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Stock price prediction is crucial for informed investment decisions(Bathla, 2020; Hochreiter and Schmidhuber,
1997). This study explores the application of Long Short-Term Memory (LSTM) architecture for analyzing
and predicting stock prices of major technology companies: Alphabet Inc. (GOOG), Apple Inc. (AAPL),
NVIDIA Corporation (NVDA), Meta Platforms, Inc. (META), and Tesla Inc. (TSLA). The fundamental chal-
lenge addressed is capturing temporal dependencies and complex patterns in financial time series data, which
traditional statistical methods often fail to model accurately(Box et al., 1978; Hyndman and Athanasopoulos,
2013). Our methodology involved collecting historical stock data from Yahoo Finance API(Edwards et al.,
2018), preprocessing through normalization and sequence creation(Hochreiter and Schmidhuber, 1997), and
training separate LSTM models for each stock. Results indicate that LSTM models provide satisfactory ac-
curacy with R? scores exceeding 0.93 for most stocks(Li et al., 2023; Selvin et al., 2017), capturing both
short-term and long-term patterns(Panchal et al., 2024; Ouf et al., 2024). The implications are significant
for investors and financial analysts seeking enhanced predictive tools for market forecasting(Pramod and Pm,

2020).

1 INTRODUCTION

The stock market represents one of the most dy-
namic and complex financial systems, characterized
by rapid and unpredictable price movements influ-
enced by macroeconomic indicators, market senti-
ment, geopolitical events, and social media trends
(Edwards et al., 2018; Li et al., 2023; Ouf et al.,
2024). Traditional statistical models like ARIMA and
GARCH, while theoretically sound, often assume sta-
tionarity and linearity, limiting their effectiveness in
capturing the non-linear, volatile nature of real-world
stock data (Box et al., 1978; Hyndman and Athana-
sopoulos, 2013).

The emergence of Machine Learning and Deep
Learning has enabled more sophisticated forecasting
algorithms capable of capturing hidden patterns in se-
quential data. Long Short-Term Memory (LSTM)
networks, a specialized form of Recurrent Neural
Networks, have demonstrated outstanding perfor-
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mance in modeling temporal sequences by overcom-
ing the vanishing gradient problem through their gat-
ing mechanisms (Hochreiter and Schmidhuber, 1997;
Selvin et al., 2017; Panchal et al., 2024).

This research develops and evaluates an LSTM-
based model for stock price prediction using histori-
cal data from five major technology companies, com-
paring performance against traditional and alternative
deep learning approaches using metrics like RMSE,
MAE, and R? Score (Bathla, 2020; Li et al., 2023;
Xiao et al., 2024).

2 LITERATURE REVIEW

Recent studies consistently demonstrate LSTM’s su-
periority over traditional approaches for stock pre-
diction (Panchal et al., 2024; Bathla, 2020; Selvin
et al., 2017). (Panchal et al., 2024) showed LSTM
models achieving lower RMSE values compared to
ARIMA across Apple, Google, and Tesla datasets,
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while ARIMA failed to capture non-linear dependen-
cies. (Xiao et al., 2024) compared LSTM, GRU,
and Transformer networks on Tesla stock prediction,
concluding LSTM offered the best trade-off between
complexity and accuracy.

(Li et al., 2023) applied LSTM models to tech-
nology stocks including Apple and Nvidia, demon-
strating high accuracy over decade-long price histo-
ries and emphasizing LSTM’s robustness in captur-
ing long-term temporal dependencies. (Ouf et al.,
2024) incorporated Twitter sentiment features into
LSTM models, reporting improved accuracy com-
pared to price-only models. These findings, supported
by (Selvin et al., 2017; Bathla, 2020; Pramod and Pm,
2020), provide strong motivation for applying LSTM
networks to a broader dataset of five major technology
stocks.

3 MATERIALS AND
METHODOLOGY

3.1 Data Collection and Preprocessing

Historical stock price data for AAPL, GOOG, META,
NVDA, and TSLA was collected using the Yahoo Fi-
nance API(Edwards et al., 2018; de Prado, 2018),
covering the period from January 1, 2012, to Decem-
ber 21, 2022. The size of the dataset is represented as
atuple (13805,7) where 13,805 indicates the number
of rows and 7 indicates the number of columns. Each
company has 2761 rows of data. The data includes
features like Open, High, Low, Close, and Volume
fields(Edwards et al., 2018).

3.2 Feature Engineering and Data
Transformation

100-Day Moving Average (MA100) and 200-Day
Moving Average (MA200) were computed to provide
additional trend information beyond daily volatility.
These technical indicators help smooth short-term
fluctuations and highlight longer-term trends, with
MA100 capturing medium-term patterns and MA200
focusing on long-term market sentiment(Box et al.,
1978; Hyndman and Athanasopoulos, 2013).

Rather than feeding raw prices directly into the
model, a sliding window approach was applied to cre-
ate sequences. For each stock, sequences of the past
60 days of 'Close’ prices were prepared to predict
the 61st day’s *Close’ price. A sliding window ap-
proach was adopted to generate the input-output pairs
required by the LSTM model.
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Figure 2: 200-Day MA vs 100-Day MA vs Close Price.

We decided to split the data for our model as fol-
lows:

* 80% for Training
* 10% for Validation (from within training set)
* 20% for Testing

2012>———""2017>—~—"2020~——"2022

Training set

Validation set Testing set

Figure 3: Chronological data split into training, validation,
and testing sets.

Fig. 3. above indicates the data split into three
sets. Chronological order was preserved to main-
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tain the time-dependent structure of the stock price
data. After sequence generation, the training, val-
idation, and testing sets were reshaped into a 3D
structure required by LSTM layers: (shape) = (sam-
ples.timesteps,features)

Where:

* samples = number of sequences,
* timesteps = 60 (days of history),
* features = 1 ("Close’ price only).

Standard dense layers expect 2D input, but
LSTMs require 3D to maintain temporal relationships
across timesteps.

3.3 Working of LSTM Networks

Long Short-Term Memory (LSTM) networks are an
extension of Recurrent Neural Networks (RNNs),
specifically designed to overcome the vanishing gra-
dient problem and capture long-range dependencies
in sequential data.

Each LSTM unit is composed of three primary
gates:

» Forget Gate: Decides what information from the
previous cell state should be discarded.

* Input Gate: Determines which new information
should be added to the cell state.

e Output Gate: Controls the information that will
be outputted from the current cell.

At each time step, the LSTM cell takes the current
input and the hidden state from the previous time step,
processes them through the three gates, updates the
internal cell state, and produces a new hidden state.

Mathematically, the gates are computed as fol-
lows:

fr=0(Wp-[h—1,x] +by) )
iy = (Wi - [hy—1, %] + D) )
C, = tanh(We - [hy—1,%] + bc) 3)
Ct:ft*Ct—1+it*Ct 4

0r =(Wo - [h—1,%]+b,) (5)
hy = o; xtanh(C;) (6)

where:
* G denotes the sigmoid activation function,

* tanh denotes the hyperbolic tangent activation
function,

* W and b represent the weight matrices and bias
vectors, respectively,

* J;_1 is the hidden state from the previous time
step,

Xt

Figure 4: LSTM Architecture(Molokwu and Kobti, 2019).

* x; is the input at the current time step ¢.

These mechanisms enable LSTMs to selectively
remember or forget information over long sequences,
making them ideal for modeling time series data such
as stock prices.

Fig. 4. illustrates the internal structure of an
LSTM (Long Short-Term Memory) cell. The LSTM
unit is composed of four primary components: the
Forget Gate, the Input Gate, the Cell State Update,
and the Output Gate.

e The Forget Gate determines which parts of the
previous cell state (C;—;) should be discarded
based on the previous hidden state (/;—1) and the
current input (x;).

* The Input Gate decides which new information
should be written into the cell state, again using
the current input and the previous hidden state.

e The Cell State Update combines the output of the
forget and input gates to update the internal cell
memory (C;).

* The Output Gate generates the new hidden state
(h) based on the updated cell state and regulates
what information will be passed to the next time
step.

The inputs to the LSTM cell are the previous hid-
den state h,_1, the previous cell state C;_1, and the
current input x;. The outputs are the updated cell state
C; and the new hidden state /,. This structure enables
the LSTM to effectively capture both long-term and
short-term dependencies in sequential data.

3.4 Model Architecture

The LSTM model was designed with a Sequential ar-
chitecture:

e LSTM Layer 1: 128 units, return sequences, Input
Shape: (60 timesteps, 1 feature). The first LSTM
layer processes each 60-day sequence and learns
intricate temporal dependencies across multiple
trading days. Setting return sequences=True en-
sures that the output of this layer is a full se-
quence (not a single value), which is passed to
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the next LSTM layer for deeper pattern extraction.
This layer acts as a feature extractor for sequential
data, capturing both short-term and medium-term
trends.

* Dropout Layer 1: 0.3. A Dropout layer is inserted
after the first LSTM to randomly deactivate 30%
of the neurons during each training batch. This
technique prevents the model from overfitting by
ensuring it does not become too dependent on spe-
cific neurons. Dropout regularization encourages
generalization over training data.

* LSTM Layer 2: 64 units, no return sequences.
The second LSTM layer receives the sequence
output from the first LSTM but collapses it
into a single vector output by setting return se-
quences=False. This vector summarizes the tem-
poral features extracted from the entire 60-day in-
put window. This layer acts as a temporal summa-
rizer, enabling the model to output a single future
price prediction.

* Dropout Layer 2: 0.3. Another Dropout layer is
added to reduce overfitting risks even after feature
summarization, ensuring robustness in the learned
representations.

* Dense Output Layer: 1 neuron/unit. The final
layer is a Dense (Fully Connected) layer with one
output neuron. It maps the processed sequential
features into a single scalar value — the predicted
closing stock price for the next day.No activation
function is applied because stock price prediction
is a regression task.

3.5 Model Compilation, Training, and
Prediction

After defining the LSTM model architecture, the
model was compiled using:

* Optimizer: Adam The Adam optimizer was cho-
sen due to its adaptive learning rate capabilities,
fast convergence properties, and widespread suc-
cess in deep learning tasks. Adam combines the
advantages of both RMSProp and SGD optimiz-
ers, making it well-suited for noisy and sparse
datasets like financial time series.

* Loss Function: Mean Squared Error (MSE) MSE
is the standard loss function for regression tasks
where the goal is to predict continuous values,
such as stock closing prices. It penalizes larger er-
rors more heavily, encouraging the model to pro-
duce highly accurate predictions.

The model compilation stage ensures that the appro-
priate optimization and evaluation settings are pre-
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pared before training begins.

Next, the training was performed using the train-
ing set, with validation on a separate validation set to
monitor the model’s generalization ability and detect
any signs of overfitting.

e Number of Epochs: 100
* Batch Size: 32 samples per training step

During training, the model learned to minimize the
MSE loss on the training data while maintaining sta-
ble validation loss to ensure good generalization to
unseen data.

The training process produced a history object
containing loss and validation loss values for each
epoch, which were later used for plotting learning
curves.

Finally, after the model completed training, pre-
dictions were generated on:

e Training set (for internal performance assess-
ment),

* Validation set (to monitor overfitting),
* Testing set (to evaluate real-world generalization).

Since the model was trained on normalized (scaled)
data between [0,1], the predicted outputs needed to be
inverse transformed back to their original price scale
for meaningful interpretation. Inverse transformation
was performed using the previously fitted MinMaxS-
caler on both:

¢ Predicted values (train, validation, test sets),

* True target values (ground truth for train, valida-
tion, test sets).

This rescaling ensures that evaluation metrics like
RMSE, MAE, and R? Score, and graphical visualiza-
tions (actual vs predicted prices) are reported in real
stock price units (e.g., 150,300).

3.6 Frameworks, Programming
Languages, and Libraries

The proposed LSTM-based stock price prediction
system was implemented using the following soft-
ware tools and libraries:

* Programming Language: Python 3.8+

* Deep Learning Framework: TensorFlow 2.x
(with Keras API)

* Machine Learning Utilities: scikit-learn
 Financial Data Access: yfinance
¢ Data Manipulation: pandas and NumPy

* Visualization: matplotlib
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4 EXPERIMENT AND RESULTS

This section presents the outcomes of training the
LSTM models, analyzing the learning behavior, eval-
uating the predictive performance using standard met-
rics.

4.1 Evaluation Metrics

Model performance was assessed using four standard
regression metrics:

* Mean Squared Error (MSE): Measures the aver-
age squared difference between actual and pre-
dicted values.

* Root Mean Squared Error (RMSE)(Kumar et al.,
2021): Square root of MSE, interpretable in the
same units as stock price.

* Mean Absolute Error (MAE): Average of absolute
differences between actual and predicted values.

e Coefficient of Determination (R? Score): Mea-
sures how well predictions approximate real data
(1 = perfect prediction).

The Table 1 below shows the evaluation metrics for
each of the companies.

Table 1: Model Performance Metrics for Different Compa-
nies.

Company | MSE |RMSE | MAE | R? Score
Apple [ 1173 | 342 | 2.68 | 09576
Google | 2532 | 5.03 | 433 | 09314
Meta 78.86 | 8.88 | 6.61 | 0.9877
Nvidia 6.43 2.54 1219 | 0.7741
Tesla |204.77| 14.31 |10.61| 0.9367

4.2 Learning Curves

Fig. 5. presents the validation loss across all five com-
panies over 100 training epochs. The validation loss
serves as an indicator of the model’s ability to gener-
alize to unseen data. Stocks like Google and Apple
showed consistent and low validation losses, suggest-
ing stable and effective training. On the other hand,
Meta and Tesla experienced more fluctuation in vali-
dation loss, particularly during early epochs. This in-
stability reflects the inherent volatility of these stocks
in the given timeframe, making prediction more chal-
lenging. Nevertheless, all models showed conver-
gence trends, and none displayed sustained overfitting
behavior.

Learning Curve Across All Stocks

nnnnn

nnnnn

uuuuu

nnnnn

aaaaaaaaaaaaaaaaaaaaaaaaa

"""""""""""""""

zzzzzz

Figure 6: Training Loss vs Validation Loss.

4.3 Training and Validation Loss
Analysis

To better understand the learning behavior of the
LSTM model, both Training Loss and Validation Loss
were recorded during training for each stock. The
curves are presented in the Fig. 6. for the five compa-
nies individually.

The analysis of the curves revealed the following
observations:

» For most stocks (Apple, Google, Meta), the train-
ing and validation losses decreased steadily and
remained close to each other, indicating that the
model generalized well without significant over-
fitting.

* Nvidia exhibited slightly slower convergence ini-
tially, but validation loss ultimately stabilized af-
ter around 50 epochs.

 Tesla’s stock showed higher validation loss fluc-
tuations during early epochs, which can be at-
tributed to Tesla’s high volatility in the real
stock market during the studied period (especially
2020-2022).
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Table 2: RMSE Comparison of Our LSTM Model with Other Approaches from Literature.

Company|Our LSTM|[1] LSTM|[1] ARIMA
Apple 3.42 5.52 13.60
Google 5.03 4.66 7.15
Meta 8.88 N/A N/A
Nvidia 2.54 N/A N/A
Tesla 14.31 12.38 23.98

[2] LSTM|[2] GRU|[2] Transformer|[3] LSTM
N/A N/A N/A 18.89
N/A N/A N/A 18.89
N/A N/A N/A N/A
N/A N/A N/A N/A

26.09 18.44 16.40 N/A

Table 3: Comparison of R? Scores Between Our LSTM Model and Results from (Ouf et al., 2024).

Company/Our LSTM|[4] LSTM (Sentiment Analysis)[[4] LSTM (No Sentiment Analysis)
Apple 95.76% 91% 98%
Google | 93.14% 88% 95%
Meta 98.77% N/A N/A
Nvidia | 77.41% N/A N/A
Tesla 93.67% 73% 55%

AAPL - Full Stock Price Prediction (2012-2022)
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Figure 7: LSTM model prediction graph of Apple.

oste

Figure 8: LSTM model prediction graph of Google.

META - Full Stock Price Prediction (2012-2022)

Figure 9: LSTM model prediction graph of Meta.

4.4 Full Time Predictions

The full timeline plots comparing actual and predicted
closing prices for each stock across the training, val-
idation, and testing periods revealed several key in-
sights:

* We see in Fig. 7. Fig. 8. Fig. 9. for

478

NVDA - FullStock Price Prediction (2012-2022)
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Figure 10: LSTM model prediction graph of Nvidia.

LA - Full Stock Price Prediction (2012-2022)
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Figure 11: LSTM model prediction graph of Tesla.

Apple, Google, and Meta stocks respectively,
demonstrated excellent alignment between actual
and predicted prices across the entire 2012-2022
timeline, with minimal deviation during both sta-
ble and volatile periods.

e In Fig. 10. Nvidia’s stock showed good general
predictive performance but had slight underfit-
ting during rapid market changes, suggesting that
additional features (such as market news senti-
ment) could further enhance the model for highly
volatile stocks.

* Tesla’s stock in Fig. 11, due to its extremely high
volatility in 2020-2022 (e.g., stock splits, market
sentiment shifts), exhibited larger prediction er-
rors during sudden spikes. However, the LSTM
model was still able to capture the overall upward
trend and major turning points reasonably well.
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4.5 Comparative Result Analysis

To benchmark our proposed LSTM model, we com-
pared our experimental results in Table 2 and Table 3
against four other published IEEE papers:

In all cases, the LSTM model successfully learned
the temporal dependencies in the stock price se-
quences and was able to generalize well to unseen
testing data.

Importantly, no significant divergence was ob-
served between actual and predicted prices toward the
end of the testing period for any of the stocks, con-
firming the model’s stability and robustness.

Furthermore, the prediction plots clearly illus-
trated that the LSTM model was not merely mem-
orizing training data but was genuinely learning un-
derlying patterns and trends that could be generalized
across time periods.

S DISCUSSION AND
LIMITATIONS

The experimental results demonstrate LSTM’s high
effectiveness for stock price forecasting, with R?
scores exceeding 0.9 for most stocks confirming
successful capture of complex temporal dependen-
cies. Comparative analysis showed LSTM consis-
tently outperforming ARIMA and matching or ex-
ceeding GRU and Transformer performance. Key
limitations include: (1) univariate analysis using only
closing prices, missing benefits from technical indi-
cators like RSI, MACD, or sentiment analysis; (2)
single-step prediction limiting real-world trading ap-
plicability; (3) computational expense compared to
simpler models; and (4) performance degradation on
highly volatile stocks like Tesla during extreme mar-
ket conditions. Despite limitations, the study con-
firms LSTM networks as reliable tools for financial
time series modeling, with architecture suitable for
algorithmic trading systems, risk modeling, and port-
folio optimization strategies.

6 CONCLUSION AND FUTURE
WORK

This study demonstrates LSTM neural networks’ ef-
fectiveness in predicting stock prices using historical
closing price data. Key findings include strong gen-
eralization (R? ; 0.93 for most stocks), stable training
without overfitting, robust performance across volatil-
ity levels, and superior benchmark performance com-

pared to traditional ARIMA and competitive deep
learning models. Results confirm LSTM’s power
in capturing non-linear, time-dependent structures in
stock market data. The model’s modularity allows
easy future extensions and real-world applications in
portfolio management and algorithmic trading. Fu-
ture enhancements could incorporate additional fea-
tures (volume, volatility indicators, sentiment analy-
sis), extend to multi-step predictions, combine with
attention mechanisms, include macroeconomic indi-
cators, deploy real-time systems with continuous re-
training, and apply explainability tools for transparent
decision-making.
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