Web-Based Crowd Detection and Emotion Analysis for Fashion Retail **Using Computer Vision**

Fiorella Valencia Rivera^{©a}, Erik Romero Polli^{©b} and Efrain Bautista Ubillus^{©c} Faculty of Engineering, Peruvian University of Applied Sciences, Lima, Peru

Keywords: Computer Vision, Crowd Detection, Emotion Analysis, Fashion Retail, Heat Map Visualization,

Convolutional Neural Networks (CNN), YOLO Algorithm, Customer Behavior Analysis, Retail

Analytics, Facial Expression Recognition.

This study proposes a web-based solution to address the difficulty fashion retail stores face in obtaining ac-Abstract:

curate information on crowding and their customers' emotional states. Using computer vision techniques, the application leverages the YOLO algorithm for people detection and convolutional neural networks (CNN) for emotion classification. Integrating this data provides retailers with strategic insights to optimize space layout, improve resource allocation, and adjust their marketing strategies, allowing managers to make decisions based on objective data. The study emphasizes ethical considerations, including data anonymization and secure storage, and highlights limitations and future research directions, such as real-world testing and collaboration with retailers for contextually accurate data collection. The system was validated in a simulated environment that

replicated the operating conditions of a retail store, allowing an initial evaluation of its performance.

INTRODUCTION 1

In the competitive fashion retail environment, identifying and analyzing customer crowding and emotions is crucial for improving experience and sales. Perceived crowding can trigger stress or excitement, affecting purchasing behavior and store image (Kelleher, 2019; Fiedler, 1967). However, limited technology often prevents companies from spotting key behavioral patterns that could optimize product placement, shelf layout and marketing (Babar et al., 2023). Advanced computer vision has shown promise in speeding up and refining data collection, enabling faster responses to market needs (Szeliski, 2022). Properly managing emotions in busy settings is linked to customer satisfaction, retention and increased revenue (Mittal et al., 2023). This challenge is especially pressing for SMEs, which lack the resources and expertise for data-driven strategies and may fall behind larger competitors (Grewal et al., 2003; Narvilas et al., 2022).

We propose a web application that uses computer vision to capture customer movements and emotions, helping fashion retailers make informed decisions on marketing and in-store resource allocation. Imple-

^a https://orcid.org/0009-0001-6100-2910

b https://orcid.org/0009-0004-7304-2030

menting this requires selecting and tuning algorithms such as OpenCV for image processing, YOLO for face and body detection, and CNNs for emotion classification.

Previous approaches often focused on foot traffic or audio cues, missing the full picture of visual and emotional data (Batch et al., 2023; Guo et al., 2016). Even deep learning methods that count people usually overlook emotions (Jähne et al., 1999). Our solution unites behavior and emotion analysis, offering SMEs deeper insights by combining movement tracking, interaction mapping and emotion recognition.

Key components include:

- · OpenCV and YOLO for real-time face/body detection.
- · CNN-based emotion classification to gauge customer responses.
- · Heat maps to highlight high-traffic zones, guiding layout and product placement.

Challenges involve ensuring high-quality video feeds and mitigating factors like lighting and camera angles that can impact detection accuracy.

This paper makes three contributions:

- 1. A web application integrating behavior and emotion analysis for fashion retail.
- 2. Implementation of CNN-based emotion recognition to inform marketing and enhance satisfaction.

^c https://orcid.org/0000-0002-8188-4690

Heat map visualizations for optimizing store layout based on customer flow.

The rest of the paper is organized as follows. Section II reviews related work. Section III covers project context and methodology. Section IV describes experiments and validation. Finally, Section V presents conclusions and future directions.

2 RELATED WORKS

This chapter reviews existing solutions for crowd detection and emotion analysis via a systematic literature review using the methodology from (Kitchenham and Charters, 2007). The review addressed four research questions: facial recognition methods (Q1), crowd analysis techniques (Q2), computer vision for emotion recognition (Q3), and customer crowding detection (Q4). SCOPUS was queried with Boolean terms like "computer vision," "crowd analysis," and "heatmaps," yielding 746 candidate articles. After applying inclusion/exclusion criteria (quartile range Q1/Q2, language, recency, relevance), six recent studies (2021–2024) were selected.

In (Mayuri et al., 2021), uxSense supports user experience evaluation through video/audio analysis using computer vision and machine learning, extracting behavioral features and enabling emotion classification. Unlike this system, our proposal specifically targets customer crowding and emotion analysis in fashion retail using OpenCV/YOLO-generated heatmaps.

In (Njanda et al., 2024), people counting employs IR-UWB radar sensors and machine learning for privacy-preserving occupancy estimation. While effective for counting, it lacks emotion/behavioral insights for retail studies. Our work overcomes this by integrating emotion detection and crowding analysis via heatmaps and facial recognition.

In (Cao et al., 2024), CrowdUNet uses segmentation-assisted U-Net architecture for high-density crowd counting, addressing occlusion and perspective distortion. However, it focuses solely on counting without emotion analysis. Our approach extends this by combining density estimation with facial recognition and heatmaps to capture behavioral-emotional patterns in retail.

In (Babar et al., 2023), a survey categorizes deep learning methods for crowd counting, emphasizing regression-based density estimation. It lacks emotional analysis and behavioral insights. Our proposal integrates counting with facial recognition and heatmaps to analyze both emotions and spatial behavior in fashion retail.

In (Nethravathi et al., 2022), a facial expression

system uses OpenCV/CNN to classify emotions into retail feedback categories ("Satisfied," "Not Satisfied," "Neutral"). It ignores spatial customer movement. Our work bridges this gap by merging emotion recognition with heatmap generation for comprehensive density-emotion analysis in retail spaces.

In (Ganesan, 2023), real-time customer satisfaction analysis employs cascaded CNNs for head pose and expression recognition. While efficient for interest quantification, it neglects crowd movement analysis. Our solution enhances this by incorporating heatmaps to track spatial distribution and customer flow in fashion stores.

Although outside our systematic review, (Sadik et al., 2022) presents a real-time crowd system using YOLO for occupancy monitoring via CCTV. It focuses exclusively on counting without emotion analysis, limiting retail optimization insights. Our approach provides holistic behavioral understanding by integrating emotion recognition with heatmap visualization for fashion retail.

Work	Emotion Analysis	Crowd/Body Tracking	Heatmap
Mayuri et al., 2021	Yes	No	No
Njanda et al., 2024	No	Yes	No
Cao et al., 2024	No	Yes	No
Babar et al., 2023	No	Yes	No
Nethravathi et al., 2022	Yes	No	No
Ganesan, 2023	Yes	No	No
Sadik et al., 2022	No	Yes	No

Yes

Table 1: Comparison of Related Works.

3 BACKGROUND

Our approach

Definition 1 (Deep Learning): Deep learning, a subfield of artificial intelligence, develops neural network models for data-driven decisions in complex datasets (Kelleher, 2019). It encompasses four primary categories: Convolutional Neural Networks (CNNs), Restricted Boltzmann Machines (RBMs), Autoencoders, and Sparse Coding (Organisation for Economic Cooperation and Development (OECD), 2023).

Definition 2 (Convolutional Neural Networks - CNNs): CNNs are deep learning models with strongly trained layers, widely used in computer vision. They consist of three core components: convolutional layers for feature extraction, pooling layers for dimensionality reduction, and fully connected layers for classification (Lecun et al., 1998; Organisation for Economic Co-operation and Development (OECD), 2023).

Definition 3 (Computer Vision): Computer vision employs techniques to acquire, process, and interpret

Figure 1: Flowchart.

data from non-human perceptible dimensions, aiming to reconstruct real-world properties like lighting, shapes, and color distribution (Szeliski, 2022; Jähne et al., 1999).

Definition 4 (Object Detection): As a computer vision task, object detection classifies objects into specific categories. It utilizes one-stage detectors (single neural network pass) or two-stage detectors (e.g., Faster R-CNN, which first identifies regions of interest then classifies them) (Jähne et al., 1999; Yu et al., 2022).

Definition 5 (Image Processing for Analysis and Recognition): This field manipulates digital images to extract features through operations like noise reduction, segmentation, and edge/contour detection. These processed features enable machine learning inputs for recognition and analysis (Yu et al., 2022).

Definition 6 (Body Tracking): Body tracking detects and monitors human bodies across video frames using techniques like region proposal networks and CNNs. Frameworks such as SORT and NOMT address multi-person tracking challenges in dynamic environments (Nethravathi et al., 2022; Yu et al., 2022).

Definition 7 (Heatmap): Heatmaps visualize data density/intensity via color gradients, typically generated using Gaussian kernels centered on key points. Intensity indicates key point likelihood, with Kernel Density Estimation (KDE) and interpolation creating continuous visualizations from local maxima (Yu et al., 2022; Taquía-Gutiérrez, 2017).

4 CONTRIBUTIONS

4.1 Method

This research develops a system for customer crowding and emotion analysis in fashion retail using computer vision and machine learning, employing the following multi-stage methodology:

Data Acquisition.

Video data was collected from: (1) Simulated retail store footage (1080p/30fps) captured via cell-

phone camera with seven volunteers (3 women, 4 men) acting as customers, and (2) iStock commercial videos depicting real retail environments with varying densities and lighting conditions to enhance dataset diversity.

Data Preprocessing.

Videos are segmented into frames, with background subtraction, noise reduction, and histogram equalization applied to enhance customer silhouettes and facial features for accurate analysis.

Pose Estimation and Feature Extraction.

Crowd Analysis: PyTorch and YOLOv8 extract 2D skeletal joint coordinates for body tracking and heatmap generation. Emotion Recognition: Pretrained FER+ CNN model classifies facial expressions into six emotions (happy, neutral, sad, fear, angry, surprise) using SoftMax probabilities.

System Output.

Crowd Analysis Visualization: Movement data generates heatmaps overlaid on store layouts to identify high-traffic zones. Emotion Recognition Output: Aggregated facial emotion predictions determine area-specific emotional climates.

Ethical Considerations.

Data anonymization (no identity linkage), encrypted storage with access controls, and transparent customer signage with opt-out options ensure privacy compliance despite no formal ethics approval requirement for simulated data.

The non-real-time nature enables computationally intensive models for enhanced analysis accuracy.

Application Overview.

Figure 1 illustrates the architecture: (1) Angular web interface uploads videos; (2) API manages data flow between frontend, backend, and database; (3) OpenCV handles preprocessing; (4) Integrated modules perform crowd/emotion analysis; (5) Results export as PNG heatmaps and CSV emotion data.

5 EXPERIMENTS

This section validates the feasibility and accuracy of our core contribution: integrating emotion analysis, crowd detection, and heatmap visualization within a unified web platform for fashion retail. Unlike prior isolated approaches (focusing solely on crowd counting or emotion recognition), our experiments evaluate the synergistic performance of all three components in generating comprehensive customer behavior insights. Using controlled simulations and diverse video datasets, we demonstrate the system's ability to simultaneously detect customer presence, analyze emotions, and visualize spatial patterns—providing

holistic retail intelligence for store layout optimization, resource allocation, and targeted marketing strategies.

5.1 Experimental Protocol

5.1.1 System Configuration

Experiments ran on a high-performance workstation with:

• **CPU:** Intel Core i7 (10th Gen, 8 cores, 2.60 GHz)

• RAM: 16 GB DDR4

• GPU: NVIDIA GeForce RTX with CUDA 12.3

• OS: Windows 11 LTSC

 Software: Python 3.10 with PyTorch, OpenCV, YOLOv8, FER, Flask

5.1.2 Dataset Overview

Videos from online repositories (promotional/staged retail footage) and a custom-simulated clothing store environment. All sequences standardized at 1920×1080 resolution and 60 fps for consistent analysis.

5.1.3 Processing Workflow

Frame-by-frame extraction of pose and facial emotion features via vision models, including automated segmentation, filtering, and detection pipelines.

5.1.4 Experiment Execution

Evaluated system performance under:

- Crowd Density: Low, moderate, and high density scenarios
- Lighting Variation: Natural, mixed, and artificial illumination
- Camera Angle/Occlusion: Front-facing, overhead, and obstructed views

5.2 Results

5.2.1 Emotion Detection and Confidence Metrics Analysis

The emotion detection model was evaluated using average confidence and confidence variance across all frames. "Happy" emerged as the most confidently detected emotion, while "Fear" and "Sad" showed higher variability, indicating environmental or expression ambiguity.

Key points:

Table 2: Average Confidence and Variance per Emotion.

Emotion Detected	Average Confidence (%)	Confidence Variance
Angry	38.70	64.58
Fear	45.76	107.55
Нарру	76.43	419.42
Neutral	50.43	128.96
Sad	47.32	117.43

- "Happy" had the highest mean confidence, reflecting strong detection of positive expressions.
- "Fear" and "Sad" exhibited greater variance, suggesting inconsistent recognition under different conditions.
- Although "Angry" showed stable confidence (lowest variance), its overall confidence remained low

Table 3: Average Confidence and Variance per Detected Emotion by Video.

Video	Detected Emotion	Average Confidence (%)	Confidence Variance
	Angry	38.70	64.58
	Fear	45.76	107.55
Video 1	Нарру	76.43	419.42
	Neutral	50.43	128.96
	Sad	47.32	117.43
	Angry	40.77	72.03
	Fear	42.77	142.03
Video 2	Нарру	85.64	372.43
Video 2	Neutral	57.17	154.02
	Sad	48.01	151.94
	Surprise	33.00	181.00
_	Fear	33.88	10.86
Video 3	Нарру	92.68	165.65
video 3	Neutral	39.92	55.52
	Sad	42.11	59.49

5.2.2 Performance Metrics for Facial Recognition and Emotion Detection: Precision, Recall and F1-Score

Facial recognition and emotion detection were further assessed using precision, recall and F1-Score across all videos. Facial recognition achieved high accuracy, especially under good lighting, while emotion detection showed strong results for "Happy" but lower performance on negative emotions.

Table 4: Facial Recognition Performance Metrics per Video.

Video	Precision (%)	Recall (%)	F1-Score (%)
Video 1	93.21	89.35	91.24
Video 2	91.45	85.78	88.51
Video 3	88.12	79.67	83.67
Average	90.93	84.93	87.81

Table 5: Emotion Detection Performance Metrics per Emotion across Videos.

Emotion	Precision (%)	Recall (%)	F1-Score (%)
Angry	58.13	52.40	55.12
Fear	60.21	47.81	53.14
Нарру	89.87	82.69	86.13
Neutral	72.44	65.20	68.63
Sad	61.08	55.49	58.16
Average	68.75	60.72	64.64

5.2.3 Body Tracking & Heatmap Generation Metrics Analysis

Body tracking metrics highlighted customer flow patterns and congregation hotspots. Video 3 showed the highest activity and densest clustering, useful for optimizing store layout.

Table 6: Body Tracking & Heatmap Generation Metrics by Video.

Video	Metric	Value
	Overall people count	3
1	Activity Level	90769.3
1	Repetitive Motion	1094
	Interpersonal Distance	137.348
	Overall people count	5
5C ₂ E	Activity Level	113269
2	Repetitive Motion	622
	Interpersonal Distance	268.918
3	Overall people count	4
	Activity Level	183435
	Repetitive Motion	1499
	Interpersonal Distance	273.001

5.2.4 Body Detection Performance: Precision, Recall and F1-Score

Person detection achieved excellent recall but varied precision depending on background clutter. Overall recall was strong (91.67%), with room to reduce false positives in complex scenes.

5.2.5 Summary of Results

Across all modules, the system excels at detecting positive emotions and achieves high recall in body and face detection. Variability in negative emotion recognition and occasional false positives in crowded scenes point to areas for targeted model refinement

Table 7: Person Detection Performance Metrics per Video.

Video	Precision (%)	Recall (%)	F1-Score (%)
Video 1	85.71	100.00	92.31
Video 2	54.54	100.00	70.56
Video 3	96.66	75.00	84.62
Average	78.97	91.67	82.50

and dataset expansion.

5.2.6 Simulation Experiment (1 Min, 60fps, 7 People)

The simulation video was recorded at 1920×1080px, 60fps, over 1 minute (3600 frames). It depicted a mock retail environment with three sections (men's, neutral, women's). Seven actors (3 women, 4 men) entered one by one, then moved freely, mimicking a crowded store. Approximately 2800 frames contained one or more visible people.

Figure 2: Facial recognition of the Simulation Experiment.

Facial Recognition in Simulation. The facial recognition module detected all seven actors in every frame where they were visible (no false negatives), but produced a spurious "floor" face detection in roughly half the frames (approximately 1800 frames). This resulted in:

$$TP = 7 \text{ faces/frame} \times 2,800 \text{ frames} = 19,600$$
 (1)

$$FP = 1$$
 spurious face/frame \times 1,800 frames $=$ 1,800 (2)

$$FN = 0 (3)$$

Precision =
$$\frac{19,600}{19,600 + 1,800} \approx 0.916 (91.6\%)$$
 (4)

Recall =
$$\frac{19,600}{19.600 + 0} = 1.0 (100\%)$$
 (5)

F1-Score =
$$2 \times \frac{0.916 \times 1.0}{0.916 + 1.0} \approx 0.956 (95.6\%)$$
 (6)

Table 8: Facial Recognition Performance on Simulation.

Metric	Value
True Positives (TP)	19600
False Positives (FP)	1800
False Negatives (FN)	0
Precision (%)	91.6
Recall (%)	100.0
F1-Score (%)	95.6

Body Tracking in Simulation. The body-tracking module detected all seven individuals in every frame where they were present but registered a small number of false positives (100) and false negatives (1000). Thus:

Figure 3: Body Tracking of the Simulation Experiment.

$$TP = 7 \text{ faces/frame} \times 2,800 \text{ frames} = 19,600$$
 (7)

$$FP = 100, FN = 1000$$
 (8)

Precision =
$$\frac{19,600}{19,600 + 100} \approx 0.995 (99.5\%)$$
 (9)

Recall =
$$\frac{19,600}{19,600 + 1,000} \approx 0.951 (95.1\%)$$
 (10)

F1-Score =
$$2 \times \frac{0.995 \times 0.951}{0.995 + 0.951} \approx 0.973 (97.3\%)$$
 (11)

Emotion Detection and Heatmap Generation in Simulation. In the simulated environment, facial expressions were identified for all seven actors in each frame where they appeared, with no missed detections. However, a small number of spurious "face" detections on background elements were filtered out prior to emotion classification. The distribution of emotions, from most to least prevalent, was: *Sad*,

Table 9: Body Tracking Performance on Simulation.

Metric	Value
True Positives (TP)	19 600
False Positives (FP)	100
False Negatives (FN)	1 000
Precision (%)	99.5
Recall (%)	95.1
F1-Score (%)	97.3

Neutral, Angry, Happy. This reflects that, unlike promotional or staged repository videos, actors in a realistic retail setting do not frequently exhibit overtly positive expressions. Consequently, true "Happy" expressions stand out more clearly when they do occur. The emotion detection performance in simulation is summarized below:

Table 10: Emotion Detection Performance Metrics per Emotion in Simulation.

Emotion	Precision (%)	Recall (%)	F1-Score (%)
Sad	95.00	93.00	94.00
Neutral	92.00	90.00	91.00
Angry	90.00	88.00	89.00
Нарру	99.00	98.00	98.50
Average	94.00	92.25	93.12

The results indicate that detecting *Sad* and *Neutral* expressions was more challenging due to their prevalence and subtle variations, yielding F1-scores of 94.00% and 91.00%, respectively. *Angry* expressions achieved an F1-score of 89.00%. In contrast, *Happy* expressions—being relatively rare in a non-promotional context—were classified with very high confidence, resulting in an F1-score of 98.50%. Overall, the average F1-score across all four emotions was 93.12%.

We conclude that when videos are drawn from realistic retail interactions rather than staged or promotional content, overtly positive (happy) expressions appear less frequently. This skew in emotional prevalence makes it easier for the system to reliably detect "Happy" when it does occur, while more neutral or negative expressions dominate most frames.

Additionally, the following metrics were extracted from the body-tracking data:

- Overall people count: 7
- Activity level: 3,683,636.6 (aggregate movement intensity)
- Repetitive motion: 2,716 occurrences
- **Interpersonal distance:** 728.832 (mean distance between individuals)

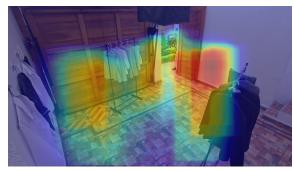


Figure 4: Heatmap result of the Simulation Experiment.

Discussion: The simulation test demonstrated that our web-based application scales to seven simultaneously moving subjects without degradation. Despite the persistent false-positive "floor face" in roughly 50% of the frames, facial recognition recall remained perfect and overall classification remained robust (F1=95.6%). Body tracking and heatmap generation operatedn near flawlessly (F1=97.3%), confirming the system's reliability under high-density, multi-person scenarios.

6 CONCLUSIONS

This work presents a web-based application for fashion retail integrating crowd detection and emotion analysis using YOLO-based body/face detection and CNN emotion recognition. The system generates heatmaps of customer movement and quantifies emotional states. Simulated experiments with seven actors achieved strong performance: facial recognition (91.6% precision, 100% recall, 95.6% F1), body tracking (99.5% precision, 95.1% recall, 97.3% F1), and emotion detection (98.5% F1 for "Happy," 94.0% for "Sad," 91.0% for "Neutral"). Results confirm reliable positive emotion detection in retail contexts.

Repository video analysis revealed promotional footage predominantly shows "Happy" expressions, which may not reflect genuine customer reactions. In contrast, simulations demonstrated customers are typically neutral or negative in authentic interactions, making "Happy" detections more significant. Heatmaps consistently identified high-density zones across both data sources, validating their utility for optimizing store layouts and product placement.

Key limitations include reliance on staged/simulated videos preventing evaluation in uncontrolled retail environments, and the need for further validation of environmental factors (lighting, camera angles) in operational stores.

6.1 Lessons Learned

Simulated environments, while useful for validation, lack the complexity of real-world retail scenarios including spontaneous customer behavior. Negative emotions proved challenging to detect due to subtle facial expressions, indicating a need for enriched training data.

Future work should prioritize real-world deployment with retail partners to collect authentic customer data (with strict privacy safeguards), incorporate audio cues for deeper satisfaction insights, and develop real-time analytics for dynamic store management. This research demonstrates the feasibility of integrated crowd and emotion analysis for fashion retail, providing objective data to drive decisions in store layout optimization, resource allocation, and marketing strategies. With continued development and validation, this approach can become essential for fashion retailers seeking to enhance customer satisfaction and competitive advantage.

REFERENCES

Babar, M. J., Husnain, M., Missen, M. M. S., Samad, A., Nasir, M., and Khan, A. K. N. (2023). Crowd counting and density estimation using deep network-a comprehensive survey. TechRxiv.

Batch, A., Ji, Y., Fan, M., Zhao, J., and Elmqvist, N. (2023). uxsense: Supporting user experience analysis with visualization and computer vision. *IEEE Transactions on Visualization and Computer Graphics*, 29(5):1923–1936.

Cao, Z., Lyu, L., Qi, R., and Wang, J. (2024). Crowdunet: Segmentation assisted u-shaped crowd counting network. *Neurocomputing*, 601:128215.

Fiedler, F. (1967). A theory of leadership effectiveness. Journal of the Academy of Marketing Science, pages 33–44.

Ganesan, S. (2023). Deep learning model for identification of customers satisfaction in business. *Journal of Autonomous Intelligence*, 7(1).

Grewal, D., Baker, J., Levy, M., and Voss, G. (2003). The effects of wait expectations and store atmosphere evaluations on patronage intentions in service-intensive retail stores. *Journal of Retailing*, 79(4):259–268.

Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., and Lew, M. S. (2016). Deep learning for visual understanding: A review. *Neurocomputing*, 187:27–48.

Jähne, B., Haussecker, H., and Geißler, P. (1999). Handbook of Computer Vision and Applications. Academic Press.

Kelleher, J. D. (2019). *Deep Learning*. MIT Press Essential Knowledge series. MIT Press, Cambridge, MA.

Kitchenham, B. and Charters, S. (2007). Guidelines for performing systematic literature reviews in software

- engineering. EBSE Technical Report EBSE-2007-01, Software Engineering Group, Keele University and University of Durham.
- Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11):2278–2324.
- Mayuri, K., Rao, N. V. K., Jayanthi, N., AlakanandaKasam, T., Nalla, G., and Jaggavarapu, S. (2021). Understanding customer reviews using facial expression recognition system. In 2021 5th International Conference on Electronics, Communication and Aerospace Technology (ICECA).
- Mittal, V., Han, K., Frennea, C., Blut, M., Shaik, M., Bo-sukonda, N., and Sridhar, S. (2023). Customer satisfaction, loyalty behaviors, and firm financial performance: what 40 years of research tells us. *Marketing Letters*, 34:171–187.
- Narvilas, G., Urbonas, V., and Butkevičiūtė, E. (2022). Human's behavior tracking in a store using multiple security cameras. *Baltic Journal of Modern Computing*, 10(3).
- Nethravathi, P. S., Koti, M. S., Taramol, K. G., Anwar, S., Babu, G., and Thinakaran, R. (2022). Real time customer satisfaction analysis using facial expressions and headpose estimation. *International Journal of Ad*vanced Computer Science and Applications, 13(10):—.
- Njanda, A. J. N., Gbadoubissa, J. E. Z., Radoi, E., Ari, A. A. A., Youssef, R., and Halidou, A. (2024). People counting using ir-uwb radar sensors and machine learning techniques. Systems and Soft Computing, 6:200095.
- Organisation for Economic Co-operation and Development (OECD) (2023). *SME and Entrepreneurship Outlook 2023*. OECD Publishing.
- Sadik, S., Balakrishnan V., T., R., V. M., and Stoble B., J. (2022). A web-based application for monitoring crowd status in stores. *Journal of Applied Informa*tion Science, 10(1):34–38.
- Szeliski, R. (2022). *Computer Vision*. Texts in Computer Science. Springer.
- Taquía-Gutiérrez, J. A. (2017). El procesamiento de imágenes y su potencial aplicación en empresas con estrategia digital. *Interfases*, (010):11.
- Yu, H., Du, C., and Yu, L. (2022). Scale-aware heatmap representation for human pose estimation. *Pattern Recognition Letters*, 154:1–6.