Towards an Integrative Approach Between the SofIA Methodology and
ChatGPT for the Extraction of Requirements from User Interviews

P. Pefia-Fernandez, I. Ruiz-Marchueta and J. A. Garcia-Garcia®™? and M. J. Escalona Cuaresma

Keywords:

Abstract:

b

University of Seville, Avda. Reina Mercedes s/n, Seville, Spain

Software Requirements, ChatGPT Integration, SofIA Methodology, Semi-Automated Approach, Software
Engineering.

The elicitation and specification of software requirements are critical activities in software engineering, usually
involving interviews between analysts and end users. These interactions are essential for understanding user
needs but can lead to inconsistencies or incomplete information in the subsequent generation of use cases. This
paper explores the integration of ChatGPT with the SofIA software methodology to address these challenges,
leveraging natural language processing capabilities to enhance the transformation of interview transcripts into
detailed use cases. The proposed approach combines the structured guidance of SofIA with ChatGPT’s ability
to process and generate coherent textual outputs, facilitating the automated identification, categorisation, and
refinement of requirements. A proof of concept in a real-world software development scenario was conducted
to evaluate this integration, focusing on metrics such as accuracy, completeness, and time efficiency. This
work contributes to the advancement of requirements engineering by introducing a semi-automated, user-
centred approach that bridges the gap between human interviews and formal documentation. Future research
directions include scaling the approach to more complex domains and refining its adaptability to diverse project

requirements.

1 INTRODUCTION

Requirements engineering is the field of engineer-
ing that focuses on defining the real-world goals,
functions, and constraints of systems (Laplante and
Kassab, 2022). It also deals with how these elements
relate to detailed system specifications and how they
evolve over time and across related system families.
This process is the pillar that ensures that a final prod-
uct meets the objectives for which it was designed.
Requirements engineering is concerned not only with
gathering needs, but also with analising them, priori-
tising them, and transforming them into clear speci-
fications that serve as the basis for design and imple-
mentation.

Talking to customers and end-users is an essen-
tial practice during requirements capture, as they have
direct insight into the problems the system needs to
solve or the opportunities it needs to exploit. This di-
alogue helps developers understand user expectations
and the constraints of the environment in which the

https://orcid.org/0000-0003-2680-1327
@ https://orcid.org/0000-0002-6435-1497

Pefa-Fernandez, P, Ruiz-Marchueta, |., Garcia-Garcia, J. A. and Cuaresma, M. J. E.

system will operate. This exchange of information
not only enriches the understanding of the project, but
also encourages collaboration and a sense of shared
commitment, which can be crucial to the success of
development (Pohl, 2016).

However, understanding the needs of customers
and end-users is not without its challenges. One of the
main challenges lies in communication. Customers
often express their requirements in a vague or impre-
cise manner, using ambiguous terms that can be inter-
preted in different ways. This is compounded by the
possibility that end-users may not have a clear techni-
cal vision, making it difficult to translate their needs
into concrete specifications (Nuseibeh and Easter-
brook, 2000). Additionally, stakeholders may have
conflicting goals or interests, making it hard to pri-
oritize requirements effectively. Another major chal-
lenge is resistance to change; some people may be
hesitant to accept new technological solutions for fear
of disrupting their usual way of working. Finally, re-
quirements may evolve as the project progresses, re-
quiring continuous and flexible management to avoid
deviations that compromise the ultimate goal.

In this context, artificial intelligence (AI) and

165

Towards an Integrative Approach Between the SoflA Methodology and ChatGPT for the Extraction of Requirements from User Interviews.

DOI: 10.5220/0013707900003985
Paper published under CC license (CC BY-NC-ND 4.0)

In Proceedings of the 21st International Conference on Web Information Systems and Technologies (WEBIST 2025), pages 165-172

ISBN: 978-989-758-772-6; ISSN: 2184-3252

Proceedings Copyright © 2025 by SCITEPRESS — Science and Technology Publications, Lda.

WEBIST 2025 - 21st International Conference on Web Information Systems and Technologies

large-scale language models (LLMs), such as Chat-
GPT, are emerging as valuable tools in requirements
engineering. These technologies have the potential to
address some of the discipline’s most complex chal-
lenges by facilitating both the capture and analysis of
user needs. For example, a model such as ChatGPT
can quickly process large volume of text, identifying
patterns and recurring themes that reflect the most
important needs. This is especially useful in con-
texts where human analysts face time or resource con-
straints. In addition, through natural language pro-
cessing, these tools can identify inconsistencies, re-
dundancies, or contradictions in requirements docu-
ments (Ferrari et al., 2016).

Although ChatGPT can enhance the way user re-
quirements are captured in software projects, it is nec-
essary to integrate this technology within the proce-
dures of software engineering methodologies.

Due to this, the contribution of this paper is the ex-
pansion of the SofIA (Software Methodology for In-
dustrial Applications) methodology (Escalona et al.,
2023) to integrate ChatGPT API for the automated
generation of use case diagrams. This integration
allows analysts to focus fully on the client during
interviews without needing to take extensive notes
throughout the conversation, making the client feel
more heard. In terms of requirements engineering,
this approach improves quality and saves valuable
time for the analyst.

Finally, this paper is structured as follows. Af-
ter this introduction, Section 2 describes some related
works. Section 3 presents the materials and and the-
oretical and technological foundations on which our
proposal is based. Section 4 and Section 5 describe
our results and an initial discussion of test cases, re-
spectively. Finally, Section 6 states final conclusions
and some future works.

2 RELATED WORKS

Recent advancements and updates in Large Language
Models (LLMs) have been integrated into numerous
projects within the context of software development,
aiming to save time and improve quality. In partic-
ular, we have explored various proposals that assess
the usefulness of LLMs in requirements engineering,
especially for modelling and automating these pro-
cesses.

On one hand, Ferrari et al. (Ferrari et al., 2024)
conducted an experiment to evaluate the reliability
of ChatGPT in generating UML sequence diagrams.
They used 20 industrial requirements documents from
real-world projects and crafted a prompt that included

166

the request, the list of requirements, and the desired
output format. The results produced by ChatGPT
were then visualised using PlantText. The evalua-
tion by experienced engineers showed promising out-
comes in terms of comprehensibility, adherence to
standards, and terminological consistency, although
shortcomings were noted in terms of completeness
and correctness. Nevertheless, it is believed that with
additional contextual information and deeper domain
knowledge, ChatGPT’s model generation could sig-
nificantly improve.

Similarly, Fill et al. (Fill et al., 2023) carried
out various experiments using ChatGPT, based on
the latest GPT-4 models, to investigate its applica-
tion in generating and interpreting conceptual mod-
els. In their tests, they explored the creation of Entity-
Relationship (ER) diagrams, Business Process dia-
grams, and UML class diagrams, designing specific
prompts for each case. These prompts first provided
a brief context and then defined the task. In some
experiments, they used few-shot learning by provid-
ing examples to ChatGPT, while in others they em-
ployed a zero-shot approach, often defining the output
structure in JSON format. The results demonstrated
the potential of LLMs to assist in modelling tasks, as
ChatGPT strictly adhered to the custom formats spec-
ified in the prompts.

On the other hand, Ben (Ben Chaaben, 2024) de-
veloped a tool based on LLMs that integrates with a
modelling environment to provide continuous support
throughout the modelling process, leveraging GPT-3.
He used few-shot learning to enhance model compre-
hension and focused his study on class and activity di-
agrams. His tool offers three modes of assistance: an
automatic mode that provides real-time suggestions,
an on-demand mode where users can request spe-
cific recommendations, and a final review mode of-
fering suggestions for possible model improvements.
It was tested by 30 participants who expressed satis-
faction with the experience. Test results indicate that
the assistance significantly impacts modeling produc-
tivity, contribution, and creativity, demonstrating that
these models can not only offer useful suggestions
but also understand and construct models effectively.
This opens the door to the development of even more
advanced tools capable of autonomously generating
models from natural language specifications.

In the same vein, Bajaj er al. (Bajaj et al., 2022)
proposed MUCE (Multilingual Use Case model Ex-
tractor), a tool designed to extract use case models
from functional requirements written in plain text in
any language. In addition to automatically generat-
ing actors and use cases, the tool provides a valida-
tion mechanism. However, it has a significant limita-

Towards an Integrative Approach Between the SofIA Methodology and ChatGPT for the Extraction of Requirements from User Interviews

tion: the analyst must have previously written the re-
quirements document, as the text must be copied and
pasted into the tool. Furthermore, MUCE does not
generate use case or class diagrams, which reduces
its usefulness in an automated workflow.

Another approach was presented by Herwanto
(Herwanto, 2024), who explored the generation of
Data Flow Diagrams (DFDs) using ChatGPT. The ex-
periment was based on a structured prompt composed
of four parts: task description, detailed instructions,
input consisting of user stories, and an example using
few-shot learning. The generated output included a
CSV-formatted syntax, which was then imported into
draw.io for visualization and editing of the diagram.
Although the study confirms the potential of ChatGPT
to assist in visual modeling within software engineer-
ing, the process still requires significant manual in-
tervention. The development team must first define
the user stories, and the tool is not integrated with
any specific methodology, making the process more
labor-intensive.

While the potential benefits of using ChatGPT in
requirements engineering are clear, there is still sig-
nificant room for exploration and improvement. Our
goal is to leverage this technology to automate the re-
quirements engineering process as much as possible,
covering everything from stakeholder interviews to
model generation. We believe that combining LLMs
with the SofIA methodology and effective prompt en-
gineering will allow us to develop a more precise and
autonomous tool, reducing the engineers’ workload
and optimising the transition from requirements anal-
ysis to modeling.

3 MATERIALS AND METHODS

OpenAl provides accessible and well-documented
APIs that allow developers to integrate large language
models into custom applications, services, or sys-
tems. These APIs work similarly to ChatGPT (Ope-
nAl, 2024b), where natural language prompts are sent
to the model, which then generates context-based re-
sponses.

The API offers access to various models designed
for different use cases. In this project, we will specif-
ically work with the 04-mini model, the latest small
model in OpenAI’s ”0” series. It is optimised for
fast and effective reasoning, with exceptional per-
formance in programming and visual tasks (OpenAl,
2024a). Despite being smaller than other models, it
provides an excellent balance of cost, performance,
and versatility.

To use the API effectively, it is essential to un-

derstand the concept of tokens, the smallest units of
text the model processes. Tokens are used both in
the input (prompt) and the output (response), mean-
ing that cost and performance are directly tied to to-
ken usage. Optimizing prompts and managing token
counts is crucial for efficiency and cost reduction.

Before integrating OpenAI’s APIs into any soft-
ware methodology, developers must obtain an API
key. This key functions as a unique identifier that au-
thenticates requests, controls access, and logs usage
(Auger and Saroyan, 2024).

Access to the API is managed through a pay-as-
you-go pricing model, where the total cost depends
on the selected model and the number of tokens used
for input and output. OpenAl regularly publishes its
pricing on its official website, allowing developers to
manage budgets, set usage limits, and plan resource
consumption efficiently.

During the development of this project and the
execution of the tests, approximately 100.000 tokens
were used, resulting in a total cost of only $0.02 This
highlights the remarkable cost-efficiency of OpenAlI’s
o4-mini model. Despite the intensive use of the model
to generate and process complex information, the eco-
nomic impact was negligible. This demonstrates one
of the key advantages of using optimised language
models: the ability to integrate Al into software en-
gineering processes without incurring high costs an
especially valuable benefit for academic, research-
based, or budget-constrained projects.

The SofTA methodology (Software Methodology
for Industrial Applications) was developed by the ES3
research group (Engineering and Science for Soft-
ware Systems) at the University of Seville. It is
a model-based methodological framework supported
by a CASE tool also named SofIA. This methodol-
ogy originates from a previous proposal, NDT (Navi-
gational Development Techniques), and its associated
tool, NDT-Suite (Garcia-Garcia et al., 2014). The cre-
ation of SoflIA stems from over two decades of expe-
rience applying NDT-Suite in industrial contexts.

The SofTA tool was developed by extending func-
tionalities from platforms such as Enterprise Archi-
tect (Sparx Systems, 2022) and Draw.io, resulting in
a powerful CASE tool for software application design
and development. It provides high flexibility in the
design starting points and offers automated support
for bidirectional traceability, which is crucial for soft-
ware lifecycle management. SofIA focuses particu-
larly on the early stages of development, including
requirements engineering, prototyping, use cases, and
data structure modeling (Escalona et al., 2023).

SofIA is defined as an MDE (Model-Driven En-
gineering) methodology (Escalona et al., 2023), al-

167

WEBIST 2025 - 21st International Conference on Web Information Systems and Technologies

lowing comprehensive coverage of the entire soft-
ware lifecycle—from feasibility studies to mainte-
nance. However, its main strength lies in the require-
ments phase.

In this work, SoflA will also serve as the base
methodology, but with an innovative proposal: the in-
tegration of artificial intelligence functionality via the
OpenAl API. The goal is to automate key require-
ments engineering processes, particularly the auto-
matic generation of use cases based on content ex-
tracted from elicitation interviews between the re-
quirements analyst and the client.

4 RESULTS

This section describes in detail our proposal to inte-
grate ChatGPT API for the generation of use cases
and class diagrams in SofIA. For this purpose, we
have divided it into two subsections to clearly ex-
plain how these materials and methods, explained in
the previous section, work. Section 4.1 describes the
technological and functional architecture of our pro-
posal and Section 4.2 describes the communication
flow once our proposal begins to be used.

4.1 Technological and Functional
Architecture of Our Proposal

The architecture of the proposed approach is divided
into three main phases, as shown in Figure 1: (Phase
1) Requirement Gathering Phase, during which an
interview is conducted between the client and the
analyst to identify and collect the needs, expecta-
tions, and objectives of the desired system or prod-
uct; (Phase 2) Requirement Modeling Phase, which
involves generating, as a final product, model dia-
grams that clearly and accurately describe and repre-
sent the requirements gathered in the previous phase;
and (Phase 3) Intelligent Data Process Phase, which
aims to extract structured information about the re-
quirements from the recorded interview, generating a
file that will be used by SofIA to create the diagrams.

First, during Phase 1, the interview between the
client and the analyst is (Figure 1.a) recorded in order
to later obtain an MP3 audio file (Figure 1.b) that cap-
tures the entire conversation, including the client’s ex-
pectations, as well as the recommendations and modi-
fications discussed between both parties to ensure the
greatest completeness of the requirements.

Phase 2, developed in the Enterprise Architect
tool, is composed of four modules that operate se-
quentially. It begins with the Data Transformation

168

Module, where the MP3 file is converted into tran-
scribed text, generating a PDF file that contains the
complete conversation. The PDF format is chosen to
ensure proper readability by the ChatGPT APIL.

This PDF file serves as input for the API Cloud
Module, corresponding to Phase 3, which is respon-
sible for generating the model. This module is a
cloud environment that hosts ChatGPT’s artificial in-
telligence services, allowing access to its capabilities
through the API we have integrated into the SoflA
methodology. The PDF file is analyzed in the cloud
by ChatGPT (Figure 1.c), and, following the prompt
defined in the source code, a JSON file (Figure 1.d) is
generated and returned to SofIA to continue the mod-
eling process.

Back in phase 2, the Integration Module receives
the JSON file generated by ChatGPT after analyzing
the PDF. This JSON file consists of a numbered list
of requirement-derived objects, organized according
to the structure defined in the prompt, which enables
SoflA to properly interpret them.

Next, the Transformation Module takes the JSON
file as input to generate the model requested by the
analyst (use cases diagrams) following the methodol-
ogy defined by SoflA.

Finally, the Definition Module allows for the visu-
alization of the generated modeling diagrams, facili-
tating their review and editing by the analyst.

(1) REQUIREMENT GATHERING PHASE
n® O

o A ——)

v‘ ﬁ mMP3

(2) REQUIREMENT MODELING PHASE
OATA TRANSFORMATION T P———
'MODULE (SoflA plugin) MODULE
> . | Py ’_:%]o
% @ (0] &
& @ seermse
(3) INTELLIGENT DATA PROCESS PHASE

Figure 1: Technological and functional architecture.

4.2 Communication Flow

The communication flow of our project proposal will
be reflected in a sequence diagram, as shown in Fig-
ure 2. As we have seen in the architecture defined in
the section before, the proposal includes two actors
who are responsible for initiating the interaction.
Firstly, client and analyst’s first and only inter-
action is <<start interview>> which, as we al-
ready know, is recorded. The analyst’s second in-
teraction is <<generate transcription>>, which

Towards an Integrative Approach Between the SofIA Methodology and ChatGPT for the Extraction of Requirements from User Interviews

involves converting the recorded conversation into
a PDF file.This process is carried out in the “Data
Transformation Module”.

Before proceeding with the use of the generated
PDF, it is important to mention that the analyst must
configure the integration with the ChatGPT API. To
do this, they will need to log in, and if successful,
they will be able to use the API without any restric-
tions. Next, the PDF file is uploaded to the “Integra-
tion Module”, which instantly interacts with the cloud
module of the API using the <<generate object
List>> feature. This interaction returns a JSON file
containing a list of objects.

This JSON file can be reviewed and/or edited by
the analyst if they consider it necessary. Once re-
viewed, <<get model diagrams>> is the next inter-
action performed by the analyst. The SoflA method-
ology generates the model diagrams in the “Transfor-
mation Module.”

Finally, the process is completed when the “Def-
inition Module” returns the obtained model diagrams
to the analyst, enabling them to begin working.

Data
Integration API [ransformation Definition
[ranetoration Module Cloud Module Module Module

Customer Analyst (Sof4) (SoflA) (ChatGPT) { (Sofl4) (SoflA)

| startinterviewq) _ L

Generate
transcription()

e

JSON file
le--

revision() T
fedition()
‘get mode! diagram()
generate moltel diagram() show model
{ diagram()

“model diagram

Figure 2: Communication Flow of our proposal.

lgenerate object st (

JSON file

S TEST CASE AND DISCUSSION

During the development of our proposal, it has been
necessary to perform a thorough prompt engineering
task to maximise the accuracy of our results and their
integration with SofIA. Prompt engineering is a key
practice to maximise the potential of language models
(e.g. ChatGPT) and its aim is to design and refine the
instructions provided to the model, ensuring that they
are clear, specific and target-oriented. This constant

creation and improvement of prompts not only opti-
mises the interaction with the Al, but also minimises
ambiguous interpretations and unexpected results.

The effectiveness of prompt engineering lies in
the ability to experiment with different formulations,
adjusting the level of detail, the context and the
keywords used. Moreover, this practice allows the
strengths of the model, such as creative content gen-
eration or complex analysis, to be exploited while
mitigating its limitations. Some authors have stud-
ied these prompt engineering features and their ad-
vantages and challenges. For example, Arora et al.
performance (Arora et al., 2022) highlight in their
study the significance of explicitly defining the de-
sired output within prompts to ensure responses are
generated in the intended format. In the absence
of such specification, ChatGPT autonomously deter-
mines the response structure. Implementing this de-
scriptive constraint within prompts enhances effec-
tiveness and optimises. Li (Li, 2023) also asserts
in his study that zero-shot prompts can surpass few-
shot prompts, highlighting their high interpretability
and the absence of a need for prior training. These
prompts adhere to a structured pattern to precisely de-
fine the expected output by incorporating explicit con-
straints. The use of zero-shot prompts necessitates the
identification of the most optimized optimised formu-
lation to efficiently execute the intended task. The
developed prompt has the next structure: (1) an intro-
duction of the role it’s going to work as, (2) the task
objective to give coherence to the prompt, (3) the out-
put format specification and (4) the restrictions and
constraints to get a high quality output.

Below is the prompt that has been defined for use
in this proposal.

You are an expert engineer in requirements analysis,
object-oriented software design, and UML modeling.
Your goal is to build a complete, coherent, and well-
structured use case diagram based on a project conver-
sation.

Your response must contain only the list of use
cases in the following format, with no additional text:
(name#description#list of associated actors)
Use one line break for each use case. Do not include
anything else in your response.

Analyze the following conversation about the creation of
a web project — fileText — and extract the use cases
present in the dialogue.

Prompt: First part of the prompt.

169

WEBIST 2025 - 21st International Conference on Web Information Systems and Technologies

Generate a structured list format, ensuring each use case
is well-defined and reflects the requirements mentioned
in the conversation. Each use case should be represented
as a tuple with the following attributes:

* Name: A brief and descriptive title of the use case.

¢ Description: A clear summary of the functionality
or purpose of the use case.

 List of associated actors: Users or systems partici-
pating in the use case, separated by commas.

The output format must be the following:
(name#description#list of associated actors)
Additional rules:

* Do not include quotation marks or extra characters
in actor names.

* Separate each use case with a line break.
 Ensure the description is concise yet complete.

» Extract only relevant use cases, avoiding irrelevant
or redundant information.

Expected output example:

(User registration#Allows a new user to
create an account in the system#User)
(Login#The user enters credentials to
access the platform#User)

(Project management#Users can create,
modify and delete projects#Administrator)
(Configuration update#Modifies system
parameters based on permissions#System)
(Send notification#Sends a notification to
the appropriate user#System)

Now, process the conversation and generate the list of
use cases following these instructions.

Prompt: Second part of the prompt.

In order to validate the conceptual utility of the
tool within a real-world context, a test was conducted
involving the generation of use cases from the tran-
script of an actual client interview. To this end, a busi-
ness professional—the manager of a massage ther-
apy establishment—was contacted. This individual
expressed the need for a tool to assist in automating
certain aspects of their workflow.

The interview was conducted via Microsoft
Teams, lasting approximately 15 minutes, with both
analysts from this project participating. The con-
versation was automatically transcribed using Teams’
built-in transcription functionality, resulting in a PDF
file. This file was subsequently used as input for

170

the tool, enabling ChatGPT to autonomously gener-
ate both the use case diagrams and the corresponding
class diagrams.

The generation of the diagram required approxi-
mately 30 seconds and did not involve any manual in-
tervention. It is important to emphasize that no modi-
fications or adjustments were made to the output pro-
duced by ChatGPT, in order to objectively assess the
system’s capacity to extract meaningful and conclu-
sive information from the content of the conversation.

In Figure 3 it is displayed the resulting use case
diagram. Although no fields were modified in this in-
stance, the system allows manual editing of use case
names in situations where ambiguity may arise, en-
abling the user to replace them with more suitable al-
ternatives. Similarly, additional details or extended
descriptions may be manually incorporated if a more
comprehensive explanation of a given use case is de-
sired.

@ @@

ste ODM GML NEM NEM | Manageas

x [€ 3 rRoeyen. sofia rUsecase Daram

]

FR Diagram x

Figure 3: Use case diagram.

Before reviewing the results generated by the tool,
a junior analyst conducted their own analysis and re-
view of the interview to manually extract the use case
diagram based on the client’s system requirements.
The result of the analyst’s work can be seen in Fig-
ure 4.

N
x Toolbox
»

Figure 4: Analyst “s use case diagram.

Towards an Integrative Approach Between the SofIA Methodology and ChatGPT for the Extraction of Requirements from User Interviews

Upon initial inspection, it can be seen that the tool
identified the same actors as the analyst; however, the
tool was able to extract more use cases. Upon care-
fully reviewing the interview (located at the end of
the paper, in a hyperlink within the appendix) and an-
alyzing the result, it can be concluded that the two ad-
ditional use cases extracted by Sof[A+ChatGPT are
indeed necessary.

SoflA+ChatGPT

Manually performed by the analyst
30

25
20
15 30

10

2 8
3 3
Use case’s Number

Time (minutes) Actor’s Number

Figure 5: Comparative chart.

As a conclusion of this validation test, it is demon-
strated that the integration of ChatGPT into the SofTA
methodology has been capable of efficiently gener-
ating the use cases for a system requested by a real
client, with a high degree of similarity to the work
produced by a human analyst. The most noteworthy
aspects are the speed of the process and its usefulness
as a support tool in requirements engineering. How-
ever, the success of the system in more complex sce-
narios or in situations where requirements are incom-
plete or contradictory still needs to be studied.

6 CONCLUSIONS

This paper explores the integration of the ChatGPT
with the SofIA methodology to enhance the elicita-
tion and specification of requirements in software en-
gineering. In this context, interviews with clients and
end-users are essential for understanding their needs,
although challenges such as ambiguity, inconsisten-
cies, and evolving requirements often arise. To ad-
dress these limitations, the research proposes a semi-
automated solution that combines ChatGPT’s natural
language processing capabilities with SofIA’s flexible
structure.

The main contribution lies in the automation of
processes, such as the generation of use cases, de-
rived from interview transcripts. This approach al-

lows analysts to focus on clients during conversations,
avoiding distractions related to extensive note-taking.
Additionally, a workflow was implemented to convert
recorded interviews into high-quality UML models,
improving efficiency and precision in requirements
specification. This was achieved through an itera-
tive design of optimized prompts, ensuring outputs
aligned with SofIA’s standards.

The study’s findings were validated through test
cases, demonstrating the approach’s effectiveness in
generating models and filtering irrelevant informa-
tion. Moreover, benefits such as reduced analysis
time and the extraction of high-quality documented
requirements.

It should be noted that the results obtained through
this tool must be validated by an analyst, as ChatGPT
may not generate the use cases with complete accu-
racy or in the most appropriate way for the system’s
context. It is important to emphasize the rapid growth
and evolution of large language models (LLMs) in re-
cent years, and how their ability to understand nat-
ural language will continue to improve. This will
allow them to define requirements in a way that
more closely resembles human reasoning, reducing
the need for post-editing even more so than with our
current tool.

Despite the positive results obtained, certain lim-
itations in the validation process must be acknowl-
edged. For instance, it would be necessary to com-
pare the tool’s performance with a more experienced
analyst in order to clearly identify its strengths and
areas for improvement. Furthermore, it is impor-
tant to note that the tool relies on a carefully crafted
prompt; any significant modifications or reductions to
this prompt could lead to less satisfactory results than
those achieved in this study.

Finally, as future works, it is proposed to expand
the system’s functionalities, such as the ability to gen-
erate class diagram and user stories from interview
transcripts. In addition, it is planned to conduct vali-
dation tests in more domains to evaluate the system’s
capability to understand complex fields, such as the
healthcare, financial, or legal sectors. The proposal
also aims to scale to projects with more diverse re-
quirements and more complex structures, adapting the
system to a broader variety of contexts. Another idea
being considered is the integration of an active lis-
tening API, which would allow real-time capture and
transcription of conversations between the client and
analyst, eliminating the need to use external tools or
manually upload files from the file browser. This
would enable greater automation and fluidity in the
requirements capture and analysis process.

171

WEBIST 2025 - 21st International Conference on Web Information Systems and Technologies

REFERENCES

Arora, S., Narayan, A., Chen, M. F, Orr, L., Guha, N., Bha-
tia, K., Chami, 1., Sala, F., and Ré, C. (2022). Ask me
anything: A simple strategy for prompting language
models. arXiv preprint arXiv:2210.02441.

Auger, T. and Saroyan, E. (2024). Overview of the openai
apis. In Generative Al for Web Development: Building
Web Applications Powered by OpenAl APIs and Next.
Jjs, pages 87-116. Springer.

Bajaj, D., Goel, A., Gupta, S., and Batra, H. (2022). Muce:
a multilingual use case model extractor using gpt-
3. International Journal of Information Technology,
14(3):1543-1554.

Ben Chaaben, M. (2024). Software modeling assistance
with large language models. In Proceedings of the
ACM/IEEE 27th International Conference on Model
Driven Engineering Languages and Systems, pages
188-191.

Escalona, M.-J., Garcia-Borgofion, L., Garcia-Garcia, J.,
Lépez-Nicolas, G., and de Koch, N. P. (2023). Choose
your preferred life cycle and sofia will do the rest. In
International Conference on Web Engineering, pages
359-362. Springer.

Ferrari, A., Abualhaijal, S., and Arora, C. (2024). Model
generation with llms: From requirements to uml
sequence diagrams. In 2024 IEEE 32nd Interna-
tional Requirements Engineering Conference Work-
shops (REW), pages 291-300. IEEE.

Ferrari, A., Spoletini, P, and Gnesi, S. (2016). Ambiguity
and tacit knowledge in requirements elicitation inter-
views. Requirements Engineering, 21(3):333-355.

Fill, H.-G., Fettke, P., and Kopke, J. (2023). Concep-
tual modeling and large language models: impres-
sions from first experiments with chatgpt. Enter-
prise Modelling and Information Systems Architec-
tures (EMISAJ), 18:1-15.

Garcia-Garcia, J. A., Escalona, M. J., Dominguez-Mayo,
F. J., Salido, A., et al. (2014). Ndt-suite: a method-
ological tool solution in the model-driven engineering
paradigm. Journal of Software Engineering and Ap-
plications, 7(04):206.

Herwanto, G. B. (2024). Automating data flow diagram
generation from user stories using large language
models. In 7th Workshop on Natural Language Pro-
cessing for Requirements Engineering.

Laplante, P. A. and Kassab, M. (2022). Requirements engi-
neering for software and systems. Auerbach Publica-
tions.

Li, Y. (2023). A practical survey on zero-shot prompt
design for in-context learning. arXiv preprint
arXiv:2309.13205.

Nuseibeh, B. and Easterbrook, S. (2000). Requirements
engineering: a roadmap. In Proceedings of the Con-
ference on the Future of Software Engineering, pages
35-46.

OpenAl (2024a). OpenAl Ultimo acceso: 7 de abril de
2025.

OpenAl (2024b). Text generation with the openai api.
Ultimo acceso: 7 de abril de 2025.

172

Pohl, K. (2016). Requirements engineering fundamentals:
a study guide for the certified professional for require-
ments engineering exam-foundation level-IREB com-
pliant. Rocky Nook, Inc.

APPENDIX

In Section 5, reference is made to the interview con-
ducted between the client and the junior analyst, the
content of which was automatically transcribed and
used for the generation of the corresponding use cases
and diagrams. The full transcript of this interview,
carried out via Microsoft Teams, is available as an ex-
ternal complementary document for consultation. It
can be accessed at the following link:Interview

