
Go-Pregel: A User-Friendly Framework for Distributed Graph
Processing

Gabriel Gandour, Celso Massaki Hirata a and Juliana de Melo Bezerra b

Department of Computing Science, Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, Brazil

Keywords: Graph, Distributed Processing, Framework, Pregel.

Abstract: Graphs are widely used for tasks such as visualization and decision-making. When dealing with large-scale
graphs, efficient storage and computation become critical. To address these challenges, distinct tools have
been developed to support the implementation and execution of distributed graph algorithms. These tools
simplify the development process by abstracting the underlying distribution mechanisms, making them largely
transparent to the end user. However, to optimize and extend these implementations, developers must have
a solid understanding of distributed computing concepts, such as communication, coordination, concurrency,
and scalability, which are essential for effectively managing distributed graph processing. This work aims to
explore the fundamental principles of distributed computing in the context of graph processing. To support this,
we introduce Go-Pregel, a framework implemented in Golang and inspired by the core concepts of Google’s
Pregel. The proposed Go-Pregel serves as a flexible experimental platform for both educational and research
purposes, enabling users to better understand the underlying mechanisms of distributed systems and graph
processing.

1 INTRODUCTION

A graph is a data structure that consists of vertices and
edges. A vertex is used to represent an entity, which
can vary depending on the context, and an edge is
used to represent a relationship between two (not nec-
essarily distinct) vertices. A graph is a structure used
to model, study, and understand relationships between
objects, and is particularly useful when handling two
types of tasks: visualization and decision-making.

Regarding data visualization, graphs can represent
data in a clear and easy-to-understand manner. Large
tables and spreadsheets with long lists of relationships
can be seen as graphs, making it easier to find patterns
and insights (Michailidis and de Leeuw, 2001). In ge-
ographical maps, roads can be seen as edges that con-
nect different places (vertices). Another popular con-
cept is the knowledge graph. The vertices of a single
knowledge graph represent different types of entities,
such as people, places and objects, and the edges rep-
resent different relationships between these entities,
such as ‘is a friend of’, ‘lives in’ or ‘possesses’ (Peng
et al., 2023).

Decision-making (Li et al., 2022) involves mod-

a https://orcid.org/0000-0002-9746-7605
b https://orcid.org/0000-0003-4456-8565

eling a problem with graphs, using algorithms to find
a solution, and deciding on an action to take based
on the algorithm’s output. The problems that can be
solved using graphs are diverse. One example is find-
ing a route that takes a person from one location to
another, preferably using the shortest distance or the
least amount of time. Another example is the Page
Rank problem (Page et al., 1998), which Google ad-
dresses in its search engine. An interesting prob-
lem involving large graphs is encountered by social
networks: community detection (Fortunato and Hric,
2016). Given a set of users and the friendship rela-
tionships among them, the task is to identify which
users should be recommended to each other as poten-
tial connections.

Running an algorithm for a large number of ver-
tices in a graph, even for a simple algorithm, can be
time-consuming, and the machine’s memory might
not be sufficient to store the entire graph. This is why
distributed processing is useful. Splitting the com-
putation across multiple machines can speed up the
processing time, give a faster result, and lower the
amount of memory necessary in a machine to process
the graph.

Numerous researchers and engineers have devel-
oped distributed graph processing models and tools to

Gandour, G., Hirata, C. M. and Bezerra, J. M.
Go-Pregel: A User-Friendly Framework for Distributed Graph Processing.
DOI: 10.5220/0013701000003985
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 21st International Conference on Web Information Systems and Technologies (WEBIST 2025), pages 149-156
ISBN: 978-989-758-772-6; ISSN: 2184-3252
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

149

facilitate the implementation and execution of graph
algorithms. Notable solutions include PowerGraph
(Gonzalez et al., 2012), GraphX (Gonzalez et al.,
2014), and Gemini (Zhu et al., 2016). Among the
most prominent are Apache Giraph (Apache, 2020)
and Pregel (Malewicz et al., 2010). Pregel, introduced
by Google, is a distributed graph processing frame-
work that has influenced the design of several subse-
quent systems, including Apache Giraph.

These tools are designed to address key challenges
in distributed graph processing: scalability, ease of
use, and fault tolerance (Heidari et al., 2018). Scal-
ability refers to the system’s ability to execute graph
algorithms across an arbitrary number of machines.
Ease of use aims to abstract away the complexity
of distributed computing, allowing developers to fo-
cus primarily on the algorithmic logic rather than
low-level implementation details. Fault tolerance en-
sures that the system can recover from node failures
without losing intermediate computation results. De-
spite these strengths, such systems are often treated as
black boxes: users leverage their functionality with-
out a clear understanding of distributed computing
and its internal mechanisms or execution models.

This paper presents the design and implementa-
tion of a framework to support the distributed pro-
cessing of graph algorithms. The primary objective
is to help developers understand key concepts in dis-
tributed computing and learn to transform sequential
algorithms into their distributed counterparts. This
framework, called Go-Pregel, uses Google’s Pregel as
a reference. It is designed to be algorithm-agnostic
and user-friendly, meaning that it is not tailored to
solve a specific problem but rather provides a general-
purpose platform for implementing and experiment-
ing with a wide range of graph algorithms in a dis-
tributed setting.

The Go-Pregel is developed in Golang, chosen
for its efficiency and robust native support for con-
currency, as well as its growing popularity in re-
cent years. To ensure portability and ease of deploy-
ment, the framework is containerized using Docker,
enabling it to run seamlessly across various environ-
ments. In addition, a simple user interface is provided
to help users visualize and understand the intermedi-
ate steps involved in the execution of distributed algo-
rithms.

The remainder of this paper is structured as fol-
lows. Section 2 provides the core concepts of
Google’s Pregel framework. Section 3 introduces the
proposed Go-Pregel framework, describing its archi-
tecture, implementation, and practical usage. Section
4 concludes the paper by discussing broader implica-
tions and outlining directions for future work.

2 PREGEL OVERVIEW

Pregel is a distributed graph processing framework
(Malewicz et al., 2010). It is designed to provide a
simple and scalable model for writing and executing
distributed graph algorithms. The input to a Pregel
program is a graph, and the output is also a graph.
Both vertices and edges can carry user-defined data,
with the data structure determined arbitrarily by the
user. The output graph produced by a Pregel algo-
rithm is often not the final solution itself but rather
a transformed graph from which the solution can be
more easily extracted.

Pregel interprets each vertex as an independent
machine, and each vertex is responsible for its part of
the computation. The framework uses the BSP model
(Cheatham et al., 1994) to coordinate the work. This
means that the algorithm is divided into several su-
persteps, where each vertex executes a computation
phase, communicates with other vertices, and then
synchronizes with the other vertices. Each vertex is
unable to read or change the values of other vertices,
but they can read and change their own values at will.
Also, each vertex, in the communication phase, can
send messages to any other vertices, as long as the
target vertex’s ID is known. These messages do not
require a reply, and they are only read in the next su-
perstep. The decisions made in the computation phase
are usually based on the messages received in the pre-
vious superstep, since they are the only way of com-
munication between vertices.

During the computation step, each vertex can vote
to halt and consequently become inactive. When ev-
ery vertex in the graph votes to halt, the Pregel algo-
rithm is considered finished, and the resulting graph
is written to the output. When a vertex votes to halt,
it is excluded from the computation phase and stops
working, unless it receives a message from another
vertex. When a halted vertex receives a message, it is
automatically reactivated, and its vote to halt is can-
celed. Deciding when a vertex should vote to halt is
the responsibility of the user, and this decision must
be defined according to the logic of the algorithm be-
ing implemented.

When dealing with Pregel, some methods are ex-
pected to be implemented by the user. The first is the
Compute method, which is called at the beginning of
every superstep. This method encompasses both the
computation and communication phases of the BSP
(Bulk Synchronous Parallel) model. The user has to
define the rules for when and how to send messages
to other vertices, using the method SendMessageTo.
The user also has to define, in the Compute method,
the rules for when a vertex should vote to halt, us-

WEBIST 2025 - 21st International Conference on Web Information Systems and Technologies

150

ing VoteToHalt. In our proposed framework, we
adopt these conventions when naming correspond-
ing methods, maintaining consistency with the Pregel
programming model.

In Pregel, each vertex is responsible for its own
computation, but it does not mean that each machine
has a single vertex. Instead, the graph is divided
into several partitions (sets of vertices and their out-
edges). Each partition is assigned to a machine, and
the machine executes the Compute method for every
vertex in its partition for every superstep. For the sake
of simplicity, we assume that each machine has only
one partition of the graph.

Pregel uses a master-worker architecture. While
workers are responsible for executing the Compute
method for the vertices in their partition, the master
is responsible for coordinating the work between all
the workers. The master is responsible for distributing
the partitions to the workers, synchronizing the work-
ers, and ordering them to go to the next superstep.
When a worker finishes the computation and commu-
nication phases, it sends a message to the master ma-
chine, indicating that its superstep has ended. When
all workers are ready to go on to the next superstep,
the master sends a message to every worker, ordering
them to proceed. Until then, the workers stay idle.

In Pregel, fault tolerance is implemented through
checkpoints. A checkpoint is a snapshot of the com-
putation’s state at a given superstep. When a check-
point is saved, each worker logs the values of all ver-
tices in its partition, their incoming messages, and
the corresponding edges and edge values. Since all
computations in a superstep depend solely on this in-
formation, it is possible to resume the execution of
a Pregel algorithm from the last checkpoint in the
event of a failure. When a worker fails, the master
is responsible for detecting the failure and repartition-
ing the graph, starting from the last available check-
point, among the remaining workers. The master then
instructs the workers to resume execution from that
point and continue processing the subsequent super-
steps.

3 A DISTRIBUTED GRAPH
PROCESSING FRAMEWORK

This section presents the Go-Pregel, the distributed
graph processing framework. The framework
was built using Google’s Pregel as a reference
and programmed in Golang (thus the name Go-
Pregel). The project’s repository is available at
https://github.com/GaGandour/Go-Pregel (Gandour,
2024).

Two assumptions were made for this framework.
The first is that the work is limited to static directed
graphs. Directed means that edges have a defined di-
rection. Static implies that no vertices or edges are
created or removed during the execution of the algo-
rithms (i.e., the graph topology remains unchanged).
The second assumption is that vertices and edges may
optionally carry associated data, depending on the
problem being addressed. The structure and schema
of this data must be defined by the user.

3.1 Go-Pregel Design

Here we detail the general architecture of the Go-
Pregel framework shown in Figure 1, its components,
and how they interact with each other. The project of-
fers shell scripts that aim to facilitate the use of the
framework. The user needs to write (P0) the algo-
rithm following the distributed processing approach
and start the processing (P1/V1). After being acti-
vated (P2), the master reads the input graph (P3) and
distributes it among workers (P4). Processing contin-
ues with respect to supersteps with commands from
the master (P5), responses from workers (P6a), and a
checkpoint register (P6b). Checkpoints are read (P7)
in case of failure recovery. When processing finishes,
the master writes the final output graph (P8). The vi-
sualizer is then activated (V2) to read the output graph
(V3) and create the associated graph image (V4) to
the user.

The Go-Pregel framework uses a master-worker
architecture, and the master and workers communi-
cate via RPC (Remote Procedure Call). The master
machine in Go-Pregel has three main responsibilities.
The first is to partition the graph among the work-
ers, the second is to orchestrate the supersteps, and
the third is to merge the output files generated by the
workers. These three responsibilities are all managed
by the state machine.

The worker machines, on the other hand, have
simpler responsibilities. The workers have differ-
ent functions that are called by the master via RPC
calls, depending on the master’s current state machine
node. The most important of these functions is the
RunSuperStep function, which loops over the ver-
tices in the worker’s partition and executes the super-
step for each vertex. If the vertex is active or receives
incoming messages (being reactivated), the vertex ex-
ecutes its SuperStep method. After iterating through
all vertices in the subgraph, the worker compiles all
messages that are to be sent from the vertices to other
vertices, and sends them to the appropriate workers.
Finally, the function checks if every vertex has voted
to halt, and sends a reply to the master with this infor-

Go-Pregel: A User-Friendly Framework for Distributed Graph Processing

151

Figure 1: Go-Pregel architecture diagram.

mation.
The visualizer aids the user in understanding the

algorithm’s output and behavior. It is automatically
activated by the Go-Pregel scripts after the algorithm
finishes and generates an HTML file with the out-
put graph representation. The visualizer is written
in Python. It uses the json library to read the out-
put graph file, and the pyvis library to generate the
HTML file of a graph. The labels of each vertex and
edge are customizable through two functions in a sep-
arate file.

The input and the output of any Pregel algorithm
are graphs. Since we do not focus on distributed stor-
age, the graphs are stored as a JSON file in the local
file system. The project’s repository already comes
with a few graph files in the graphs/ directory, but
the user is free to create their own. A json graph fol-
lows a specific schema, as shown in Listing 1. The
Vertices field is a map of vertices, where each ver-
tex has an Edges field, which is a map of edges. Each
edge has a To field, which is the target vertex id. The
Value field is a placeholder for the vertex and edge
values, and the schema for these values are defined
by the user. The Value fields are optional and their
schema (if not empty) depends on the problem to
be solved. After Go-Pregel is run, the output graph

is stored under the src/output graphs/, with the
same structure as in the graphs/ directory.

Listing 1: Input Graph Json Format.
"Vertices": {

"<vertex id>": {
"Value": {

// Vertex Value Schema
},
"Edges": {

"<edge id>": {
"To": "<target vertex id>",
"Value": {

// Edge Value Schema
}

}
}

}
}

The graph algorithm executed by Go-Pregel is
programmed by the user by changing two files in the
project. The first file is the graph types file, as shown
in Listing 2. It has five different Golang types that
should be changed depending on the problem and on
how the graph is represented. The first two ones are
VertexIdType and EdgeIdType, which are the types
of the vertex and edge IDs, respectively. They can be

WEBIST 2025 - 21st International Conference on Web Information Systems and Technologies

152

any type, but strings are recommended. The next two
types, VertexValue and EdgeValue, are the values
stored in the vertices and edges. They are the fields
that contain any persistent information that the user
wants to use in the algorithm. Finally, the last type
to be defined by the user is the PregelMessage type.
This type is the message that is sent from one vertex
to another in the superstep.

Listing 2: Go-Pregel types file to be modified by the user.
type VertexIdType string
type EdgeIdType string

type VertexValue struct {
// Fill in here

}

type EdgeValue struct {
// Fill in here

}

type PregelMessage struct {
// Fill in here

}

Listing 3: Go-Pregel methods file to be modified by the
user.
func(vertex *Vertex)ComputeInSuperStepZero(){

// Fill in here
/*

If ComputerInSuperStepZero is
the same as Compute, you can
just call Compute with an
empty slice of messages as:

vertex.Compute
([]PregelMessage{})

*/
}

func(vertex *Vertex)Compute
(receivedMessages []PregelMessage) {

// Fill in here
}

The second file the user has to modify to pro-
gram a Go-Pregel algorithm is the methods file, as
depicted in Listing 3. This file has two methods
that should be changed depending on the problem
and how the graph is represented. The first one
is the ComputeInSuperStepZero method, which is
called in the first superstep. The second one is the
Compute method, which is called in the following su-
persteps. These methods are responsible for interpret-
ing the received messages (if there are any), updating
the vertex value if necessary, deciding if the vertex
should vote to halt or not, and preparing the mes-

sages to be sent to other vertices. In order to write
the ComputeInSuperStepZero and Compute meth-
ods, the user has access to auxiliary methods already
implemented in Go-Pregel.

3.2 Go-Pregel in Practice

Aiming to structure a Go-Pregel algorithm, we ex-
plored the Single Source Shortest Path (SSSP) prob-
lem, which is a classic graph problem that aims to
find the shortest path from a source vertex to all other
vertices in a graph. In this problem, each edge has a
positive weight, and the length of a path is the sum of
the weights of the edges that make up the path from
the source vertex to a target vertex. We used a specific
vertex (in this case, the one with vertex id defined as
zero) as the source for simplicity.

The most common algorithm to solve the SSSP
problem is Dijkstra’s algorithm. However, we noticed
that the order of the graph exploration must follow
the priority queue, making it impossible for us to dis-
tribute it directly in Go-Pregel. To solve the SSSP
problem, we used the Bellman-Ford algorithm, an-
other algorithm with a different approach and time
complexity.

Listing 4: Go-Pregel Value types for the SSSP algorithm.
type VertexIdType string
type EdgeIdType string

type VertexValue struct {
Distance int
Predecessor VertexIdType

}

type EdgeValue struct {
Weight int

}

type PregelMessage struct {
Sender VertexIdType
SenderDistance int
EdgeWeight int

}

In Bellman-Ford’s algorithm, the distances of
each vertex are also initialized in a table dist and set
to infinity, except for the source vertex, which has its
distance set to zero. The algorithm then enters a loop
of N −1 iterations, where N is the number of vertices
in the graph. Inside this loop, we iterate through all
edges in the graph, and check if the distance of the
edge’s target is greater than the sum of the source’s
distance and the edge’s weight. If positive, the tar-
get’s distance is updated to be equal to the sum of the
other two values. At the end of the loop, the table
dist has the desired distances for the SSSP problem.

Go-Pregel: A User-Friendly Framework for Distributed Graph Processing

153

We developed the code in Go-Pregel as shown in List-
ing 4 and Listing 5.

Listing 5: Go-Pregel methods for the SSSP algorithm.
func (vertex *Vertex)

ComputeInSuperStepZero() {↪→
distance := -1
if vertex.Id == "0" {

distance = 0
}
vertex.SetValue(VertexValue{Distance:

distance, Predecessor: ""})↪→
for _, edge := range vertex.GetOutEdges()

{↪→
vertex.PrepareMessageToVertex(

edge.To,
PregelMessage{

Sender: vertex.Id,
SenderDistance: distance,
EdgeWeight:

edge.Value.Weight,↪→
},

)
}

}

func (vertex *Vertex)
Compute(receivedMessages []PregelMessage)
{

↪→
↪→

currentValue := vertex.GetValue()
currentDistance := currentValue.Distance
currentPredecessor :=

currentValue.Predecessor↪→
hasChanged := false

for _, message := range receivedMessages
{↪→
if message.SenderDistance == -1 {

continue
}
if currentDistance == -1 ||

message.SenderDistance +
message.EdgeWeight <
currentDistance {

↪→
↪→
↪→

hasChanged = true
currentDistance =

message.SenderDistance +
message.EdgeWeight

↪→
↪→
currentPredecessor =

message.Sender↪→
}

}
if hasChanged {

vertex.SetValue(VertexValue{Distance:
currentDistance, Predecessor:
currentPredecessor})

↪→
↪→
for _, edge := range

vertex.GetOutEdges() {↪→
vertex.PrepareMessageToVertex(

edge.To,
PregelMessage{

Sender: vertex.Id,
SenderDistance:

currentDistance,↪→
EdgeWeight:

edge.Value.Weight,↪→
},

)
}

} else {
vertex.VoteToHalt()

}
}

In the SSSP problem, we are interested in
the Distance and Predecessor fields of the
VertexValue type. We then customized the visu-
alizer functions. After implementing the Go-Pregel
algorithm for the SSSP problem, we used the pro-
vided scripts to run it and visualize the results. We
used three workers in a small graph whose edges had
weight 1. We had four supersteps executed to end the
algorithm. The visualizer tool’s output is shown in
Figure 2.

As expected, the distance from the source vertex
to itself is zero, and the distances to unreachable ver-
tices are still −1 (infinity). The image also shows the
predecessor of each vertex in the shortest path from
the source vertex. The optimal path from vertex 0 to
vertex 3, for example, can be derived by following the
predecessor field, from vertex 3 to vertex 0. The pre-
decessor of vertex 3 is vertex 2, and the predecessor
of vertex 2 is vertex 0. Therefore, the shortest path
from vertex 0 to vertex 3 is going from vertex 0 to
vertex 2, and then from vertex 2 to vertex 3, with a
total distance of 2.

We also tested the fault tolerance of the
framework by using the -failure step
and -checkpoint frequency flags in the
start pregel.sh script. We set the failure
step to 3 and the checkpoint frequency to 2. This
means that one of the workers will fail at superstep 3,
and a checkpoint will be saved every two supersteps.
Listing 6 shows the most important terminal logs.

As expected, the supersteps 0, 1, and 2 were
executed normally, and after superstep 2, the mas-
ter machine ordered the workers to write a check-
point (“write subgraphs”). After that, the workers at-
tempted to execute superstep 3, but one of them failed.
The master machine then noticed the failure, checked
the remaining workers, repartitioned the graph from
the last checkpoint, and ordered the remaining work-
ers to execute superstep 3 again. The algorithm then
continued normally, and the final output was the same
as in Figure 2.

WEBIST 2025 - 21st International Conference on Web Information Systems and Technologies

154

Figure 2: SSSP output generated by the visualizer tool.

Listing 6: SSSP algorithm execution with failure.
$./start_pregel.sh -num_workers=3

-graph_file=sssp/graph1.json
-failure_step=3 -checkpoint_frequency=2

↪→
↪→
(...)
2024/11/09 17:19:29 Partitioning graph between

3 workers↪→
2024/11/09 17:19:29 Ordering workers to

execute superstep↪→
2024/11/09 17:19:29 Ordering workers to

execute superstep↪→
2024/11/09 17:19:29 Ordering workers to

execute superstep↪→
2024/11/09 17:19:29 Ordering workers to write

subgraphs↪→
2024/11/09 17:19:29 Ordering workers to

execute superstep↪→
2024/11/09 17:19:29 Failed to order superstep

to worker. Error: (...)↪→
2024/11/09 17:19:29 Checking workers
2024/11/09 17:19:29 Failed to check worker

with ID 0. Error: (...)↪→
(...)
2024/11/09 17:19:29 Next superstep: 3
2024/11/09 17:19:29 Partitioning graph between

2 workers↪→
2024/11/09 17:19:29 Ordering workers to

execute superstep↪→
2024/11/09 17:19:29 Ordering workers to write

subgraphs↪→
(...)
2024/11/09 17:19:29 Pregel finished

We used Go-Pregel to solve three other problems:
to find the weakly connected components of a graph,
to define a topological sort for a graph, and to de-
termine if a graph can be bipartite. The results were
correct in all cases, demonstrating the flexibility and
effectiveness of the Go-Pregel framework for imple-

menting graph algorithms in a distributed manner.

4 CONCLUSIONS

We proposed a simple and easy-to-use framework
called Go-Pregel for distributed graph processing that
proved to work properly. The framework provides
scripts with different options and use cases, along
with an interactive visualization tool that takes any
output graph and displays a customizable represen-
tation of it in a browser. To help developers rea-
son about graph problems and design appropriate dis-
tributed solutions, we aim to define guidelines for
writing Pregel algorithms. In addition, we plan to ap-
ply Go-Pregel in educational settings to evaluate its
practical effectiveness.

The present version of Go-Pregel includes a fault-
tolerance solution, which is an important feature for
a distributed system. To handle fault tolerance, the
project provides a checkpointing solution similar to
Google’s Pregel system. However, Go-Pregel has a
clear limitation: the graph is not redistributed if a
worker is reactivated after a failure. It would be inter-
esting to implement conditions to decide when node
reconnection is allowed and how to perform graph
repartitioning.

The Go-Pregel framework allows the implemen-
tation of only static graphs, whereas some algorithms
involve changes in the graph topology during the
computation. For example, the Minimum Spanning
Tree problem requires the removal of edges from the
graph, and other algorithms (such as the k-core find-
ing problem) demand the removal of vertices. The

Go-Pregel: A User-Friendly Framework for Distributed Graph Processing

155

challenge in implementing dynamic graph process-
ing in Go-Pregel is the need to provide flexibility to
the user without making the framework too complex.
Full flexibility and generality come with the cost of
programming complexity, which can be counterpro-
ductive if the goal of the project is to teach the basics
of distributed graph processing.

Google’s Pregel provides features, such as com-
biners and aggregators, to optimize communication
and enable global coordination during computation.
The Go-Pregel framework comes with a simple com-
biner function that can be modified by the user if
desired. Being able to measure time effects (for in-
stance, in computational steps or message exchanges)
would be an important feature to motivate the devel-
opers to use combiners in their algorithms. Aggrega-
tors were not implemented in the Go-Pregel, but they
could be an interesting feature to help users solve sim-
ple or even complex problems.

Go-Pregel is an ongoing project. Enhancing the
framework with new features would expand the range
of classic graph problems that can be solved using
our software, offering users greater flexibility and en-
riching their overall learning experience. We argue
that the proposed framework empowers developers
to understand the core principles of distributed sys-
tems and graph processing, moving beyond the use of
black-box tools. Furthermore, it provides a practical
environment for experimenting with new distribution
strategies, serving as a foundation for education and
continued research in scalable graph computing.

REFERENCES

Apache (2020). Apache giraph.
Cheatham, T., Fahmy, A., Stefanescu, D. C., and Valiant,

L. G. (1994). Bulk synchronous parallel computing -
a paradigm for transportable software. Harvard Com-
puter Science Group Technical Report, (TR-36-94).

Fortunato, S. and Hric, D. (2016). Community detection in
networks: A user guide. Physics Reports, 659.

Gandour, G. (2024). Go pregel.
Gonzalez, J. E., Low, Y., Gu, H., Bickson, D., and Guestrin,

C. (2012). Powergraph: Distributed graph-parallel
computation on natural graphs. USENIX Symposium
on Operating Systems Design and Implementation.

Gonzalez, J. E., Xin, R. S., Dave, A., Crankshaw, D.,
Franklin, M. J., and Stoica, I. (2014). Graphx:
Graph processing in a distributed dataflow framework.
USENIX Symposium on Operating Systems Design
and Implementation.

Heidari, S., Simmhan, Y. L., Calheiros, R. N., and Buyya,
R. (2018). Scalable graph processing frameworks.
ACM Computing Surveys (CSUR), 51:1 – 53.

Li, X., Meng, K., Qin, L., Lai, L., Yu, W., Qian, Z., Lin, X.,
and Zhou, J. (2022). Flash: A framework for program-
ming distributed graph processing algorithms. 39th
IEEE International Conference on Data Engineering.

Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C.,
Horn, I., Leiser, N., and Czajkowski, G. (2010).
Pregel: a system for large-scale graph processing. In
Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’10,
page 135–146, New York, NY, USA. Association for
Computing Machinery.

Michailidis, G. and de Leeuw, J. (2001). Data visualiza-
tion through graph drawing. Computational Statistics,
16(3):435–450.

Page, L., Brin, S., Motwani, R., and Winograd, T. (1998).
The pagerank citation ranking: Bringing order to the
web.

Peng, C., Xia, F., Naseriparsa, M., and Osborne, F. (2023).
Knowledge graphs: Opportunities and challenges. Ar-
tificial Intelligence Review.

Zhu, X., Chen, W., Zheng, W., and Ma, X. (2016). Gem-
ini: A computation-centric distributed graph process-
ing system. USENIX Symposium on Operating Sys-
tems Design and Implementation.

WEBIST 2025 - 21st International Conference on Web Information Systems and Technologies

156

