-networks for rewards and costs. After each episode, the Lagrange multiplier is updated via projected gradient ascent to balance performance and constraint adherence.

Through repeated learning, the agent converges to a cost-aware strategy that optimizes both effectiveness and efficiency. The full procedure is in Algorithm 1.

4 EXPERIMENTS

4.1 Experiment Setup

We build our method on the *Network-Attack-Simulator* benchmark¹, and evaluate it against six

state-of-the-art Safe RL baselines across three representative environments: *gen*, *small*, and *hard*. *gen* retains the *tiny* benchmark's minimal topology but adds stochasticity to test generalization. *small* introduces more lateral movement paths for moderate complexity. *hard* features complex zone structures and multiple privilege escalation goals, requiring deeper planning and cost-sensitive behavior. These tasks assess scalability and constraint-awareness in increasing complexity.

Moreover, we compare with DQN (Mnih et al., 2013) and set the Lagrange multiplier learning rate to 1e-3 as well, using the same architecture for both cost and policy networks. Our RL training process doubles as penetration testing, with interactions serving as both learning and evaluation data.

Additionally, we implement two heuristic baselines: (i) a random agent selecting uniformly from the action space, and (ii) a rule-based agent guided by the logic of Metasploit and tools like Nmap, Nessus, OpenVAS, Armitage, Wireshark, and Netcat (Ankele et al., 2019; Raj and Walia, 2020; Malkapurapu et al., 2023; Jeff and Kala, 2024; Skandylas and Asplund, 2025). Details of these baselines are in the implementation resources.

4.2 Evaluation of Training Performance

In our experiments, following the strategy of "testing while training", evaluation is conducted periodically during the training process. During the experiment, we executed three rounds of penetration testing in each environment. In each round of testing, we set the total training budgets to 50,000 and 100,000 steps for *gen*, *small*, and *hard*, respectively.

In Figure 1, we present the average trends of episodic returns and costs during the training of baselines (e.g., standard DQN, random- and rule-based method) and the Constrained-DQN penetration testing policies. Each point on the curves represents the evaluated episodic returns and costs of the policies at the corresponding time steps. A higher return indicates a greater likelihood of successfully compromising the network system, while a higher cost reflects a longer task completion time.

Our method, the Constrained-DQN, consistently outperforms baseline agents by achieving higher cumulative returns and lower episodic costs. In particular, on the *gen*, the Constrained-DQN achieves substantial improvements in both return and cost throughout the training process. In the more challenging *small* and *hard* tasks, it demonstrates even greater efficiency in earning reward and cost reduction. Notably, in *hard*, compared to DQN and two other base-

¹https://networkattacksimulator.readthedocs.io

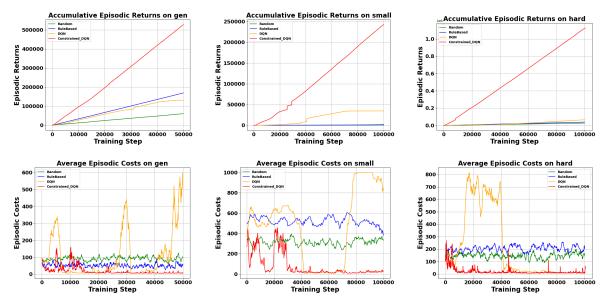


Figure 1: Average trends of episodic returns and costs achieved by random- and rule-based penetration testing method, DQN, and Constrained-DQN penetration testing policies.

lines, our method shows significant capabilities of reducing costs from the early training phases, and outperforms all baselines in cumulative rewards.

These results indicate that our approach improves penetration testing effectiveness and efficiency by increasing the success rate and reducing the time required to complete the task.

4.3 Evaluation of Penetration Testing Performance

We evaluated our proposed method against three baselines (e.g., standard DQN, random- and rule-based methods) across three representative penetration testing tasks with varying difficulty levels: general (*gen*), small-scale (*small*), and complex scenarios (*hard*). We trained all the methods under identical conditions with fixed training steps for each task.

To comprehensively evaluate our penetration testing policies, we measure the average number of testing episodes, the number of discovered penetration paths, path uniqueness and exclusivity, average path length and cost, and the overall success rate. Unique paths refer to those that were identified by our policies but were absent in the baseline evaluation. The computation of the overall success rate is in the following equation:

$$SuccessRate = \frac{|Unique\ Paths|}{|Testing\ E\ pisodes|}$$

|*Unique Paths*| refers to the number of distinct penetration paths discovered by a method, counted by

eliminating repeated paths within the same method, and |*TestingEpisodes*| is the total number of testing episodes conducted within the same training budget (i.e., number of steps).

Table 1 summarizes the results, demonstrating that our method consistently outperforms all baseline methods across metrics and tasks. In the *gen* task with 50,000 training steps, our approach achieves an average of 4,697.0 testing episodes, discovering 4,692.33 penetration paths, 2,258.67 unique paths, and 1,025.0 exclusive paths. It improves the success rate by approximately 23.72% over the best-performing baseline (RuleBased), increasing from 3.651% to 4.517%, while reducing the average cost by 55.57%.

More notably, in the more complex *small* and *hard* tasks, our method shows significantly stronger exploration and exploitation capabilities. For instance, in the *hard* scenario, it discovers over five times (compared to Random), seven times (compared to Rule-Based), and fourteen times (compared to DQN) more total penetration paths, and six times, four times, and nine times more unique paths, respectively. It also achieves nearly a fivefold increase in success rate compared to the random-based method (4.462% vs. 0.685%), a threefold increase over the rule-based method (4.462% vs. 0.987%), and an eightfold increase over DQN (4.462% vs. 0.465%), all while maintaining the lowest average costs (23.875).

Our method's effectiveness relies on reducing penetration testing costs. Specifically, with the same training time steps, our method can always finish the penetration testing with fewer time steps than the baselines. This advantage enables our method to test

Table 1: Averaged penetration testing results of baselines and our method on selected tasks. We consider the random-based	L
penetration testing method, the rule-based penetration testing method, and DQN as baselines against our Constrained-DQN.	,
Better results are highlighted in blue.	

Tasks	Methods	Training	Experienced	Penetration	Unique	Exclusive	Ave. Path	Avg.	Avg. Success
		Steps	Episodes	Paths	Paths	Paths	Lengths	Costs	Rates (%)
	Random	50,000	1,090.0	1,088.0	544.0	181.333	91.901	91.743	1.088
	RuleBased	50,000	1,894.0	1,892.0	1,825.667	914.333	52.550	52.539	3.651
gen	DQN	50,000	717.667	682.333	456.333	254.333	78.187	105.263	0.913
	Ours	50,000	4,697.0	4,692.333	2,258.667	1,025.0	22.592	23.188	4.517
	Random	100,000	636.0	634.0	317.0	105.66	314.495	314.465	0.317
small	RuleBased	100,000	381.667	359.667	359.667	182.0	500.421	521.739	0.360
smatt	DQN	100,000	318.0	161.333	144.333	96.0	203.193	515.464	0.144
	Ours	100,000	1,213.0	1,160.667	1,009.667	625.333	92.916	125.366	1.010
	Random	100,000	1,372.0	1,370.0	685.0	228.333	145.943	145.773	0.685
hard	RuleBased	100,000	988.667	986.667	986.66	490.333	203.583	203.528	0.987
	DQN	100,000	616.0	513.0	465.333	216.0	184.983	321.888	0.465
	Ours	100,000	7,535.0	7,515.333	4,461.667	2,587.0	20.833	23.875	4.462

more episodes within a fixed testing budget. Consequently, our method can detect more penetration paths. Moreover, we infer that our method tends to avoid repeatedly exercising the same penetration paths since we continuously reduce the time costs during training. Such a mechanism might help discover more unique penetration paths with short path lengths.

Overall, the results show that our method effectively discovers penetration paths and generalizes better across different task complexities. The high number of unique and exclusive paths indicates broader search space coverage, while shorter average path lengths and lower costs suggest more efficient and optimal solutions. This strong performance validates the strength of our approach in automated penetration testing, highlighting its potential for practical deployment.

4.4 Hyperparameter Tuning

The learning rate for the Lagrangian multiplier λ is a critical hyperparameter. It directly influences how quickly the agent adjusts its penalty signal in response to constraint violations. A learning rate that is too low may result in slow or insufficient updates to λ , failing to enforce constraints effectively. Conversely, an overly high learning rate can lead to unstable updates, causing oscillations or divergence in cost management and policy learning. Thus, tuning this hyperparameter is essential to ensure stable convergence and reliable satisfaction of constraints over training.

Experimental results on the *small* environment in Figure 2 show that 1×10^{-3} achieves the best overall performance on episodic returns and relatively

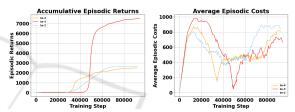


Figure 2: The trends of episodic returns and costs achieved by our method with different λ learning rates on *small*.

lower costs than other settings. Based on our statistics, 1×10^{-3} achieves a high penetration testing success rate and the greatest episodic return (7,489.8), while maintaining the lowest average cost (708.87) among all tested configurations. In contrast, the lower rate 1×10^{-4} shows slightly reduced task performance, with lower returns (2,490.67) and higher costs (786.62). The highest rate 1×10^{-2} leads to degraded performance across the board, including lower return (2,618.05), and increased cost (871.47), likely due to unstable λ updates.

5 DISCUSSION

5.1 Analysis of Penetration Strategy Distribution

We analyze penetration path distributions across tasks (*gen*, *small*, *hard*) using DBSCAN clustering in Jaccard similarity space, visualized with Isomap (Sundararajan, 2025; Cheng et al., 2025). Cluster structures reflect strategy similarity, while dispersion indicates behavioral diversity (Sundararajan, 2025).

As shown in Figure 3, each point represents a pen-

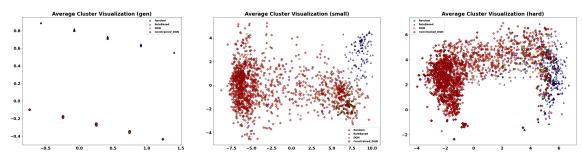


Figure 3: Average trends in the distribution of clusters of penetration test paths using Isomap. Paths are achieved by randomand rule-based penetration testing method, DQN, and Constrained-DQN penetration testing policies.

Figure 4: Average trends of successful penetration testing episodic costs achieved by random- and rule-based penetration testing method, DQN, and Constrained-DQN penetration testing policies.

etration path and is embedded according to its Jaccard similarity to other paths. Tightly grouped points suggest consistent and repeatable strategies, as proximity indicates high similarity between penetration paths. In the task of *gen*, our method induces only 16 clusters, whereas in the more complex *small* and *hard* tasks, it obtains 78 and 478 clusters, respectively. In contrast, the baseline methods show fewer and less stable clusters across scenarios. Specifically, in *gen*, random-based method, rule-based method, and DQN provide 12, 22, and 16 clusters, respectively. Meanwhile, in *small*, only 2 (Random), 2 (RuleBased), and 15 (DQN) clusters are observed. Meanwhile, in *hard*, 17 (Random), 8 (RuleBased), and 40 (DQN) clusters are identified, respectively.

Notably, the diversity of isolated points in *small* and *hard* shows that our policies are exploratory. It also indicates that the Constrained-DQN generates a significantly broader and more dispersed distribution of penetration paths than the baselines.

5.2 Analysis of Lagrangian Multiplier λ and Costs

As shown in Figure 4, we compare the average episodic costs of successful penetration testing steps achieved by the Constrained-DQN and baseline methods. The results show that our method incurs the lowest average cost while achieving the highest number

of successful penetration steps. Meanwhile, it consistently achieves a low cost per successful step, indicating higher efficiency compared to the baselines.

We analyze the relationship between the Lagrangian multiplier λ and the average cost per episode in the *gen*, *small*, and *hard* environments using the Pearson correlation coefficient (Sedgwick, 2012), which measures the linear relationship between two variables. In our context, it reflects how the adaptive λ responds to the cost incurred by the policy during training.

Across all tasks, we observed positive correlations between λ and the average cost per episode: in *gen*, the correlation is +0.297; in *small*, it is +0.605; and in *hard*, it is +0.236. These results suggest that as the agent encounters higher costs, the value of λ tends to increase. This behavior reflects the design of our method: the adaptive adjustment of λ penalizes costly actions and reduces their selection probability, encouraging the agent to avoid inefficient decisions.

The agent learns to prioritize task completion and cost efficiency through this mechanism. Unlike standard DQN, the random- and rule-based method, which focuses solely on maximizing returns, our constrained formulation incorporates cost-awareness directly into the policy learning process. This is especially critical in penetration testing scenarios, where an agent that reaches the goal without regard for efficiency is of limited practical use. The observed correlations demonstrate that the adaptive λ provides an ef-

fective internal signal for guiding cost-sensitive learning.

Overall, we introduce a multi-objective policy optimization scheme to learn penetration testing policies. Our method outperforms baselines in terms of success rate, cost efficiency, and strategic diversity, as supported by experimental results. While current limitations include the use of a scalar Lagrange multiplier and reliance on simulated environments, our method shows potential for real-world, resource-constrained scenarios such as enterprise or IoT networks.

6 RELATED WORKS

6.1 Rule-Based Penetration Testing

Various tools are preferred among security professionals and organizations in configured testing environments for traditional penetration testing. For instance, by setting the scope of the penetration testing to a generic In-Vehicle Infotainment (IVI) system, the authors of (Wieser et al., 2024) focus on the Wi-Fi interface of the IVI model to reveal vulnerabilities that could allow attackers to crash the system, access data, or manipulate settings. Their study demonstrates effective testing methods tailored to the automotive environment to address the unique security challenges in vehicular networks.

Moreover, works of (Ankele et al., 2019; Raj and Walia, 2020; Malkapurapu et al., 2023; Jeff and Kala, 2024; Skandylas and Asplund, 2025) analyze the performance of the Metasploit Framework in conjunction with other popular penetration testing tools (e.g., Nmap, Nessus, OpenVAS, Armitage, Wireshark, and Netcat). The results show that a flexible and modular architecture enables a comprehensive range of testing scenarios. (Ankele et al., 2019) extracts metadata from diagrams and models commonly used in typical software development processes to automate threat modeling, security analysis, and penetration testing without prior detailed security knowledge in a large-scale IoT/IIoT network. This approach reduces the reliance on deep security expertise and addresses the scalability limitations of manual approaches in complex industrial systems. In addition, (Malkapurapu et al., 2023) discussed that a large and active community ensures that open-source Metasploit receives frequent updates and shared resources. The authors detail Metasploit's modular design, extensive exploit database, and integration capabilities, demonstrating its utility in automating and enhancing security assessments. Furthermore, to address the growing need for scalable and expert-independent security testing, the authors in (Skandylas and Asplund, 2025) formalize the problem of penetration testing as an architectural-level problem and propose a self-organizing, architecture-driven automation tool for penetration testing (ADAPT). They successfully applied their method to real-world environments such as Metasploitable 2/3 and virtual training networks.

6.2 Deep Learning-Based Penetration Testing

The powerful ability to process large amounts of data and identify patterns enables DL models to efficiently and automatically simulate complex attack scenarios and assess security posture during penetration testing. The authors of (Koroniotis et al., 2021) aim to address the limitations of existing penetration testing tools in detecting zero-day vulnerabilities in IoT environments due to the diversity of data generated, hardware limitations, and environmental complexity. Hence, they provide a deep learning-based framework (LSTM-EVI) for vulnerability identification in smart IoT environments. Evaluated using real-time data on a smart airport testbed, the framework achieves outstanding accuracy in detecting scanning attacks. Meanwhile, in the work of (Alaryani et al., 2024), an AI-enabled penetration testing platform (PentHack) is designed to enhance the development of cybersecurity knowledge. The platform integrates the Large Language Model (LLM) with a user-friendly GUI to automate testing procedures and enhance user learning outcomes while supporting educational and practical applications in cyberwarfare and security. Moreover, the authors of (Deng et al., 2024) propose PEN-TESTGPT, an LLM-powered automated penetration testing framework that leverages domain knowledge and a modular, self-interacting architecture to address context loss challenges. Their proposal shows strong performance on real-world targets, which achieves a 228.6% task-completion improvement over GPT-3.5 on benchmark penetration testing tasks.

To improve the efficiency and adaptability of exploration in complex network environments, the authors of (Kong et al., 2025) proposed VulnBot, an autonomous penetration testing framework based on a multi-agent collaborative architecture. The VulnBot enables agents to share knowledge and coordinate attacks to address the limitation of a lack of task coordination and excessive unstructured output. Additionally, in the work of (Nakatani, 2025), a framework called RapidPen utilizes LLM to discover vulnerabilities and exploits autonomously. In RapidPen, the LLM helps synthesize new command inputs based on contextual understanding of the target and its con-

figuration. As a result, a report on the progress of the penetration test (e.g., logs, vulnerabilities found, commands used to obtain a shell) can be obtained by providing the target IP address and shows strong effectiveness in discovering and exploiting vulnerabilities autonomously without human intervention.

Furthermore, the work of (Antonelli et al., 2024) improves the efficiency of data mining in the penetration testing of web applications through semantic clustering techniques. The authors utilize advanced embedding models, such as Word2Vec and Universal Sentence Encoder, to convert word list entries into vector representations. These vectors are then grouped using a semantic similarity-based clustering algorithm. The resulting clusters provide the basis for an intelligent next-word selection strategy that significantly improves the performance of traditional brute-force cracking methods in various web applications.

6.3 Reinforcement Learning-Based Penetration Testing

By viewing penetration testing as an ongoing decision-making process, RL agents can learn the optimal attack strategies to increase the efficiency and coverage of penetration testing. (Cody et al., 2022) propose an RL method for discovering data exfiltration paths in enterprise networks using attack graphs. Their penetration testing scenario assumes that the stolen data is seeking a stealthy exfiltration. The authors design the reward function of the RL agent to favor low-detection paths, showing promising results in large-scale environments. Moreover, the authors of (Li et al., 2025a) introduce a novel framework for formalizing and refining attack patterns involving disjunctive, conjunctive, and hybrid causal relationships among actions (TTCRT). By modeling these dynamics as Markov Decision Processes, the framework enables deep RL algorithms to discover optimal attack paths accurately.

Otherwise, since the intelligent-led penetration testing approaches often assume static environments, the authors of (Yao et al., 2023; Li et al., 2024a) apply RL in a dynamic defense environment and evaluate with the scenario of CyberBattleSim. Results show reduced agent performance and convergence in dynamic scenarios, highlighting the need for a balanced exploration-exploitation strategy. To improve convergence speed and continuous adaptation in dynamic scenarios, the authors in the work of (Li et al., 2024a) capture observed scenario changes to help penetration testing agents make decisions based on historical experience. Meanwhile, the work of (Zhou et al., 2025) addressed the challenge of non-stationarity in real-

world autonomous penetration testing. The authors propose SCRIPT, a scalable continual RL framework. SCRIPT enables agents to learn large-scale tasks sequentially, leveraging prior knowledge (positive forward transfer) while mitigating catastrophic forgetting through new task learning and knowledge consolidation processes.

To tackle partial observability in penetration testing, EPPTA (Li et al., 2025b) introduces a stateestimation module within an asynchronous RL framework, achieving up to 20 times faster convergence than prior methods. To overcome limited test coverage and repetitive behaviors, CLAP (Yang et al., 2024) proposes a coverage-driven RL framework with Chebyshev-based strategy diversification, improving efficiency and scaling to networks with up to 500 hosts. In addition, works of (Zennaro and Erdődi, 2023; Li et al., 2024b; Pham et al., 2024) provide efforts for an efficient penetration testing. The authors of (Zennaro and Erdődi, 2023) explore the application of RL to penetration testing through modeling realistic, goal-driven attack processes to capturethe-flag (CTF) scenarios, focusing on the trade-off between model-free learning and the use of domain knowledge. Compared to knowledge-guided agents with predefined heuristics, the results show that integrating limited prior knowledge can reduce learning time. A knowledge-informed RL approach for leveraging reward machines to encode domain knowledge into the RL process was proposed later (Li et al., 2024b). Their approach improves learning efficiency and interpretability by guiding the agent with structured symbolic rewards rather than relying solely on trial-and-error. It highlights combining human knowledge with RL for more efficient, goal-directed attack strategies. (Pham et al., 2024) automates the postexploitation phase in penetration testing. Unlike treating exploitation as an end goal, the authors focus on evaluating the security level of a system by systematically exploring post-exploitation actions. The results show high success rates with fewer attack steps in a complex network environment.

7 CONCLUSION

This work presents a reinforcement learning penetration testing framework that employs a multiobjective policy optimization scheme based on constrained DQN to jointly maximize penetration testing efficiency and minimize operational cost through adaptive Lagrangian multiplier λ . Experiments on three penetration testing environments, *gen*, *small*, and *hard* in *Network-Attack-Simulator* benchmark, showed that the proposed method consistently achieves higher success rates, larger coverage returns, and more reductions in episode cost compared with standard DQN, random- and rule-based penetration testing methods. Statistically significant positive correlations between λ and incurred cost confirm that the dual update mechanism guides the agent to perform lower-cost actions without sacrificing exploit quality. These results demonstrate that constrained reinforcement learning is a practical avenue for scalable, efficient, and effective automated penetration testing in real-world, resource-limited environments.

Our future work focuses on a broader consideration of improving penetration testing efficiency. At first, we will upgrade the Lagrangian multiplier λ from a learnable scalar to a neural network. A more complex λ helps improve the granularity and accurately measure the impact of costs on selecting actions under different states. Furthermore, we will focus on extending our method to more complex network systems, such as cloud-based platforms or software-defined networks, to improve its scalability and real-world applicability.

ACKNOWLEDGEMENTS

This work is supported by Hitachi Systems, Ltd.

REFERENCES

- Ahmad, T., Butkovic, M., and Truscan, D. (2025). Using reinforcement learning for security testing: A systematic mapping study. In 2025 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW), pages 208–216.
- Alaryani, M., Alremeithi, S., Ali, F., and Ikuesan, R. (2024).
 Penthack: Ai-enabled penetration testing platform for knowledge development. European Conference on Cyber Warfare and Security, 23:27–36.
- Altman, E. (1999). Constrained Markov Decision Processes, volume 7. CRC Press.
- Ankele, R., Marksteiner, S., Nahrgang, K., and Vallant, H. (2019). Requirements and recommendations for iot/iiot models to automate security assurance through threat modelling, security analysis and penetration testing. *CoRR*, abs/1906.10416.
- Antonelli, D., Cascella, R., Schiano, A., Perrone, G., and Romano, S. P. (2024). "dirclustering": a semantic clustering approach to optimize website structure discovery during penetration testing. *Journal of Computer Virology and Hacking Techniques*, 20(4):565– 577.
- Bandar Abdulrhman Bin Arfaj, Shailendra Mishra, M. A. (2022). Efficacy of unconventional penetration testing

- practices. *Intelligent Automation & Soft Computing*, 31(1):223–239.
- Bianou, S. G. and Batogna, R. G. (2024). Pentest-ai, an llm-powered multi-agents framework for penetration testing automation leveraging mitre attack. In 2024 *IEEE International Conference on Cyber Security and Resilience (CSR)*, pages 763–770.
- Caddy, T. (2025). Penetration testing. In Jajodia, S., Samarati, P., and Yung, M., editors, *Encyclopedia of Cryptography, Security and Privacy*, pages 1786–1787, Cham. Springer Nature Switzerland.
- Chadi, M.-A. and Mousannif, H. (2023). Understanding reinforcement learning algorithms: The progress from basic q-learning to proximal policy optimization.
- Cheng, Y.-Y., Fang, Q., Liu, L., and Fu, X.-M. (2025). Developable approximation via isomap on gauss image. *IEEE Transactions on Visualization and Computer Graphics*, pages 1–11.
- Cody, T., Rahman, A., Redino, C., Huang, L., Clark, R., Kakkar, A., Kushwaha, D., Park, P., Beling, P., and Bowen, E. (2022). Discovering exfiltration paths using reinforcement learning with attack graphs. In 2022 *IEEE Conference on Dependable and Secure Computing (DSC)*, pages 1–8. IEEE.
- Dana Mazraeh, H. and Parand, K. (2025). An innovative combination of deep q-networks and context-free grammars for symbolic solutions to differential equations. *Engineering Applications of Artificial Intelligence*, 142:109733.
- Deng, G., Liu, Y., Mayoral-Vilches, V., Liu, P., Li, Y., Xu, Y., Zhang, T., Liu, Y., Pinzger, M., and Rass, S. (2024). PentestGPT: Evaluating and harnessing large language models for automated penetration testing. In 33rd USENIX Security Symposium (USENIX Security 24), pages 847–864, Philadelphia, PA. USENIX Association.
- Erdődi, L. and Zennaro, F. M. (2022). Hierarchical reinforcement learning for efficient and effective automated penetration testing of large networks. *Journal of Intelligent Information Systems*, 59(3):375–393.
- Fadhli, M. (2024). Comprehensive analysis of penetration testing frameworks and tools: Trends, challenges, and opportunities: Analisis komprehensif terhadap framework dan alat penetration testing: Tren, tantangan, dan peluang. *Indonesian Journal of Electrical Engineering and Renewable Energy (IJEERE)*, 4(1):15–22.
- Guo, C., Zhang, L., Thompson, R. G., Foliente, G., and and, X. P. (2025). An intelligent open trading system for on-demand delivery facilitated by deep q network based reinforcement learning. *International Journal* of *Production Research*, 63(3):904–926.
- Hayat, T. and Gatlin, K. (2025). Ai-powered ethical hacking: Rethinking cyber security penetration testing. Preprint on ResearchGate.
- Hoang, L. V., Nhu, N. X., Nghia, T. T., Quyen, N. H., Pham, V.-H., and Duy, P. T. (2022). Leveraging deep reinforcement learning for automating penetration testing in reconnaissance and exploitation phase. In 2022 RIVF International Conference on Comput-

- ing and Communication Technologies (RIVF), pages 41–46.
- Jeff, V. and Kala, K. (2024). Penetration testing: An overview of its tools and processes. *International Journal of Research Publication and Reviews*, 5(3):4346–4353.
- Kong, H., Hu, D., Ge, J., Li, L., Li, T., and Wu, B. (2025).Vulnbot: Autonomous penetration testing for a multiagent collaborative framework.
- Koroniotis, N., Moustafa, N., Turnbull, B., Schiliro, F., Gauravaram, P., and Janicke, H. (2021). A deep learning-based penetration testing framework for vulnerability identification in internet of things environments. In 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), pages 887–894.
- Li, Q., Wang, R., Li, D., Shi, F., Zhang, M., Chattopadhyay, A., Shen, Y., and Li, Y. (2024a). Dynpen: Automated penetration testing in dynamic network scenarios using deep reinforcement learning. *IEEE Transac*tions on Information Forensics and Security, 19:8966– 8981.
- Li, S., Huang, R., Han, W., Wu, X., Li, S., and Tian, Z. (2025a). Autonomous discovery of cyber attack paths with complex causal relationships among optional actions. *IEEE Transactions on Intelligent Transporta*tion Systems, pages 1–15.
- Li, S. E. (2023). Reinforcement Learning for Sequential Decision and Optimal Control. Springer Singapore.
- Li, Y., Dai, H., and Yan, J. (2024b). Knowledge-informed auto-penetration testing based on reinforcement learning with reward machine. In 2024 International Joint Conference on Neural Networks (IJCNN), pages 1–9.
- Li, Z., Zhang, Q., and Yang, G. (2025b). Eppta: Efficient partially observable reinforcement learning agent for penetration testing applications. *Engineering Reports*, 7(1):e12818.
- Luo, F.-M., Tu, Z., Huang, Z., and Yu, Y. (2024). Efficient recurrent off-policy rl requires a context-encoderspecific learning rate. In Globerson, A., Mackey, L., Belgrave, D., Fan, A., Paquet, U., Tomczak, J., and Zhang, C., editors, Advances in Neural Information Processing Systems, volume 37, pages 48484–48518. Curran Associates, Inc.
- Malkapurapu, S., Abbas, M. A. M., and Das, P. (2023). Exploring the capabilities of the metasploit framework for effective penetration testing. In *Data Science and Network Engineering*, volume 655 of *Lecture Notes in Networks and Systems*, pages 457–471. Springer Nature Singapore.
- Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Riedmiller, M. (2013). Playing Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.
- Nakatani, S. (2025). Rapidpen: Fully automated ip-to-shell penetration testing with llm-based agents.
- Pham, V.-H., Hoang, H. D., Trung, P. T., Quoc, V. D., To, T.-N., and Duy, P. T. (2024). Raiju: Reinforcement learning-guided post-exploitation for automating se-

- curity assessment of network systems. *Computer Networks*, 253:110706.
- Raj, S. and Walia, N. K. (2020). A study on metasploit framework: A pen-testing tool. In 2020 International Conference on Computational Performance Evaluation (ComPE), pages 296–302.
- Sedgwick, P. (2012). Pearson's correlation coefficient. *Bmj*, 345
- Skandylas, C. and Asplund, M. (2025). Automated penetration testing: Formalization and realization. *Computers & Security*, 155:104454.
- Sundararajan, S. (2025). Multivariate Analysis and Machine Learning Techniques: Feature Analysis in Data Science Using Python. Transactions on Computer Systems and Networks. Springer Singapore, 1 edition.
- Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction. MIT Press.
- Teichmann, F. M. and Boticiu, S. R. (2023). An overview of the benefits, challenges, and legal aspects of penetration testing and red teaming. *International Cybersecurity Law Review*, 4(4):387–397.
- Wang, P., Liu, J., Zhong, X., Yang, G., Zhou, S., and Zhang, Y. (2022). Dusc-dqn:an improved deep q-network for intelligent penetration testing path design. In 2022 7th International Conference on Computer and Communication Systems (ICCCS), pages 476–480.
- Wieser, H., Schäfer, T., and Krauß, C. (2024). Penetration testing of in-vehicle infotainment systems in connected vehicles. In 2024 IEEE Vehicular Networking Conference (VNC), pages 156–163.
- Xu, C., Du, J., Lai, B., Wang, H., Zheng, H., Dai, T., Liang, Z., and and, Y. Y. (2025). Design and implementation of an intelligent penetration security assessment system based on graph neural network (gnn) technology. *Journal of Cyber Security Technology*, 0(0):1–13.
- Yang, Y., Chen, L., Liu, S., Wang, L., Fu, H., Liu, X., and Chen, Z. (2024). Behaviour-diverse automatic penetration testing: a coverage-based deep reinforcement learning approach. *Frontiers of Computer Science*, 19(3):193309.
- Yao, Q., Wang, Y., Xiong, X., and Li, Y. (2023). Intelligent penetration testing in dynamic defense environment. In *Proceedings of the 2022 International Conference* on Cyber Security, CSW '22, page 10–15, New York, NY, USA. Association for Computing Machinery.
- Zennaro, F. M. and Erdődi, L. (2023). Modelling penetration testing with reinforcement learning using capture-the-flag challenges: trade-offs between model-free learning and a priori knowledge. *IET Information Security*, 17(3):441–457.
- Zhou, S., Liu, J., Lu, Y., Yang, J., Zhang, Y., Lin, B., Zhong, X., and Hu, S. (2025). Script: A scalable continual reinforcement learning framework for autonomous penetration testing. *Expert Systems with Applications*, 285:127827.