Shexmo Richarlison Ribeiro dos Santos!®?, Luiz Felipe Cirqueira dos Santos!®°,

Automated Test Generation Using LLM Based on BDD:
A Comparative Study

b

Marcus Vinicius Santana Silva!@®¢, Marcos Cesar Barbosa dos Santos!' @9,

Mariano Florencio Mendon(;a1 ¢, Marcos Venicius Santos' @f, Marckson Fabio da Silva Santos!®8,
Alberto Luciano de Souza Bastos!@", Sabrina Marczak?®', Michel S. Soares! @ and

Fabio Gomes Rocha3 @k

Federal University of Sergipe, Sdo Cristévao, Sergipe, Brazil
2School of Technology, PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
3ISH (SafeLabs), Vitéria, Espirito Santo, Brazil

Software Quality, Behavior-Driven Development (BDD), Large Language Models (LLM), Automatic Test

In Software Engineering, seeking methods that save time in product development and improve delivery quality
is essential. BDD (Behavior-Driven Development) offers an approach that, through creating user stories and
acceptance criteria in collaboration with stakeholders, aims to ensure quality through test automation, allowing
the validation of criteria for product acceptance. The lack of test automation poses a problem, requiring man-
ual work to validate acceptance. To solve the issue of test automation in BDD, we conducted an experiment
using standardized prompts based on user stories and acceptance criteria written in Gherkin syntax, automat-
ically generating tests in four Large Language Models (ChatGPT, Gemini, Grok, and GitHub Copilot). The
experiment compared the following aspects: response similarity, test coverage concerning acceptance criteria,
accuracy, efficiency in the time required to generate the tests, and clarity. The results showed that the LLMs
have significant differences in their responses, even with similar prompts. We observed variations in test cov-
erage and accuracy, with ChatGPT standing out in both cases. In terms of efficiency, related to time, Grok
was the fastest while Gemini was the slowest. Finally, regarding the clarity of the responses, ChatGPT and
GitHub Copilot were similar and more effective than the others. The results show that the LLMs adopted in
the study can understand and generate automated tests accurately. However, they still do not eliminate the
need for human assessment, but they do serve as a support to speed up the automation process.

1 INTRODUCTION

Behavior-Driven Development (BDD) is a framework

Keywords:
Code Generator, Experiment.

Abstract:
(2 https://orcid.org/0000-0003-0287-8055
5@ nttps://orcid.org/0000-0003-4538-5410
¢ https://orcid.org/0009-0000-9211-5259
4@ https://orcid.org/0000-0002-7929-3904
¢ https://orcid.org/0000-0003-0732-3980
f© https://orcid.org/0009-0006-1645-6127
(2 https://orcid.org/0009-0001-6479-1900
@ https://orcid.org/0009-0002-3911-9757
1D nttps://orcid.org/0000-0001-9631-8969
i@ nhttps://orcid.org/0000-0002-7193-5087
k

https://orcid.org/0000-0002-0512-5406

often used in software development. Frameworks are
standardized methods used in the software develop-
ment process to contribute to understanding the logi-
cal and sequential steps involved, helping developers
to understand the process as a whole.

BDD was created in 2003 by Dan North (North,
2006) to mitigate the issues arising from Test-Driven
Development (TDD). While TDD focuses on testing
the software, BDD aims to determine the behaviour
the software needs to exhibit when executing a par-

47

Ribeiro dos Santos, S. R., Cirqueira dos Santos, L. F,, Silva, M. V. S., Barbosa dos Santos, M. C., Mendonga, M. F,, Santos, M. V., Santos, M. F. S., Bastos, A. L. S., Marczak, S., Soares, M.
S. and Rocha, F. G.

Automated Test Generation Using LLM Based on BDD: A Comparative Study.

DOI: 10.5220/0013683600003985

Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 21st International Conference on Web Information Systems and Technologies (WEBIST 2025), pages 47-58
ISBN: 978-989-758-772-6; ISSN: 2184-3252

Proceedings Copyright © 2025 by SCITEPRESS — Science and Technology Publications, Lda.

WEBIST 2025 - 21st International Conference on Web Information Systems and Technologies

ticular functionality. Thus, BDD is used throughout
the system lifecycle, from requirements elicitation to
automation and validation (Bruschi et al., 2019).

Requirements elicitation using BDD uses the
“given, when, then” pattern, employing an easily
understandable language known as Gherkin (Smart,
2014) to enhance stakeholder communication and un-
derstanding. Through this pattern, the software com-
ponents’ requirements are elicited, focusing on out-
lining the expected behaviour of the software.

The use of generative Artificial Intelligence (Al)
in software development has been evident in various
tools that enhance productivity, provided they are ad-
equately supervised (Sauvola et al., 2024). Therefore,
it is natural to employ generative Al tools for testing
and documentation purposes to optimize BDD pro-
cesses.

Therefore, the main goal of this research is to
“Analyze the efficiency of user stories using BDD,
aiming at automatic generation of test code, in com-
parison to Large Language Models (LLMs), from an
academic perspective, in the context of software de-
velopment”. To achieve this goal, the posed the fol-
lowing research questions.

RQI1. What is the similarity of responses among
the different Als when generating automated tests?

RQ2. What is the coverage of acceptance criteria
by the tests generated by each AI?

RQ3. What is the accuracy of the generated tests
compared to a reference test set?

RQ4. How much time is required to generate the
tests by each LLM?

RQS5. What is the clarity of responses among dif-
ferent executions of each AI?

To answer them, we conducted an experiment,
where a software was created to read user stories and
their respective acceptance criteria, generating test
code using different Als. Using the prompt we cre-
ated, we were able to insert them into the Als used so
that we could observe what the return would be from
them. In this way, we were able to analyze whether
the use of Als is effective in this context.

Our paper brings two main contributions: the
demonstration that LLMs can be used to generated
automated tests based on user stories and acceptance
scenarios and the comparison among the performance
of the selected LLMs: ChatGPT, Gemini, Grok, and
GitHub Copilot, for each one of the investigated as-
pects.

The remainder of this paper is organized as fol-
lows: Section 2 explains the concepts inherent to
the use of BDD and Al. Section 3 presents related
work. Section 4 details our experiment procedures
and methods. Section 5 reports our study results and

48

Section 6 discusses them with regards literature. Sec-
tion 7 presents the threats to the validity of our study.
Section 8 concludes the paper by highlighting once
again its contributions and presenting proposed future
work.

2 BACKGROUND

Next, concepts inherent to Behavior-Driven Develop-
ment (BDD) and Large Language Model (LLM) are
discussed, including the presentation of the frame-
works used in this research for the automatic gener-
ation of test code.

2.1 Behavior-Driven Development

The Agile Movement (Beck et al., 2001) gathered
computing experts to seek improvements in software
quality and time response of software delivery. From
this point, changes occurred, and frameworks were
created to enable faster deliveries. Created after this
Movement, Behavior-Driven Development (BDD) is
an agile framework used throughout the software de-
velopment cycle.

Created by Dan North (North, 2006), BDD aims
to improve communication among those involved in
software development, specially communication with
stakeholders who are often not familiar with technical
language, enhancing the quality of software delivery
as a consequence. Thus, some benefits of BDD in-
clude time optimization and enhanced quality in re-
quirements elicitation (Pereira et al., 2018).

BDD is characterized by the use of the Gherkin
language (Smart, 2014), written in a clear, direct,
and assertive natural language, contributing to high-
quality requirements elicitation to find the expected
behaviour of software, i.e., the stakeholder’s needs.
BDD divides the writing of requirements into two
parts: the first being the functionality or expected be-
haviour of the system, and the second part being one
or more acceptance criteria related to the validation
of this behaviour (North et al., 2019), as illustrated in
Figure 1.

BDD uses the terms “given, when, then” as a stan-
dard writing format, with each user story having its
respective acceptance criteria. Thus, the scenarios or
criteria are written to be testable (Silva and Fitzger-
ald, 2021), aiding in the specification and verification
of requirements (Guerra-Garcia et al., 2023).

Since its functionalities are written concisely, user
stories are easily understood by all involved, improv-
ing communication among stakeholders (Couto et al.,
2022; Pereira et al., 2018; Bruschi et al., 2019).

Automated Test Generation Using LLM Based on BDD: A Comparative Study

User story

As a banker
I want to have access fo the system
So | can approve loans

¥

/ Criterion 1 \

Given that | am the banker
When a client has financial credit
And there are no pending issues on her name
Then | can approve the loan

Criterion 2

Given that | am the banker
When a client requests a loan

And has an unfavorable name
\ Then the loan cannot be granted _/

Figure 1: User story example.

By enhancing communication, the Gherkin language
adopted by BDD ensures assertiveness in the software
behaviour, making all parties aware of what a partic-
ular user story refers to, for example.

However, BDD presents specific challenges,
among which the gap related to the misalignment be-
tween acceptance criteria and automation stands out.
Implementing tests is a manual task, requiring a sys-
tematic process for efficient integration (Zameni et al.,
2023). The lack of precision and coverage of the tests
concerning the acceptance criteria can result in in-
complete validation (Zameni et al., 2023). In addi-
tion, the manual creation of tests increases the work-
load, emphasising the need for systematic flows and
support tools to effectively integrate tests in the BDD
context (Ma et al., 2023).

Although BDD has been used successfully in var-
ious software engineering processes, studies still need
to explore the enhancement of BDD through emerg-
ing technologies such as machine learning (Bina-
mungu and Maro, 2023).

2.2 Large Language Model

Language Models refer to any system trained to pre-
dict a series of characters, whether letters, words, or
sentences, sequentially or not, given some previous or
adjacent context (Bender and Koller, 2020). The de-
velopment of Language Models follows two main ap-
proaches: transformer models and word embeddings.

Word embeddings improve the results of various
performance tests while reducing the labelled data
needed for multiple supervised tasks. In contrast,
transformer models have continuously benefited from

larger architectures and datasets, with their capac-
ity subsequently enhanced for specific tasks. Some
of these models have redefined the concept of their
classification, making it more accurate to character-
ize them as Large Language Models (LLMs) (Ben-
der et al., 2021), such as GPT (OpenAl), Gemini
(Google), Grok (Twitter), and GitHub Copilot.

Recent studies indicate that using LLMs can re-
duce the time required to write and maintain BDD
tests and improve the quality and coverage of tests
(Zhang et al., 2023). This methodology smooths the
barriers between requirements gathering and techni-
cal implementation, allowing for more effective col-
laboration between stakeholders and the development
team, and promoting a more agile and integrated soft-
ware development cycle.

3 RELATED WORK

Large language models (LLMs) are increasingly used
in Software Engineering (SE) for different tasks, like
generating code, designing software, and automating
test cases. As a result, in this study, we want to
highlight related work identified in Table 1. We will
present this information next.

The principle of using natural language to cre-
ate high-level code with Al is addressed by Lee et
al. (Lee et al., 2023), using the OpenCV tool for a
UI test in an object-oriented analysis combined with
BDD for a test automation. They experiment with nat-
ural language-based templates and then apply it to a
UI test simulator. The results were analyzed using
a BDD and an OOBDD (object-oriented behavior-
driven design) approach. Through their results, we
understood how generative Al works efficiently for
human-language test automation for complex soft-
ware.

In contrast, Takerngsaksiri et al. (Takerngsak-
siri et al., 2024) share the results of using PyTester,
a Text-to-TextCase tool in a TDD scenario. They
compare results from PyTester with the state-of-
art models directly (Finetuned CodeT5-large, In-
coder,Starcoder e GPT3.5). The results reinforce how
the use of Al-automated tools based on natural lan-
guage are efficient with a low percentage of errors or
inconsistencies.

Mock et al. (Mock et al., 2024) analyses the in-
teraction between the development team without Al-
assist and the test codes generated by Al, identifying
which ones are the most promising. With the aim
of automating TDD processes with artificial intelli-
gence, the study compared the generated code with
the other 5 developers, concluding that the automa-

49

WEBIST 2025 - 21st International Conference on Web Information Systems and Technologies

Table 1: Related Work.

Reference Abstract
(Lee et al., 2023) Demonstrates an
approach using
generative Al to
translate human

language into high-
level programming

language.
(Mock et al., 2024) Introduces an
approach that

proposes the au-
tomation of TDD
through Generative
Al

Evaluates a detailed
approach focusing
on enhancing BDD
practices through
LLMs to generate
acceptance tests
automatically.

(Karpurapu et al., 2024)

Presents and evalu-
ates PyTester as a
tool for generating
formal test cases
from natural lan-

guage.

(Takerngsaksiri et al., 2024)

tion of the TDD process can indeed be used efficiently
but with due supervision due to the quality of the code
that is produced in this way.

Regarding a multi-Al analysis, Karpurapu et al.
(Karpurapu et al., 2024) concludes that BDD accep-
tance tests generated by LLMs are beneficial, as these
tests represent considerable complexity.

The use of Large Language Models (LLMs) for
automated code generation following Test-Driven De-
velopment (TDD) and Behavior-Driven Development
(BDD) processes has shown satisfactory and promis-
ing results, warranting further exploration and expan-
sion. Our article builds on this foundation by using
code generated from generative Al. However, we take
it a step further by introducing a novel approach of
comparing the outputs from various LLMs using the
prompt and evaluating them through specific metrics,
which will be presented throughout the article.

4 METHODOLOGY

Experiments are an empirical method that aids in the
evaluation and validation of research results (Wohlin
et al., 2003).In Software Engineering, experiments

50

aim to identify the outcomes of certain situations and
seek to benefit the field with potential discoveries.

For this experiment, a library provided by a com-
pany containing 34 user stories was used. Of these,
30 stories had three acceptance criteria, and four had
only one criterion, adding 94 acceptance criteria. The
stories were written in Gherkin language using the
BDD framework in the native language of the re-
searchers (Brazilian Portuguese). Based on these, a
prompt was created for each scenario in the selected
Large Language Models. The stories and their respec-
tive scenarios and prompts can be viewed at the link'.

The objective at this point is to compare the ef-
fectiveness of LLMs Grok, Gemini, ChatGPT, and
GitHub Copilot in generating automated tests based
on user stories and acceptance criteria, following
BDD in the Gherkin standard, compared to comput-
erised tests performed by a development team. This
objective can be divided into five sub-objectives: each
part is related to one of the research questions and has
their own metrics, and hypotheses detailed as follows:

Objective 1: Measure the similarity of responses
from different LLMs

* RQ1 - Question: What is the similarity of re-
sponses among the different Als when generating
automated tests?

* Metric: Similarity coefficient (Cosine Similarity).

e Null Hypothesis (HO.1): There is no significant
difference in the similarity of responses among
the different Als.

¢ Alternative Hypothesis (H1.1): There is a sig-
nificant difference in the similarity of responses
among the different Als.

Objective 2: Validate whether the results gener-
ated by the LLMs cover the acceptance criteria.

* RQ2 - Question: What is the coverage of accep-
tance criteria by the tests generated by each AI?

* Metric: Acceptance criteria coverage (percentage
of acceptance criteria covered by the generated
tests).

e Null Hypothesis (HO.2): There is no significant
difference in the coverage of acceptance criteria
among the different Als.

* Alternative Hypothesis (H1.2): There is a signifi-
cant difference in the coverage of acceptance cri-
teria among the different Als.

Objective 3: Evaluate the accuracy of the tests
generated by the different LLMs

Uhttps://doi.org/10.5281/zenodo.13155965

Automated Test Generation Using LLM Based on BDD: A Comparative Study

* RQ3 - Question: What is the accuracy of the gen-

Table 2: Evaluated Metrics.

? . — :
erated tests compared to a reference test set? Metric Definition Data Collection
* Metric: Test accuracy (percentage of correspon- Accuracy | It refers to the | After executing
dence between the generated tests and the refer- proportion of | the generated
ence test set). tests that passed | tests, the num-
 Null Hypothesis (H0.3): There is no significant (correct results) | ber of tests that
difference in the accuracy of the tests generated among all exe- | passed and failed
among the different Als. cuted tests. was recorded.
. . . - Coverage | It refers to the | The number of
* Alternative Hypothesis (H1.3): There is a signifi- & . .
. . proportion of | acceptance crite-
cant difference in the accuracy of the tests gener- . .
. requirements ria covered by the
ated among the different Als.
or acceptance | generated tests
Objective 4: Evaluate the efficiency, in terms of criteria covered | was checked for
time, for generating the tests by the generated | each user story.
* RQ4 - Question: How much time is required to tests.
generate the tests by each LLM? Clarity | It refe‘rs. to the Deyelopers could
. . . . readability and | assign a score
* Metric: Test generation time (average time re- hensi f 1 5 f
ired to generate tests) comprehension rom 1 to or
quire & ’ of the generated | each generated
* Null Hypothesis (H0.4): There is no significant tests. It can be | test. Alterna-
difference in the test generation time among the qualitatively tively, readability
different Als. evaluated by a | metrics such as
* Alternative Hypothesis (H1.4): There is a signifi- group of devel- | Flesch Reading
cant difference in the test generation time among opers or through | Ease could be
the different Als. automatic read- | used.
— . ability metrics.
Objective 5: Evaluate the clarity of responses - y et -
. . Efficiency| It refers, in the | The time from
among different executions of each Al .
context of this | the test request to
* RQS5 - Question: What is the clarity of responses paper, to the | its generation and
among different executions of each AI? time required | recording was
* Metric: Clarity of responses (evaluated by subjec- to generate the | measured.
tive criteria such as readability, comprehensibility, tests.

and adherence to acceptance criteria).

* Null Hypothesis (H0.5): There is no significant
difference in the clarity of responses among the
different Als.

* Alternative Hypothesis (H1.5): There is a signif-
icant difference in the clarity of responses among
the different Als.

4.2 Evaluated Metrics

As shown in Table 2, the metrics adopted in this study
are partially related to the need to improve alignment
between acceptance criteria and test automation. The
acceptance criteria stage must have a positive result
for the automation of its respective tests to be carried
out. Thus, they must be in line with the behavior ex-
pected by the software. The metrics used were se-
lected with the aim of achieving the objectives pro-
posed in this study. In addition, the efficiency mea-
sured is associated with the time needed to create the
tests, thus reducing the manual workload, as identi-
fied as a gap in the literature review.

Through these metrics, results can be more as-
sertive, increasing the reliability of results and pro-
viding clarity and effectiveness to the conclusions of
this research.

4.1 Experiment Execution

The methodological steps taken for executing this ex-
periment are outlined next:

1. Submit each user story and their respective ac-
ceptance criteria to the LLMs Grok, Gemini,
ChatGPT, and GitHub Copilot using a standard
prompt;

2. Generate and document the test code returned by
each source;

3. Execute the generated tests and record the results;

4. Statistically evaluate the results.

51

WEBIST 2025 - 21st International Conference on Web Information Systems and Technologies

S RESULTS

The results are related to each sub-objectives out-
lined in section 4, that refer to their respective re-
search questions. The following are the results related
to each of the objectives outlined in Section 4 with
the aim of answering their respective RQs outlined in
Section 1. The results are presented in Figures 2 and
3.

ChatGPT Gemini
|

GROK

-0.2

-0.1

GithubCopilot

-0.0

.
GithubCopilot

Gemini ChatGPT GROK

Figure 2: Similarity Matrix.

In Figure 3, “A” refers to LLM Gemini, “B” refers
to ChatGPT, “C” refers to GROK, and “D” refers to
GitHub Copilot.

1.0

0.8

o
0. F * i * + %
0.
0.
0.0
AB AC AD B-C B-D c-D

Figure 3: Distribution of similarities.

Y

=

o

5.1 Objective 1

To measure the similarity of responses from different
LLMs, the Kruskal-Wallis test was employed. This
non-parametric test is appropriate for comparing in-
dependent distributions when the assumptions of nor-
mality are not met.
Results of the Kruskal-Wallis Test:
* Statistic: 36.2464

* p-Value: 0.0000

52

The results indicated a Kruskal-Wallis statistic of
36.2464 and a p-value of 0.0000. The extremely low
p-value (less than 0.05) suggests that there is a sta-
tistically significant difference in the similarity of re-
sponses among the different LLMs.

Hypotheses:

e Null Hypothesis (HO.1): There is no significant
difference in the similarity of responses among
the different Als.

¢ Alternative Hypothesis (H1.1): There is a sig-
nificant difference in the similarity of responses
among the different Als.

Answering RQ1: Therefore, since the p-value is
less than 0.05, we reject the null hypothesis (HO.1).
Thus, we support the alternative hypothesis (H1.1),
which asserts that there is a significant difference in
the similarity of responses among the different LLMs.
This implies that the LLMs Grok, Gemini, ChatGPT,
and GitHub Copilot produce responses with statis-
tically significant varying levels of similarity when
generating automated tests based on user stories and
acceptance criteria.

5.2 Objective 2

To validate if the results generated by the LLMs cover
the acceptance criteria, a coverage analysis and an
ANOVA test were conducted, followed bypost-hoc
and Tukey HSD.

Coverage Means:

* Grok: 0.4054
e Gemini: 0.5943
e ChatGPT: 0.7670
¢ GitHub Copilot: 0.7315
Coverage ANOVA:
e Sum of Squares (Model): 7.419452
* Sum of Squares (Residual): 13.830678
* F-Value: 65.089134
e p-Value: 1.025147e-33

The ANOVA results indicated an F-value of
65.089134 and a p-value of 1.025147e-33, which is
extremely low (less than 0.05). This suggests that
there is a statistically significant difference in the
coverage of acceptance criteria among the different
LLMs.

Tukey HSD Test for Coverage:

e ChatGPT vs. GitHub Copilot: p = 0.6063 (not
significant)

e ChatGPT vs. Gemini: p j 0.001 (significant)

Automated Test Generation Using LLM Based on BDD: A Comparative Study

* ChatGPT vs. Grok: p j 0.001 (significant)

* GitHub Copilot vs. Gemini: p j 0.001 (signifi-
cant)

* GitHub Copilot vs. Grok: p j 0.001 (significant)
* Gemini vs. Grok: p j 0.001 (significant)

The results of the post-hoc Tukey HSD test
showed that the differences in coverage of accep-
tance criteria are significant among most LLMs, ex-
cept for ChatGPT and GitHub Copilot, whose differ-
ences were not significant (p = 0.6063).

Hypotheses:

* Null Hypothesis (H0.2): There is no significant
difference in the coverage of acceptance criteria
among the different Als.

* Alternative Hypothesis (H1.2): There is a signifi-
cant difference in the coverage of acceptance cri-
teria among the different Als.

Answering RQ2: Therefore, since the p-value of
the ANOVA is less than 0.05, we reject the null hy-
pothesis (HO0.2). Thus, we support the alternative hy-
pothesis (H1.2), which states that there is a signifi-
cant difference in the coverage of acceptance crite-
ria among the different Als. The post-hoc tests indi-
cate that, although ChatGPT and GitHub Copilot do
not show significant differences between each other,
all other comparisons between the LLMs are signifi-
cantly different.

5.3 Objective 3

To assess the accuracy of tests generated by different
LLMs, precision means were calculated and an anal-
ysis of variance (ANOVA) was conducted, followed
by the Tukey HSD post-hoc test.

Precision Means:

* Grok: 0.3391
* Gemini: 0.5373
* ChatGPT: 0.7670
* GitHub Copilot: 0.7239
ANOVA of Precision:
* Sum of Squares (Model): 10.57519
* Sum of Squares (Residual): 12.50989
e F-Value: 102.56869
e P-Value: 3.882251e-48

The results of the ANOVA indicated an F-value
of 102.56869 and a p-value of 3.882251e-48, which
is extremely low (less than 0.05). This suggests that
there is a statistically significant difference in the ac-
curacy of tests generated by the different LLMs.

Tukey HSD Test of Precision:

e ChatGPT vs. GitHub Copilot: p = 0.3944 (not
significant)

* ChatGPT vs. Gemini: p j 0.001 (significant)
e ChatGPT vs. Grok: p ; 0.001 (significant)

* GitHub Copilot vs. Gemini: p j 0.001 (signifi-
cant)

* GitHub Copilot vs. Grok: p j 0.001 (significant)
* Gemini vs. Grok: p j 0.001 (significant)

The results of the Tukey HSD post-hoc test
showed that the differences in test accuracy are sig-
nificant between ChatGPT, Gemini, and Grok. There
were no significant differences in accuracy between
GitHub Copilot and ChatGPT (p = 0.3944).

Hypotheses:

e Null Hypothesis (H0.3): There is no signifi-
cant difference in the accuracy of tests generated
among the different Als

* Alternative Hypothesis (H1.3): There is a signifi-
cant difference in the accuracy of tests generated
among the different Als.

Answering RQ3: Given that the p-value of the
ANOVA is less than 0.05, we reject the null hypothe-
sis (HO.3). Therefore, we support the alternative hy-
pothesis (H1.3), which states a significant difference
in the accuracy of tests generated by the different
LLMs. The results of the post-hoc test indicate that
ChatGPT has a significantly different accuracy com-
pared to the other LLMs tested, except for GitHub
Copilot. At the same time, the differences between
GitHub Copilot, Gemini, and Grok are also statisti-
cally significant.

5.4 Objective 4

To assess the efficiency of the different LLMs in test
generation, the mean generation times were calcu-
lated and an analysis of variance (ANOVA) was con-
ducted, followed by the Tukey HSD post-hoc test.
ANOVA of Efficiency:

e Sum of Squares (Model): 0.712254

* Sum of Squares (Residual): 0.028181
F-Value: 3066.558824
» P-Value: 6.633292¢-258

The ANOVA results indicate a significant differ-
ence between the groups, as the p-value is extremely
low (6.633292e-258). This means that at least one of
the models has a significantly different efficiency per-
formance compared to the others.

Tukey HSD Test of Efficiency:

53

WEBIST 2025 - 21st International Conference on Web Information Systems and Technologies

* ChatGPT vs. GitHub Copilot: p = 1.0 (not signif-
icant)

* ChatGPT vs. Gemini: p ; 0.001 (significant)

* ChatGPT vs. Grok: p = 0.1858 (not significant)

* GitHub Copilot vs. Gemini: p j 0.001 (signifi-
cant)

* GitHub Copilot vs. Grok: p = 0.1858 (not signifi-
cant)

* Gemini vs. Grok: p j 0.001 (significant)
Significant Differences:

* ChatGPT vs. Gemini: The difference is signifi-
cant, indicating that the generation time of Chat-
GPT is significantly shorter than that of Gemini.

GitHub Copilot vs. Gemini: The difference is
significant, indicating that the generation time of
GitHub Copilot is significantly shorter than that
of Gemini.

Gemini vs. Grok: The difference is significant,
indicating that the generation time of Gemini is
significantly longer than that of Grok.
Non-Significant Differences:

ChatGPT vs. GitHub Copilot: There is no sig-
nificant difference, suggesting that the generation
time of ChatGPT is similar to that of GitHub
Copilot.

ChatGPT vs. Grok: There is no significant differ-

ence, indicating that the generation time of Chat-
GPT is similar to that of Grok.

GitHub Copilot vs. Grok: There is no significant
difference, indicating that the generation time of
GitHub Copilot is similar to that of Grok.
Interpretation:

ChatGPT e GitHub Copilot: Both have compa-
rable and efficient test generation times, with no
significant differences between them.

Gemini: The Gemini model exhibits significantly
longer generation times compared to all other
models, indicating inefficiency in its test gener-
ation process.

Grok: The Grok model performs efficiently, sim-
ilar to ChatGPT and GitHub Copilot, and signifi-
cantly better than Gemini.

The results suggest that, in terms of test generation
time efficiency, both ChatGPT and GitHub Copilot
are effective and comparable. However, the Gemini
model is significantly slower, indicating that it may
not be the best choice when generation time is a crit-
ical factor. The Grok model also demonstrates ef-
ficiency and is comparable to ChatGPT and GitHub
Copilot.

54

Hypotheses:

* Null Hypothesis (H0.4): There is no significant
difference in the test generation time among the
different Als.

* Alternative Hypothesis (H1.4): There is a signifi-
cant difference in the test generation time among
the different Als.

Answering RQ4: Given that the p-value of the
ANOVA is less than 0.05, we reject the null hypothe-
sis (HO.4). Therefore, we support the alternative hy-
pothesis (H1.4), which states that there is a significant
difference in the test generation time among the dif-
ferent Als.

5.5 Objective 5

To assess the clarity of responses across different exe-
cutions of each Al, clarity means were calculated and
an analysis of variance (ANOVA) was conducted, fol-
lowed by the Tukey HSD post-hoc test.

ANOVA of Clarity:

e Sum of Squares (Model): 145030.766421

* Sum of Squares (Residual): 124106.926135
F-Value: 141.789559

e P-Value: 7.339233e-61

The results of the ANOVA indicate a significant
difference in the clarity of responses among the differ-
ent Als, as the p-value is extremely low (7.339233e-
61). This means that at least one of the Als has sig-
nificantly different clarity than the others.

Means of Clarity:

¢ Grok: 44.6511

e Gemini: 67.0604

¢ ChatGPT: 92.2609

* GitHub Copilot: 92.2609
Tukey HSD Test of Clarity:

e ChatGPT vs. GitHub Copilot: p = 1.0 (not signif-
icant)

e ChatGPT vs. Gemini: p j 0.001 (significant)
e ChatGPT vs. Grok: p j 0.001 (significant)

 GitHub Copilot vs. Gemini: p j 0.001 (signifi-
cant)

* GitHub Copilot vs. Grok: p j 0.001 (significant)
* Gemini vs. Grok: p j 0.001 (significant)

Significant Differences:

e ChatGPT vs. Gemini: The difference is signifi-
cant, indicating that the clarity of responses from
ChatGPT is significantly higher than that of Gem-
ini.

Automated Test Generation Using LLM Based on BDD: A Comparative Study

ChatGPT vs. Grok: The difference is significant,
indicating that the clarity of responses from Chat-
GPT is significantly higher than that of Grok.

GitHub Copilot vs. Gemini: The difference is sig-
nificant, indicating that the clarity of responses
from GitHub Copilot is significantly higher than
that of Gemini.

GitHub Copilot vs. Grok: The difference is sig-
nificant, indicating that the clarity of responses
from GitHub Copilot is significantly higher than
that of Grok.

Gemini vs. Grok: The difference is significant, in-
dicating that the clarity of responses from Gemini
is significantly higher than that of Grok.

Non-Significant Differences:

ChatGPT vs. GitHub Copilot: There is no sig-
nificant difference, suggesting that the clarity of
responses from ChatGPT is similar to that of
GitHub Copilot.

Interpretation

ChatGPT e GitHub Copilot: Both Als have re-
sponses with comparable clarity and significantly
higher than the other Als evaluated.

Gemini: The Gemini model exhibits intermedi-
ate response clarity, being significantly better than
Grok but worse than ChatGPT and GitHub Copi-
lot.

Grok: The Grok model has the lowest response
clarity among all evaluated Als.

Thus, the results suggest that ChatGPT and
GitHub Copilot are adequate and comparable in terms
of response clarity. The Gemini model is intermedi-
ate, exhibiting significantly higher clarity than Grok
but lower than ChatGPT and GitHub Copilot. The
Grok model shows the lowest clarity among all Als.

Hypotheses:

* Null Hypothesis (H0.5): There is no significant
difference in the clarity of responses among the
different Als.

 Alternative Hypothesis (H1.5): There is a signif-
icant difference in the clarity of responses among
the different Als.

Answering RQS5: Since the p-value of the
ANOVA is less than 0.05, we reject the null hypothe-
sis (HO.5). Therefore, we support the alternative hy-
pothesis (H1.5), which states a significant difference
in the clarity of responses among the different Als.

6 DISCUSSION

Figure 4 was created using the model developed by
Rajbhoj et al. (Rajbhoj et al., 2024). The adaptation
created for this study made it possible to follow a step-
by-step method inherent to executing the automatic
test generator created here.

As can be seen, there is initially a stakeholder who
has a desire for a particular behaviour performed by
the software. Thus, the user story initially emerges,
which, in turn, leads to one or more acceptance cri-
teria, scenarios testable that can guarantee the return
desired by the software. From this point on, the pro-
gramming language followed by the testing frame-
work is selected, intending the standard prompt to be
used in LLMs can be created, and finally, the auto-
matic code can be generated.

Furthermore, this study allowed reviewing an in-
tegrated cycle for using LLMs associated with the
BDD points. The LLMs are incorporated as feedback
points after formalizing the user story and its accep-
tance criteria. During development, LLMs may be
asked to review and improve the source code during
the TDD refactoring stage. This cycle is illustrated in
Figure 5.

In addition to the previous cycle, the work be-
gan with the formalization of user stories and their
respective acceptance scenarios provided by the com-
pany. These stories and scenarios were integrated into
the prompt presented in Figure 6 prompt, making it
possible to carry out the necessary tests in the LLMs
Grok, Gemini, ChatGPT and GitHub Copilot, using
the Python programming language to observe the sim-
ilarity resulting from each one. Therefore, during the
development cycle, after test generation, we imple-
ment a new interaction that can benefit the develop-
ment process by using LLM, allowing LLM feedback
during the TDD refactoring stage.

The model generates the code. Otherwise, as TDD
and BDD themselves highlight refactoring as a crucial
factor, a cycle involving new requests to LLM may
be necessary, automating the development, execution
and refactoring process with the support of LLM.

Regarding accuracy, ChatGPT and GitHub Copi-
lot performed the best, being very close to each other.
This result is because GitHub Copilot uses parts of
the ChatGPT model. On the other hand, Gemini and
Grok had significantly lower accuracies, suggesting
that the different models were more effective, in part
due to the use of the free version but also because,
in general, Gemini has difficulty delivering tests for
three scenarios in one single command. Therefore,
we suggest submitting one scenario at a time during
refactoring.

55

WEBIST 2025 - 21st International Conference on Web Information Systems and Technologies

', B

User story Test framework

Stakeholder I |

¥ 5 <P

Acceptance criteria

Programming language

@

Prompt model template

l

o — B

Generated code

Figure 4: Prompt model for BDD test automation.

Requirements
elicitation

|.) SD%—¢

~O—
LLWJ

Formalization

Figure 5: Automatic code generation.

As for clarity, Grok had the worst performance,
mainly because it often generates results in English,
which is in line with the platform’s main focus being
the English language. Another point to consider is
that Grok focuses more on conversation and research
based on data from Tiitter, not having code genera-
tion as its primary objective. In the free version, Gem-
ini presents good clarity when analyzing a single ac-
ceptance criterion but has difficulty generating code
for multiple scenarios. There is a need to evaluate the
advanced version to see if this issue is resolved.

The results showed that ChatGPT and the devel-
opment team were effective and comparable in terms
of test generation time efficiency. The Gemini model,
however, was significantly slower, indicating that it
may not be the best choice when generation time is a
critical factor. The Grok model proved efficient and
comparable to ChatGPT and the development team.

We observed that low-quality stories and scenar-
ios negatively impact automatic code generation. This
occurs due to ambiguities or unclear texts, making it
difficult for LLMs to read and causing confusion in
delivering the expected text. BDD was developed to
be objective and concise; however, if a scenario is pre-
pared with poor-quality writing, the return will cer-
tainly not be as expected.

The correct use of BDD and an LLM can bene-
fit software development by helping developers auto-

56

mate test code. However, it is essential to emphasize
that using this technology does not mean replacing
the professional with the machine but instead taking
advantage of existing technologies to assist in the nec-
essary work.

We contributed to the advancement of the studies
presented in Section 3 by carrying out a comparative
experiment using the LLMs Gemini, Grok, ChatGPT
and GitHub Copilot together with the BDD frame-
work, demonstrating the effectiveness of well-written
user stories with the objective of automatically gener-
ate test codes through Al

7 THREATS TO VALIDITY

Threats to validity are understood as circumstances
encountered during the study’s execution, which need
to be explained as they were mitigated, bringing re-
liability to the research (Runeson and Host, 2009).
Below, the threats encountered in this study are de-
scribed according to Zhou et al. (Zhou et al., 2016).

7.1 Construction Validity

To conduct this study, a theoretical approach to BDD
was necessary to understand how the framework func-
tions and information about the LLMs used in this re-
search. These details are provided in Section 2, where
two authors addressed the critical concepts related to
the themes of this study, synthesizing essential infor-
mation for understanding the achieved results.

7.2 Internal Validity

Seven researchers conducted the study: three con-
ducted the relevant theoretical research on the topic,
one created the test codes, one performed the statis-
tical analyses and supervised the paper, and two re-
viewed the study for improvements in the quality of

Automated Test Generation Using LLM Based on BDD: A Comparative Study

use the code.

You are a test amalyst, responsible for creating unit tests,
based on the user story {us} and the acceptance criteria {acl
based on gherkin. Create unit tests for the programming
language {pl} based on the {fw} framework and explain how to

Figure 6: Prompt for the Tests Generation.

the final product. All authors read and approved the
final version of the article. There were no objections
from any of the authors.

7.3 External Validity

To ensure the reliability of the study, user stories, their
respective acceptance criteria, and prompts were cre-
ated to be used with the selected LLMs, resulting in
the generation of automated test code. These data can
be viewed at this link>.

7.4 Conclusion Validity

The step-by-step process of this research was de-
scribed in Section 4, and the findings are presented
in Section 5. This study is replicable if the method-
ological steps used are followed.

8 CONCLUSION

This work adopted an experimental research strategy
using statistical evaluation based on 34 user stories
and a total of 94 acceptance scenarios to analyze the
similarity between the responses, the coverage of the
tests generated to the indicated scenarios, the accu-
racy of the tests, the efficiency to generation time and,
finally, the clarity of responses.

Creating automated tests using Large Language
Models (LLMs) through Behavior-Driven Develop-
ment (BDD) has proven to be a relevant approach in
software development. However, we have identified
that faster LLMs currently do not provide satisfactory
results in clarity and accuracy, which suggests that
speed should not be the main criterion when choos-
ing an LLM.

The LLMs used in this study could understand
and generate natural language text with precision and
quality based on well-described user stories and ac-
ceptance scenarios. This aspect allows software engi-
neers and quality assurance teams to automate the cre-
ation of their tests based on BDD acceptance scenar-

Zhttps://doi.org/10.5281/zenodo.13155965

ios, using natural language descriptions, speeding up
development and ensuring that tests more accurately
reflect the precise requirements of the business.

Although the results have shown promise, we are
still far from complete automation that would allow
human evaluation to be dispensed with LLMs speed
up the initial creation steps, improving quality and
saving time. Still, the scenarios must be written of
high quality so that the resulting codes achieve the
expected software behaviour. Good scenario writing
is crucial to ensuring that automated test codes are ef-
fective.

The comparative tests brought reliability to this
study, demonstrating that, as the software was created
to interpret the stories with the LLMs, the tests could
show whether the automated codes were being gen-
erated in a meaningful way based on the hypotheses
presented.

One way to improve LLMs’ responses for fu-
ture work could be to implement the checklist pre-
sented by Oliveira, Marczak, and Moralles (Oliveira
et al,, 2019) in creating user stories with BDD.
This could contribute to delivering more accurate test
codes through the AutoDevSuite tool developed in
this study.

ACKNOWLEDGMENTS

Sabrina Marczak would like to thank CNPq for the
financial support (Productivity Scholarship, process
no. 313181/2021-7). Shexmo Santos would like to
thank CAPES/Brazil for the financial support (Mas-
ter’s Scholarship, process no. 88887.888613/2023-
00).

REFERENCES

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A.,
Cunningham, W., Fowler, M., Grenning, J., High-
smith, J., Hunt, A., Jeffries, R., et al. (2001). The
agile manifesto.

Bender, E., Gebru, T., McMillan-Major, A., and Shmitchell,
S. (2021). On the dangers of stochastic parrots: Can

57

WEBIST 2025 - 21st International Conference on Web Information Systems and Technologies

language models be too big? In Proceedings of the
2021 ACM Conference on Fairness, Accountability,
and Transparency, FAccT ’21, pages 610-51998623.
ACM.

Bender, E. and Koller, A. (2020). Climbing towards nlu:
On meaning, form, andunderstanding in the age of
data. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
5185-51998. ACL.

Binamungu, L. P. and Maro, S. (2023). Behaviour driven
development: a systematic mapping study. Journal of
Systems and Software, 203:111749.

Bruschi, S., Xiao, L., Kavatkar, M., et al. (2019). Be-
havior Driven-Development (BDD): a case study in
healthtech. In Pacific NW Software Quality Confer-
ence.

Couto, T., dos Santos Marczak, S., Callegari, D. A., Mdra,
M., and Rocha, F. (2022). On the Characterization
of Behavior-Driven Development Adoption Benefits:
A Multiple Case Study of Novice Software Teams.
Anais do XXI Simpdsio Brasileiro de Qualidade de
Software, 2022, Brasil.

Guerra-Garcia, C., Nikiforova, A., Jiménez, S., Perez-
Gonzalez, H. G., Ramirez-Torres, M. T., and
Ontanon-Garcia, L. (2023). ISO/IEC 25012 - Based
methodology for managing data quality requirements
in the development of information systems: Towards
Data Quality by Design . Data and Knowledge Engi-
neering, 145:102152-102152.

Karpurapu, S., Myneni, S., Nettur, U., Gajja, L. S., Burke,
D., Stiehm, T., and Payne, J. (2024). Comprehensive
evaluation and insights into the use of large language
models in the automation of behavior-driven develop-
ment acceptance test formulation. /IEEE Access.

Lee, E., Gong, J., and Cao, Q. (2023). Object oriented bdd
and executable human-language module specification.
In 2023 26th ACIS International Winter Conference
on Software Engineering, Artificial Intelligence, Net-
working and Parallel/Distributed Computing (SNPD-
Winter), pages 127-133. IEEE.

Ma, S.-P., Chen, Y.-A., Guo, Y.-J., and Su, Y.-S. (2023).
Semi-automated behavior-driven testing for the web
front-ends. In 2023 IEEE International Conference
on e-Business Engineering (ICEBE), pages 225-230.
IEEE.

Mock, M., Melegati, J., and Russo, B. (2024). Generative
ai for test driven development: Preliminary results.
arXiv preprint arXiv:2405.10849.

North, D. (2006). Introducing BDD.
https://dannorth.net/introducing-bdd/.

North, D. et al. (2019). What’s in a story? Dosegljivo:
https://dannorth. net/whats-in-a-story/[Dostopano 4.
5.2016].

Oliveira, G., Marczak, S., and Moralles, C. (2019). How
to evaluate bdd scenarios’ quality? In Proceedings
of the XXXIII Brazilian Symposium on Software Engi-
neering, pages 481-490.

Pereira, L., Sharp, H., de Souza, C., Oliveira, G., Marczak,
S., and Bastos, R. (2018). Behavior-Driven Develop-
ment benefits and challenges: reports from an indus-

58

trial study. In Proceedings of the 19th International
Conference on Agile Software Development: Com-
panion, pages 1-4.

Rajbhoj, A., Somase, A., Kulkarni, P., and Kulkarni, V.
(2024). Accelerating software development using
generative ai: Chatgpt case study. In Proceedings of
the 17th Innovations in Software Engineering Confer-
ence, pages 1-11.

Runeson, P. and Host, M. (2009). Guidelines for conduct-
ing and reporting case study research in software en-
gineering. Empirical software engineering. Springer,
V.14:131-164.

Sauvola, J., Tarkoma, S., Klemettinen, M., Riekki, J., and
Doermann, D. (2024). Future of software develop-
ment with generative ai. Automated Software Engi-
neering, 31(1):26.

Silva, T. R. and Fitzgerald, B. (2021). Empirical findings on
BDD story parsing to support consistency assurance
between requirements and artifacts. In Evaluation and
Assessment in Software Engineering, pages 266-271.

Smart, J. (2014). BDD in Action: Behavior-Driven Devel-
opment for the Whole Software Lifecycle. Manning
Publications, Shelter Island, NY.

Takerngsaksiri, W., Charakorn, R., Tantithamthavorn, C.,
and Li, Y.-F. (2024). Tdd without tears: Towards test
case generation from requirements through deep rein-
forcement learning. arXiv preprint arXiv:2401.07576.

Wohlin, C., Host, M., and Henningsson, K. (2003). Empir-
ical research methods in software engineering. Em-
pirical methods and studies in software engineering:
Experiences from ESERNET. Springer, pages 7-23.

Zameni, T., van Den Bos, P., Tretmans, J., Foederer, J., and
Rensink, A. (2023). From bdd scenarios to test case
generation. In 2023 IEEE International Conference
on Software Testing, Verification and Validation Work-
shops (ICSTW), pages 36—44. IEEE.

Zhang, L., Wang, Y., and Li, X. (2023). Enhancing bdd
test generation with large language models. Journal
of Software Engineering Research and Development,
11(2):75-90.

Zhou, X., Jin, Y., Zhang, H., Li, S., and Huang, X. (2016).
A map of threats to validity of Systematic Literature
Reviews in Software Engineering. In 2016 23rd Asia-
Pacific Software Engineering Conference (APSEC),
pages 153-160. IEEE.

