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Text vectorization is essential for information search and retrieval systems, requiring efficient front-end

architectures. This study compares monolithic and modular approaches for vectorized data processing,
evaluating performance and scalability. Using Dynamic Capacity Theory as a basis, we developed two
functionally equivalent implementations and evaluated them quantitatively using the Lighthouse tool (Chrome
DevTools) in Timespan and Snapshot modes. Results show clear tradeoffs: while the monolithic architecture
presents better initial performance, the modular solution shows superior scalability for large data volumes.
Our conclusions provide practical guidelines for architectural selection based on specific vector processing
requirements, contributing to the optimization of high-demand web systems.

1 INTRODUCTION

Humans easily understand natural language and
facilitate clear communication, yet it presents
inherent challenges for computational search and
information retrieval systems. One promising
solution to this challenge is data vectorization,
which enables text transformation into mathematical
representations that support semantic analysis and
retrieval of information based on contextual similarity
rather than keyword matching (Supriyono et al.,
2024).
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In vector space models, all words are represented
in terms of contextual relationships, adhering to the
distributional hypothesis that words used in similar
contexts tend to have similar meanings (Aka Uymaz
and Kumova Metin, 2022).

Vectorization improves the precision and
relevance of retrieval processes by allowing systems
to return results aligned with the user’s intent, not
just literal matches (Mikolov et al., 2013; Gao et al.,
2024).

In addition to enhancing search capabilities,
vectorized data models and frontend modularity
can be understood through the lens of Dynamic
Capabilities Theory (Xiao et al., 2020).  This
theory posits that systems must be able to
reconfigure themselves to respond effectively to
change—particularly relevant in environments
involving collaborative development and continuous
deployment. From this perspective, modular frontend
architectures provide a foundation for agility
and evolution through independent, maintainable
components.
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Therefore, software systems that handle
vectorized data must prioritize flexibility,
adaptability, and transparency-especially on the
client side-to support seamless integration of new
features and ensure efficient operation in distributed
teams (Simdes et al., 2024). Maintaining cohesion
and code quality becomes increasingly difficult as
web applications grow more complex and rich in
functionality, particularly in large development teams
(Taibi and Mezzalira, 2022).

Although modern frontend frameworks offer
various implementation options, including Single
Page Applications (SPA), Server-Side Rendering
(SSR), and static HTML, many still follow a
monolithic structure. While familiar and initially
efficient, this architecture results in tight coupling
and hinders scalability, especially in collaborative
scenarios that demand quick feature deployment
and integration of advanced techniques such as
vectorization (Peltonen et al., 2021).

To overcome these limitations, modular
architectures—often supported by micro frontend
strategies—offer better component separation, easier
maintenance, and improved scalability (Perlin et al.,
2023; Simoes et al., 2024). These architectures
support technological heterogeneity and allow
system parts to evolve independently. This is critical
for applications adapting to fast-changing demands
and large-scale data integration (Wang et al., 2020).

This paper  compares two frontend
architectures-monolithic and modular-in vectorized
text data processing. Both implementations are
functionally equivalent and integrated with the same
dataset. Performance, accessibility, scalability,
and maintainability are quantitatively evaluated
using Chrome Lighthouse metrics (Snapshot
and Timespan modes). The study investigates
how architectural choices affect resource usage,
frontend responsiveness, and long-term development
flexibility.

The findings highlight significant trade-offs
between the two approaches: while monolithic
architectures offer better initial performance, modular
designs exhibit greater alignment with modern
development practices, enhanced maintainability, and
better scalability in long-term applications.

The remainder of this article is organized as
follows. Section 2 provides the context of this work.
Section 3 discusses related work. Section 4 covers
the methodology employed in this study. Section
5 describes and presents the results, and Section 6
discusses the results. Section 7 contains the final
considerations.
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2 THEORETICAL FRAMEWORK

This section presents the fundamental concepts of this
study, including the theory of dynamic capabilities,
data vectorization techniques, and frontend and
micro-frontend architectures.

According to the theory of dynamic capabilities,
a company’s competitive advantage stems from
its ability to apply these capabilities in volatile
environments effectively (Xiao et al., 2020).
Dynamic capabilities are defined as the organization’s
capacity to integrate, build, and reconfigure internal
and external competencies to enhance operational
performance and adapt to rapidly changing conditions
(Xiao et al.,, 2020). Scholars view dynamic
capabilities as a bridge between Business Data
Analytics Capabilities (BDAC) and enterprise-level
outcomes, offering essential insights into how
analytics influence innovation and agility (Wamba
et al., 2017).

As an extension of the resource-based view,
the dynamic capabilities perspective emphasizes the
deliberate transformation of tangible and intangible
resources and operational routines (Mikalef et al.,
2019; Schilke et al., 2018). Consequently,
strategies that foster the continuous development of
dynamic capabilities tend to outperform others in
the software industry (Helfat and Winter, 2011; Lo
and Leidner, 2018). Identifying and nurturing these
capabilities allows organizations to respond swiftly
to technological shifts and evolving market demands,
thus maintaining relevance and competitiveness
(Chen, 2023).

As highlighted by Occhipinti et al. (Occhipinti
et al., 2022), the evolution of text data vectorization
illustrates the need for adaptability and innovation
in increasingly complex data environments.
Vectorization techniques have progressed from
traditional statistical methods such as Bag-of-Words
(BoW), n-grams, and Term Frequency-Inverse
Document Frequency (TF-IDF), which, despite their
robustness, ignore word order and context, and often
suffer from sparsity issues (Occhipinti et al., 2022).

Several techniques are available to convert textual
data into numerical form. BoW, as described by
Mariyam et al. (Mariyam et al., 2021), represents
documents as word frequency vectors, disregarding
the sequence of terms. TF-IDF, in turn, weighs
terms based on their frequency in a document and
their rarity in the corpus, helping to identify more
informative words for classification tasks (Occhipinti
et al., 2022; Lewis et al., ). Word2Vec offers a more
advanced alternative by generating dense embeddings
that capture semantic relationships based on context.
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Each word is represented by a vector that reflects its
meaning based on neighboring words in the corpus.

More recently, models such as BERT
(Bidirectional ~Encoder Representations from
Transformers) have been introduced to generate
contextual embeddings, in which the vector
representation of a word varies according to its
usage in the sentence (Devlin et al., 2018; Mikolov
et al., 2013). These models overcome previous
limitations by incorporating bidirectional context,
significantly improving the accuracy of tasks
such as information retrieval, classification, and
semantic search. Such techniques also have practical
implications for frontend architectures. By enabling
similarity comparisons directly on the client side, they
reduce the dependency on backend requests, which
improves responsiveness and efficiency, particularly
when handling large volumes of semantically rich
data (Park et al., 2022).

Architecturally, a traditional monolithic frontend
consists of a unified application in which all
services and components are bundled together
within a single codebase. This design is commonly
structured in horizontal layers and is characterized
by strong interdependence between modules
(Krishnamurthy, 2019; Peltonen et al., 2021).
Although initially straightforward to implement,
monolithic architectures hinder scalability and
flexibility, especially in collaborative environments.
In contrast, modular architectures—especially
those using micro frontend principles—embrace
component reuse, decoupling, and separation of
concerns. As lan (Ian, 2019) points out, this
approach allows software to be built from smaller,
manageable units that encapsulate complexity behind
well-defined interfaces. Vescovi et al. (Vescovi et al.,
2023) reinforce that modularity is key to enabling
rapid development, scalability, reasoning about
system behavior, and integration of new features
without compromising the stability of the whole
system.

3 RELATED WORK

Recent studies have investigated the interplay
between frontend architectures, vectorized data
processing, and modern information retrieval
techniques, especially in systems that leverage
semantic search and large language models (LLMs).
This section organizes the related contributions
into three thematic areas: modular frontend
architectures, text vectorization and RAG systems,
and practical transformations from monolithic to

Frontends

modular architectures.

Micro frontend architectures have gained
attention as a strategy for improving modularity,
maintainability, and scalability in complex web
systems. Peltonen et al. (Peltonen et al., 2021) and
Taibi and Mezzalira (Taibi and Mezzalira, 2022)
highlight how micro frontends support information
presentation  through isolated, independently
deployable modules—an essential capability in
large teams or evolving applications. Simdes et
al. (Simdes et al., 2024) further argue that this
architectural style facilitates integration between
distinct information retrieval and presentation
components  without compromising cohesion.
Bian et al. (Bian et al.,, 2022) reinforce this by
observing that traditional monolithic frontend
development becomes increasingly unfeasible in
large-scale applications maintained by multiple
teams. They advocate for a component-based model
inspired by microservices to circumvent architectural
rigidity and enable more flexible workflows.
Minnistd et al. (Miénnisto et al., 2023) present
a case study from the software company Visma,
documenting its transition from a monolithic to a
micro frontend architecture. Their findings suggest
that, even in small organizations, modularization
improves client-specific configurability and reduces
implementation costs.  Notably, they emphasize
that native web standards—rather than heavyweight
JavaScript frameworks—can suffice to achieve
modularity effectively.

Another line of research focuses on vectorized
data processing and semantic retrieval, particularly in
Retrieval-Augmented Generation (RAG). Occhipinti
et al. (Occhipinti et al., 2022) and Aka Uymaz
and Kumova Metin (Aka Uymaz and Kumova Metin,
2022) demonstrate how classic and modern text
vectorization techniques (e.g., TF-IDF, Word2Vec,
and BERT) improve classification and sentiment
analysis by leveraging the semantic relationships
between terms. Wang et al. (Wang et al.,, 2020)
and Gao et al. (Gao et al., 2024) explore how
RAG architectures can enhance LLM outputs by
injecting context from external vectorized sources.
Lewis et al. (Lewis et al.,, 2020) describe
the full RAG pipeline: receiving a user query,
retrieving semantically related documents from a
knowledge base, and feeding that context into an
LLM to generate more accurate responses. Wang
et al. (Wang et al.,, 2024) further extend this by
detailing practical strategies for configuring RAG
systems, including document chunking, embedding
model selection, and ranking procedures. These
optimizations significantly improve semantic search
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workflows’ relevance and latency, demonstrating the
benefits of vector databases and dense retrieval for
knowledge-intensive applications.

Few studies explicitly address the role of frontend
architecture in the performance and evolution
of RAG-enabled systems.  Integrating modular
interfaces with vectorized search layers is typically
assumed, but not evaluated directly. While Simdes
et al. (Simdes et al., 2024) suggest that modular
frontends support vector-based retrieval, empirical
validation of this claim is limited in the literature.
This study seeks to fill this gap by directly comparing
monolithic and modular frontend architectures in a
controlled environment, integrated with a vectorized
legislative dataset. Unlike previous work focusing
primarily on backend architectures or model-level
optimization, our approach emphasizes client-side
performance, scalability, and maintainability, using
objective metrics such as latency, memory usage, and
Lighthouse scores.

4 METHODOLOGY

The methodology of this study was applied to a
sample of legislation from the state of Sergipe,
with data obtained from the legislation website of
the Executive Branch at https://legislacao.se.gov.br/.
These data were grouped into a JSON file containing
the following keys: file name, file extension,
norm_type, publication_year, and text_string,
where the text_string key stores the full text of the
norm. The text_string key was used in the text
vectorization process.

To generate the embeddings, the Sentence
Transformers module for Python was used, with the
SentenceTransformerEmbeddingFunction  function
and the all-MinilM-L6-v2 model. This process
generated arrays of values representing the semantic
similarity between texts. The original data in JSON
were augmented with the generated embeddings for
each norm and then stored locally in a Chroma DB
database.

With the data prepared, a comparative
performance and scalability analysis was conducted
using two frontend architectures: monolithic and
modular. Both frontends consume the vectorized
database. To evaluate the applications’ performance
and quality, tests were performed using Lighthouse in
the development environment, collecting metrics such
as initial load time, query latency, memory usage,
throughput, and quality indicators like accessibility
and best practices.

Two application versions are considered for
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comparison with the architectures: a traditional
monolithic version and a modular monolithic version.
Both were integrated with JSON vectorized data,
which dynamically displayed the information on the
screen. Implemented a search functionality to query
the data filtering. The goal was to evaluate the
differences in code organization, maintainability, and
performance between the two structures, ensuring that
both maintained the same basic functionality for a fair
comparison of the metrics.

The Lighthouse metrics were analyzed during
query execution to ensure that the vectorized
data represented semantically similar information.
Additionally, a statistical analysis of the vectors
was performed, calculating the mean and standard
deviation to verify data distribution.

The vectorization and data validation process
was carefully documented, including detailed steps,
parameters used, and specific tools applied. This
documentation aims to ensure the transparency of the
process and the potential for reproducibility by other
researchers. The methodological approach adopted
seeks to provide a solid foundation for comparisons
and data validation, establishing a clear and reliable
structure for the study.

S RESULTS

This section presents the results from the tests
conducted using the Lighthouse tool in Snapshot and
Timespan modes. The objective was to evaluate
the metrics of Performance, Accessibility, Best
Practices, and SEO (Search Engine Optimization) in
Snapshot mode and Performance and Best Practices
in Timespan mode. The following sections detail the
results, comparing the two approaches and discussing
the most relevant points.

5.1 Lighthouse Snapshot Test

Lighthouse Snapshot tests were used to analyze
various aspects of the quality and performance of
both frontend architectures. This mode captures the
application’s state at a specific moment, providing
valuable data for optimization and accessibility in
four main categories: Performance, Accessibility,
Best Practices, and SEO.

The performance analysis results showed
significant differences between the two architectures.
As indicated in Table 1, the monolithic frontend
stood out in terms of optimization, with faster
initial loading times and improved metrics such
as First Contentful Paint and Speed Index. This
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Performance

DIAGNOSTICS

Avoid an excessive DOM size — 38,612 elements

More information about the performance of your application. These numbers don't directly affect the Performance score

PASSED AUDITS (3)

@® Image elements have explicit width and height

Hide

@ Has a <meta name="viewport"> tag with width Or initial-scale v

@ Images were appropriate for their displayed size

Figure 1: Snapshot Modular Performance.

Table 1: Snapshot Monolithic Performance.

Criterion Status
Avoids excessive DOM Passed
Images with explicit width and height Passed

Has viewport meta with width and Passed
initial-scale

Properly sized images Passed

indicates that the monolithic frontend allowed more
efficient resource delivery, providing a smoother user
experience.

As shown in Figure 1, the modular frontend
presented areas for improvement, especially
regarding DOM (Document Object Model) size
and viewport settings, which showed inefficiencies
and negatively impacted loading times.  These
inefficiencies may have contributed to lower
performance compared to the monolithic version.

In the Accessibility category, both frontends
implemented good practices, but with noticeable
differences. The monolithic frontend showed fewer
errors, especially in aspects such as color contrast,
document title presence, and ‘lang® attributes in the
HTML element, ensuring better accessibility for users
with disabilities.

The modular frontend encountered DevTools
protocol timeout issues, compromising the complete
data collection related to accessibility. Many tests
related to ARIA attributes failed due to protocol
timeout problems, indicating that adjustments are
needed to improve the response of interactive
components and ensure a comprehensive accessibility
analysis.

In evaluating best practices, the modular frontend
consistently adhered more to modern security and
development recommendations. Fewer issues related
to security, such as outdated libraries and lack of
HTTPS protocols, were identified.

In contrast, the monolithic frontend displayed
more warnings related to vulnerabilities, suggesting
that adjustments are necessary to ensure security and
compliance with recommended frontend development
best practices. This difference may impact the
robustness and user trust in the application, especially
in production environments.

Regarding SEO optimization, both architectures
scored high and followed the best practices
recommended by Lighthouse. Both the modular
and monolithic frontends demonstrated good mobile
compatibility and used structured data to facilitate
tracking and indexing by search engines.

These results indicate that both approaches are
well-prepared in terms of SEO, providing good
visibility and ease of content indexing.

5.2 Lighthouse Timespan Test in the
Performance Category

This section presents the performance evaluation
of the monolithic and modular applications using
Lighthouse in Timespan mode, focusing on loading
times and responsiveness of key visual elements.

The monolithic application scored 13 out of
23.  Critical performance issues were identified
while the Cumulative Layout Shift (CLS) was 0,
indicating excellent visual stability. =~ The Total
Blocking Time (TBT) reached 150.020 ms, and
Interaction to Next Paint (INP) was 35.620 ms
(Table 2). According to the diagnostics (Table 3),
the main thread was heavily burdened, consuming
162.2 seconds, and 53.9 seconds were spent executing
JavaScript alone. These findings suggest excessive
JavaScript usage, inefficient rendering, and latency
in backend communication (8.450 ms). Lighthouse
recommends optimizing script size and complexity,
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improving backend latency, and using asynchronous
loading to improve responsiveness.

Table 2: Performance Results.

Metrics Value
Total Blocking Time 150.020 ms
Cumulative Layout Shift 0
Interaction to Next Paint ~ 35.620 ms

Similarly, the modular version also scored 13/23
but showed higher TBT (246.390 ms) and INP
(70.030 ms), as detailed in Table 4. JavaScript
execution consumed 58.7 seconds, and although the
backend response was faster (4.140 ms), script-heavy
processing remained a bottleneck. Recommendations
include reducing JavaScript complexity, splitting
scripts into smaller bundles, leveraging asynchronous
loading, and optimizing asset delivery to enhance
performance and interactivity.

Both  architectures  exhibit  performance
limitations primarily due to heavy JavaScript
usage and main-thread blocking. Addressing
these issues through script optimization and
backend improvements is essential to ensure
better responsiveness and user experience.

5.3 Lighthouse Timespan Test in the
Best Practices Category

This section presents the results of the Lighthouse
tests in Timespan mode under the Best Practices
category, which evaluates aspects related to security,
performance, and compatibility. Eight key criteria
were analyzed for both the monolithic and modular
frontend implementations. The monolithic frontend
scored 6 out of 8, indicating that six best practices
were correctly implemented, while two require
adjustments. Among the positive aspects were using
HTTPS for secure communication and the proper
configuration of images with correct aspect ratios
and responsiveness, which ensures a consistent visual
experience across devices.

However, two main issues were identified. First,
the use of obsolete APIs, specifically the continued
use of ReactDOM.render in React 18, which is
deprecated and should be replaced with createRoot.
Second, there is an absence of source maps, which
are crucial for debugging minified JavaScript code in
production. Additionally, the report warned about
the upcoming deprecation of Chrome’s third-party
cookies and noted some browser console errors,
indicating unresolved issues in the application code.

Overall, the monolithic implementation follows
essential security and usability practices, but
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should update its API usage and provide source
maps to improve maintainability and meet current
development standards.

The modular frontend scored slightly higher, with
7 out of 8 criteria met. Like the monolithic version, it
uses HTTPS and serves images correctly. In addition,
it avoided obsolete APIs, did not rely on third-party
cookies (a future requirement for compliance with
modern browser standards), and included valid source
maps, facilitating easier maintenance and debugging.
No significant issues were reported in Chrome
DevTools, indicating a well-structured and functional
implementation.

The only shortcoming was the continued use
of ReactDOM.render, which, as in the monolithic
version, should be replaced by createRoot to align
with React 18 standards. Aside from this, the
modular frontend demonstrated strong adherence to
best practices, showing a more future-ready and
maintainable structure.

In summary, both implementations followed key
development best practices. However, the modular
architecture performed better by avoiding obsolete
features and implementing support tools that enhance
debugging and long-term maintainability.

6 DISCUSSION

The tests conducted with Lighthouse revealed
significant differences between monolithic and
modular architectures in terms of performance,
accessibility, best practices, and SEO, particularly in
the context of vectorized data ingestion. Due to its
integration, the monolithic architecture excelled in
Snapshot mode in metrics such as First Contentful
Paint (FCP) and Speed Index, allowing faster loading
of main visual elements. However, this approach
can become problematic as the application grows in
complexity, making code maintenance and expansion
more difficult.

In contrast, the modular architecture showed
limitations in loading time related to the size of the
DOM and viewport settings, negatively impacting
performance in applications processing vectorized
data. Nevertheless, modularization provides a more
flexible and scalable structure, enabling updates
and optimizations to specific parts of the code
without affecting the base. Backend latency and
the processing of large data volumes also influence
frontend performance. Thus, while the monolithic
architecture offers initial advantages, modularity is
more beneficial in terms of long-term scalability and
maintainability.
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Table 3: Lighthouse Diagnostics Summary.

Diagnostics Details
Minimize main-thread work 162.2 s
Reduce JavaScript execution time 539s
Enable text compression Error

Minimize work during key interaction

Minify JavaScript
Avoid serving legacy JavaScript
Reduce unused JavaScript

Avoid enormous network payloads

Avoid long main-thread tasks

35,620 ms on mousedown’
759 KiB savings
0 KiB savings
721 KiB savings
47,506 KiB total
20 long tasks found

Table 4: Modular Performance Metrics Summary.

Metrics Value
Total Blocking Time 246.390 ms
Cumulative Layout Shift 0.022
Interaction to Next Paint ~ 70.030 ms

In big data scenarios, modular architecture, when
combined with lazy loading and bundle optimization
techniques, can outperform monolithic architecture in
efficiency after optimizations. Modularity is more
efficient, especially in projects that require continuous
evolution.

In summary, the modular front broadly followed
the recommended best practices, with one necessary
adjustment related to console errors. Correcting this
issue will bring the modular frontend fully compliant
with development best practices, achieving a perfect
score in future audits.

7 CONCLUSION

This study compared monolithic and modular
frontend architectures, evaluating their performance
across various quality and efficiency metrics using
the Lighthouse tool.  The results demonstrated
that the monolithic architecture showed superior
initial performance, especially in loading time
and interactivity, due to resource integration and
optimized delivery. The modular architecture proved
to be more aligned with modern development
best practices, such as maintainability and security,
making it a more flexible and scalable choice for
long-term applications that handle large volumes of
vectorized data.

The analysis highlighted that although the
monolithic frontend is initially faster, modularity
offers a more organized and robust structure, essential
for growth and adaptation to new demands, such
as systems using Retrieval-Augmented Generation
(RAG). However, a necessary limitation of this study

was conducting the tests in a local environment,
compromising the results’ external validity. In
a natural production environment, factors such as
network latency and load balancing could impact
the performance of both architectures differently.
For future work, it is recommended to conduct
tests in production environments simulating high-load
scenarios, explore hybrid architectures that combine
the benefits of both approaches, and assess the
applicability of microfrontends in simplified RAG
contexts.
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