
Thoth: A Lightweight Framework for End-to-End Consumer IoT Rapid
Testing

Salma Roshdy Aly1, Sherif Saad1 and Mohammad Mamun2

1School of Computer Science, University of Windsor, Canada
2National Research Council, Canada

Keywords: End-to-End Testing, Internet of Things (IoT), Consumer IoT, Automated Testing, Rapid Testing, Quantifiable
Metrics, Cascading Failure Simulation.

Abstract: The rapid expansion of consumer IoT devices has increased the need for scalable, automated testing solutions.
Manual methods are often slow, error-prone, and inadequate for capturing real-world IoT complexities. Ex-
isting frameworks typically lack comprehensiveness, quantifiable metrics, and support for cascading failure
scenarios. This paper introduces Thoth, a lightweight, end-to-end IoT testing framework that addresses these
limitations. Thoth enables holistic evaluation through integrated support for performance, reliability, recovery,
security, and load testing. It also incorporates standardized metrics and real-time failure simulations, including
cascading faults. We evaluated Thoth using eight test cases in a real-world health-monitoring setup involving
a smartwatch, edge gateway, and cloud infrastructure. Key metrics—such as fault detection time, recovery
speed, data loss, and energy usage—were logged and analyzed. Results show that Thoth detects faults in as
little as 2.5 seconds, recovers in under 1 second, limits data loss to a few points, and maintains sub-1% energy
overhead. These findings highlight its effectiveness for low-intrusion testing in resource-constrained environ-
ments. By combining scenario-driven design with reproducible, metrics-based evaluation, Thoth fills key gaps
in IoT testing.

1 INTRODUCTION

The number of IoT devices continues to grow rapidly
(Statista, 2024), embedding themselves in homes,
businesses, and institutions as interconnected, hetero-
geneous systems. This evolution demands scalable
and realistic testing methods (Minani et al., 2024a).
Manual testing is no longer viable—it is slow, error-
prone, and lacks the scalability to address network in-
stability and security issues. These limitations high-
light the need for automated testing frameworks tai-
lored to IoT deployment realities (Vemula, 2024).

Recent work has proposed various automated
frameworks focusing on robustness, scalability, and
coverage (Minani et al., 2024a). However, most fall
short in three critical areas for practical deployment:
comprehensiveness (Minani et al., 2024b), quantifia-
bility (Poess et al., 2018), and cascading failure test-
ing (Xing, 2021). Many lack end-to-end validation,
standardized metrics, and realistic (non-simulated)
cascading failure scenarios, instead relying on sim-
plified models (Dayalan et al., 2022).

This study addresses these gaps through three pil-

lars:

1. Comprehensiveness – Evaluating frameworks by
their support for diverse test types, including per-
formance, reliability, recovery, load, and security.

2. Quantifiability – Capturing standardized perfor-
mance metrics (e.g., execution time, resource
usage) for realistic benchmarking (Poess et al.,
2018).

3. Cascading Failure Testing – Incorporating real,
non-simulated cascading failure scenarios for ac-
curate analysis of failure propagation (Amal et al.,
2023).

To this end, we present Thoth, a lightweight, end-
to-end IoT testing framework designed to address
these gaps. Thoth supports a wide range of test types,
integrates quantifiable metrics, and simulates real cas-
cading failures for practical system evaluation—all
with low overhead.

This study explores the following research ques-
tions:

RQ1: How comprehensively does Thoth support
different IoT test scenarios?

430
Aly, S. R., Saad, S. and Mamun, M.
Thoth: A Lightweight Framework for End-to-End Consumer IoT Rapid Testing.
DOI: 10.5220/0013650200003964
In Proceedings of the 20th International Conference on Software Technologies (ICSOFT 2025), pages 430-437
ISBN: 978-989-758-757-3; ISSN: 2184-2833
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)



RQ2: Does Thoth provide reproducible metrics
for test case evaluation?

RQ3: How effectively can Thoth simulate and
mitigate cascading failures?

RQ4: What is the trade-off between threshold-
based and event-based failure detection?

RQ5: What overhead does Thoth introduce, par-
ticularly on battery usage?

Named after the Egyptian deity of wisdom, Thoth
embodies rigorous evaluation and structured testing.
It offers a novel approach to scalable, intelligent, and
scenario-aware IoT testing.

This paper is structured as follows: Section 2
motivates Thoth through comparison with existing
frameworks. Section 3 details the architecture. Sec-
tion 4 introduces the test scenarios and design ratio-
nale. Section 5 covers implementation. Section 6
evaluates Thoth’s performance, and Section 7 con-
cludes the paper.

2 CASE FOR THOTH

This section presents three case studies to illustrate
the motivation for Thoth. Our comparative analy-
sis focuses on existing end-to-end IoT testing frame-
works that are aligned with our work, have been ap-
plied to real-world IoT environments, and have been
evaluated using standard evaluation metrics. Thoth
aims to 1. Provide a comprehensive light-weight end–
to-end IoT testing framework through including vari-
ous test types. 2. Measure each test case scenario in-
cluded by quantifiable metrics for transparent evalua-
tion. 3. Analyze and mitigate cascading failure events
in IoT environments and develop approaches to miti-
gate them.

2.1 Comprehensive End-to-End IoT
Testing

The diverse and interconnected nature of Internet of
Things (IoT) systems requires testing frameworks that
evaluate system behavior holistically rather than in
isolated components. However, as summarized in Ta-
ble 1, existing frameworks tend to focus narrowly on
specific aspects. For instance, (Siboni et al., 2016)
and (Akhilesh et al., 2022) focus solely on security.
Others like (Behnke et al., 2019) and (Kim et al.,
2018) extend testing to network performance and in-
teroperability, while (Dayalan et al., 2022) supports
broader simulation scenarios including performance
and failure events. Despite these contributions, none
integrate many critical test types—performance, reli-
ability, recovery, security, and load—within a single

scalable framework. Thoth addresses this gap by uni-
fying these dimensions under one lightweight, end-to-
end architecture.

Table 1: Comparison of IoT frameworks based on compre-
hensiveness of test types.

Paper Reference Comprehensive Test Types
(Siboni et al., 2016) Security only
(Akhilesh et al., 2022) Security only
(Kim et al., 2018) Interoperability, Conformance, Semantics
(Dayalan et al., 2022) Performance, Load, Failure Simulation, Network
(Behnke et al., 2019) Performance, Resource Utilization

2.2 Quantifiable End-to-End IoT
Testing

Quantifiable metrics are essential for assessing IoT
testing frameworks (Poess et al., 2018), enabling
transparent, reproducible comparisons through indi-
cators like execution time, throughput, and recov-
ery duration. As shown in Table 2, most existing
frameworks lack such metrics or apply them incon-
sistently. For instance, (Siboni et al., 2016) and
(Akhilesh et al., 2022) emphasize vulnerability de-
tection—using CVSS in the latter—but omit perfor-
mance metrics like runtime or load handling.

(Kim et al., 2018) addresses conformance and se-
mantics but offers limited performance data, while
(Dayalan et al., 2022) and (Behnke et al., 2019)
provide latency or resource metrics in isolated
cases. However, none deliver comprehensive, cross-
category evaluations. This inconsistency hampers
comparability and real-world applicability. Thoth
overcomes this by applying standardized, quantifiable
metrics—such as execution time, detection latency,
and recovery duration—across all test types, enabling
rigorous and objective evaluation.

Table 2: Comparison of IoT frameworks based on use of
quantifiable evaluation metrics.

Paper Reference Quantifiable Metrics
(Siboni et al., 2016) Context-based only
(Akhilesh et al., 2022) CVSS scoring
(Kim et al., 2018) Limited metric focus
(Dayalan et al., 2022) Latency & Overhead
(Behnke et al., 2019) Partial execution time

2.3 Cascading Failure Simulation

Cascading failures—where the malfunction of one
IoT device triggers a chain of failures—pose seri-
ous risks in real-world systems such as smart cities
or healthcare. As summarized in Table 3, existing
frameworks either ignore cascading scenarios entirely

Thoth: A Lightweight Framework for End-to-End Consumer IoT Rapid Testing

431



or treat them passively. For instance, (Dayalan et al.,
2022) simulates events like a fire-in-a-room but only
measures failure impact without providing active mit-
igation. Frameworks such as (Akhilesh et al., 2022),
(Kim et al., 2018), and (Behnke et al., 2019) do not
address cascading failure at all. Thoth fills this crit-
ical gap by not only simulating cascading failures
but also implementing automated mitigation strate-
gies, including failure isolation and adaptive recovery,
thereby improving system resilience and operational
continuity.

Table 3: Comparison of IoT frameworks based on cascading
failure testing support.

Paper Reference Cascading Failure Testing
(Siboni et al., 2016) None
(Akhilesh et al., 2022) None
(Kim et al., 2018) None
(Dayalan et al., 2022) Failure simulation only
(Behnke et al., 2019) None

3 ARCHITECTURE

In this section, we provide the rationale behind the
design of each layer in the architecture, as depicted in
Figure 1.

The proposed architecture is a modular, pluggable
framework for end-to-end IoT testing, designed to
adapt across diverse deployments. It abstracts critical
components into five primary layers to support exten-
sibility, reusability, and interoperability across differ-
ent IoT ecosystems. These layers include the sensing
layer, which standardizes device integration; the gate-
way layer, which manages multi-protocol data trans-
mission; the storage layer, offering flexible data per-
sistence options; the processing layer, which supports
various testing methodologies such as anomaly detec-
tion; and the application layer, which oversees alerts,
notifications, and failure handling. This modular de-
sign allows components to be seamlessly integrated,
replaced, or extended without altering the core sys-
tem.

Sensing Layer: Provides an abstract interface for
heterogeneous devices (e.g., heart rate, motion, en-
vironmental sensors), allowing seamless integration
without altering core logic despite hardware-specific
adjustments.

Gateway Layer: Bridges sensing and down-
stream layers using protocols like Bluetooth, WiFi,
and HTTP APIs, ensuring adaptability to diverse net-
work conditions and deployment scenarios.

Storage Layer: Supports cloud (e.g., Google
Cloud, AWS S3) and local (e.g., SQLite, MongoDB)

backends via a unified interface, enabling backend
swaps without impacting upper layers.

Processing Layer: Executes test strategies (e.g.,
anomaly detection) using cloud and edge platforms.
It accommodates various methodologies while main-
taining modularity and scalability.

Application Layer: Handles failure mitigation,
alerts, and notifications through email, SMS, dash-
boards, or auto-recovery. Its event-driven design sup-
ports dynamic logic updates.

The modular, pluggable architecture enables flex-
ible integration of new devices, protocols, and testing
strategies without changing core logic. By abstract-
ing each component, the framework ensures reusabil-
ity, scalability, and adaptability across diverse IoT do-
mains, while maintaining consistency and supporting
rapid experimentation.

4 THOTH DESIGN

In this section, we discuss Thoth’s design details that
we followed for the implementation. To be able to
fulfill these design objects, we explore test case sce-
narios included in Thoth.

4.1 Test Case Scenarios

This subsection outlines the test scenarios in Thoth,
each representing a distinct failure type to evaluate
system behavior under varied fault conditions. Fail-
ures may occur independently or sequentially. For
clarity, test cases are grouped by failure type and la-
beled hierarchically (e.g., TC2.1), supporting trace-
able analysis of detection, recovery, and resilience.

4.1.1 Standard Operation

TC1.1: No Failure. Represents normal system be-
havior. Timestamped sensor data is logged locally
before cloud upload to ensure robustness. Once a
threshold is reached, anomaly detection is performed,
and responses are triggered as needed.

4.1.2 Infrastructure Failures

TC2.1: Gateway Crash. Evaluates detection and re-
covery from gateway failure based on activity thresh-
olds. Recovery includes re-establishing connections
and processing locally buffered data.
TC2.2: Cloud Crash. Assesses response to unre-
sponsive cloud services. When inactivity exceeds a
threshold, operations shift to a backup service, ensur-
ing continued data processing and storage.

ICSOFT 2025 - 20th International Conference on Software Technologies

432



Figure 1: Thoth architecture.

4.1.3 Communication Failures

TC3.1: Watch-Gateway Bluetooth Drop. Tests the
system’s response to Bluetooth disconnection. Re-
covery involves reconnection attempts and alerting,
followed by fallback strategies if the issue persists.

4.1.4 Sensor Failures

TC4.1: No Data Received. Monitors for missing
data. If no input is received beyond a set thresh-
old, the system attempts to reset the sensor and issues
alerts.
TC4.2: Erroneous Data Received. Detects incor-
rect readings using validation and anomaly detection.
Upon detection, the system resets the sensor and ap-
plies corrective actions.

4.1.5 Security Failures

TC5.1: Unauthorized Gateway Access. Triggers
alerts, access restrictions, and event logging upon
failed authentication attempts.

4.1.6 Resource Constraints

TC6.1: Battery Consumption. Measures energy use
under normal and intensive scenarios (TC3.1, TC4.1,
TC4.2). TC5.1 is excluded as it blocks gateway ac-
cess, preventing TC6.1 execution.

4.2 Comprehensive End-to-End IoT
Testing

This subsection explains how our test cases achieve
comprehensive end-to-end IoT testing. We incorpo-
rate various test types—performance, reliability, re-
covery, security, and load testing—to address the lim-
ited scope of prior work. This broad coverage ensures
a more complete evaluation of IoT systems. Below,
we briefly define each test type for reference.

Performance Testing: This test evaluates the sys-
tem’s speed, responsiveness, and stability under a
given workload.

Reliability Testing: This test assesses the sys-
tem’s ability to function correctly over time without
failure.

Recovery Testing: This test verifies how well the
system recovers from failures, crashes, or unexpected
interruptions.

Security Testing: This test ensures the system is
protected against threats, vulnerabilities, and unau-
thorized access.

Load Testing: This test measures system per-
formance under expected or peak load conditions to
check for bottlenecks.

In Table 4, we list the test types included in every
test case. Please note that we refer to each test case
by its number.

Table 4: Test types included in every test case in our frame-
work.

Test Type 1.1 2.1 2.2 3.1 4.1 4.2 5.1 6.1
Performance ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Reliability ✓ ✓ - ✓ - - - -
Recovery - ✓ ✓ - ✓ ✓ - -
Security - - - - - - ✓ -
Load - - - - - - - ✓

4.3 Quantifiable End-to-End IoT
Testing

This section demonstrates how Thoth enables quan-
tifiable IoT testing to support reproducible and trans-
parent evaluation. Each test case is paired with rele-
vant monitoring methods and metrics selected to re-
flect real performance and facilitate benchmarking.
TC1.1: 1. End-to-end latency (s): Time from watch
to cloud and back. 2. Transmission success rate
(%): Successful transmissions over total attempts.
3. Cloud upload success rate (%): Successful up-
loads over total attempts. 4. Anomaly detection time

Thoth: A Lightweight Framework for End-to-End Consumer IoT Rapid Testing

433



(s): Time from file upload to detection result. 5. Mes-
sage delivery time (s): Time from alert creation to
delivery.

TC2.1: 1. Gateway failure detection time (s):
Time to detect gateway outage. 2. Recovery time
after WiFi reconnection (s): Time to resume after
WiFi recovery.

TC2.2: 1. Service failover time (s): Time to
switch to replica bucket. 2. Primary service recov-
ery time (s): Time to restore primary service. 3. Alert
notification latency (s): Time from fault detection to
alert delivery.

TC3.1: 1. Disconnection duration (s): Time
Bluetooth remains disconnected. 2. Reconnection at-
tempts (count): Number of reconnection tries. 3. Re-
connection success rate (%): Successful reconnects
over total attempts. 4. Lost data points (count):
Missed sensor readings during outage.

TC4.1: 1. Time to detect missing data (s): Time
to detect missing sensor updates. 2. Time to reset
after detection (s): Time to trigger sensor reset.

TC4.2: 1. Error detection time (s): Time to de-
tect erroneous data. 2. System recovery time (s):
Time to recover normal sensor behavior.

TC5.1: 1. Unauthorized access detection time
(s): Time to detect intrusion. 2. Blocked attempts
(count): Unauthorized attempts successfully blocked.
3. Response execution time (s): Time to complete
security measures.

TC6.1. 1. Watch battery drain – normal vs. in-
tensive (%): Battery usage under normal and stress
modes. 2. Gateway battery drain – normal vs. in-
tensive (%): Gateway battery usage under different
loads. 3. Battery logging interval (s): Time be-
tween battery status recordings. Each test case in-
cludes time-based, count, or percentage metrics to en-
able realistic benchmarking. By embedding these into
its design, Thoth provides transparent, reproducible,
and quantifiable evaluation for real-time IoT testing.

4.4 Cascading Failure Simulation and
Mitigation

This section shows how Thoth addresses a key limita-
tion in existing frameworks by supporting cascading
failure analysis. While not all test cases involve cas-
cading faults, those that do are described, analyzed,
and mitigated to evaluate system resilience under fault
propagation.

TC2.1: A gateway fails to upload data to the
cloud, causing the cloud layer to detect a missing up-
date after five minutes. The Watchdog pub/sub trig-
gers a recovery, instructing the gateway to reconnect
and re-upload queued data. This minimizes data loss

and improves reliability.
TC2.2: A simulated cloud function failure halts

data processing. The gateway detects inactivity on the
Anomaly Detection pub/sub and activates a failover,
redirecting uploads to a replica bucket. This ensures
continuous operation and prevents system failure.

TC3.1: A forced Bluetooth disconnection be-
tween the watch and gateway stops data transmission,
leading to TC4.1. The gateway attempts reconnection
and alerts the Watchdog pub/sub, enabling recovery
tracking or escalation.

TC4.1: Triggered by TC3.1, this test covers the
failure to receive sensor data. The gateway tries to
reset the watch and logs the event via Watchdog, sup-
porting further recovery if needed.

TC4.2: The sensor reports anomalous data (e.g.,
200+ bpm), risking false alarms. The gateway detects
this via anomaly detection, resets the watch, and pub-
lishes a failure alert to prevent faulty data propaga-
tion.

These scenarios demonstrate Thoth’s ability to
simulate, detect, and mitigate cascading failures, en-
hancing resilience in real-world IoT deployments.

5 THOTH IMPLEMENTATION

This section presents the implementation details of
Thoth across all layers. The full implementation is
open-source and available on GitHub (Aly, 2025).

Sensing Layer: We use the Bangle.js 2 smart-
watch (Ltd, 2023) to collect heart rate and accelerom-
eter data. It supports Bluetooth and allows custom
JavaScript applications, enabling wireless data trans-
mission to the gateway.

Gateway Layer: The gateway is a laptop running
three key components: (1) a watch-gateway interface
(HTML + JavaScript) for real-time data visualiza-
tion and simulating failures (TC3.1, TC4.1, TC4.2,
TC5.1), (2) an integrated-monitor (Python) for up-
loading data, monitoring logs, and publishing failure
messages to the Watchdog pub/sub, and (3) a local
storage directory used as a file queue for uploads. The
interface is launched via Chromium (Google, 2025a),
which also triggers the Python script for monitoring
and metric computation (TC1.1, TC2.1, TC2.2).

Storage Layer: We use Google Cloud Storage
(Google, 2025b) with two buckets—anomaly-data-
bucket and its replica—both storing anomaly results
under a dedicated ”Results” directory. The replica en-
sures redundancy and failover.

Cloud Layer: This layer runs two serverless
cloud functions (Google, 2025c), each triggered by
uploads to its respective bucket. Both functions, writ-

ICSOFT 2025 - 20th International Conference on Software Technologies

434



ten in Python, perform anomaly detection and save re-
sults to the bucket, while publishing to the Anomaly
Detection pub/sub.

Application Layer: Implemented using Google
Cloud Pub/Sub (Google, 2025d), this layer uses two
topics: Anomaly-detection (for cloud-based results)
and Watchdog (for general and failure-related events),
enabling asynchronous communication between lay-
ers.

6 EVALUATION

This section analyzes Thoth’s performance across the
test cases. Raw data is available in the GitHub repos-
itory (Aly, 2025). Table 5 presents the averaged re-
sults, followed by a comparative analysis of detec-
tion times, recovery durations, disconnection inter-
vals, and data loss. These results directly address
RQ1 and RQ2, demonstrating Thoth’s test coverage
and reproducible metric generation.

6.1 Evaluation Methodology

Thoth was evaluated in a real-world IoT setup: a Ban-
gle.js 2 smartwatch connected via Bluetooth to a lap-
top gateway, with cloud backend services (Google
Cloud Functions and Pub/Sub), emulating a remote
health monitoring use case.

Each test case was executed 10 times, with faults
injected as follows:

• TC2.1, TC2.2: Gateway and cloud failures simu-
lated via service disablement.

• TC3.1: Bluetooth manually toggled off during
data transmission.

• TC4.1, TC4.2: Watch stopped sending or sent in-
valid heart rate data.

• TC5.1: Simulated unauthorized access.

• TC6.1: Intensive 15-minute sessions assessed
battery impact.

Metrics were logged and exported as structured CSV
files for analysis.

6.2 Application Context and Test Case
Illustration

The tests simulate a smart home health monitoring
scenario where the smartwatch transmits biometric
data to a cloud pipeline via an edge gateway.

TC2.1 – Gateway Failure: WiFi loss is detected
via missing uploads (48.6 s), followed by automated
reconnection (0.76 s).

Table 5: Average metric results across all test cases.

Test Case Key Metrics

TC1.1
Latency: 0.904 s
Transmission success rate: 81.02%
Upload success rate: 0.25%

TC2.1 Time to detect failure: 48.64 s
Recovery time: 0.76 s

TC2.2

Time to detect failure: 40.74 s
Failover time: 40.75 s
Primary recovery time: 39.16 s
Alert latency: 40.74 s

TC3.1
Disconnection time: 42.24 s
Reconnects attemps: 9.8
Data packets lost: 9.8

TC4.1
Time to detect failure: 3.90 s
Time to Reset: 2.64 s
Data packets lost: 1

TC4.2
Time to detect failure: 2.52 s
Recovery time: 2.59 s
Data packets lost: 1

TC5.1
Time to detect failure: 0.04 s
Blocked attempts number: 1.0
Response time: 1.46 s

TC6.1

Watch drain (normal): 0%
Gateway drain (normal): 0.4%
Watch drain (intensive): 0.3%
Gateway drain (intensive): 1%
Logging interval: 902.7 s

TC4.1 – Sensor Malfunction: The watch stops
sending heart rate data. The gateway detects the issue
in 3.9 s and resets the sensor in 2.6 s, minimizing data
loss.

These results confirm Thoth’s ability to handle di-
verse fault conditions with quantifiable metrics and
demonstrate its effectiveness in real-world IoT de-
ployments.

6.3 Detection and Recovery Times

A primary observation emerges when comparing de-
tection times among infrastructure failures (TC2.1
and TC2.2) and sensor issues (TC4.1 and TC4.2).
Specifically, gateway and cloud crashes rely on
threshold-based detection logic, resulting in detec-
tion times on the order of tens of seconds (e.g.,
48.641 s for the gateway crash and 40.731 s for the
cloud crash). By contrast, anomalies at the sensor
level—namely, absence of readings (3.896 s) or er-
roneous sensor data (2.523 s)—are discovered sub-
stantially faster because they use event-based checks
on incoming data streams, as shown in Figure 2.
This distinction underscores a key design trade-off in
Thoth: threshold-based strategies prevent false alarms

Thoth: A Lightweight Framework for End-to-End Consumer IoT Rapid Testing

435



but delay the overall detection of service-level fail-
ures, which in turn can exacerbate cascading failure
effects.

Figure 2: Detection vs. recovery times for TC2.1, TC2.2,
TC4.1, and TC4.2.

Delayed detection significantly impacts cascading
failures. In TC2.1, slow gateway failure detection
delays data uploads and anomaly detection (TC2.2),
disrupting system-wide monitoring. Similarly, cloud
function failure in TC2.2 halts the anomaly pipeline,
leading to undetected faults. These cases show
how delayed infrastructure-level detection can trigger
multi-layer disruptions.

This supports RQ3, confirming Thoth’s ability
to simulate and mitigate cascading failures using
proactive detection and automated recovery (e.g.,
WiFi reconnection, cloud failover, sensor resets in
TC2.1–TC6). These mechanisms reduced data loss
and restored functionality with minimal manual input.

Recovery trends show that localized recoveries
(e.g., WiFi: 0.762s; sensor resets: 2–3s) are rapid,
while cloud failover (TC2.2: 40.751s) is slower due
to multi-step redirection and function activation, in-
creasing risk during that window.

TC3.1 illustrates this: a 42.237s detection delay
causes a watch sensor failure (TC4.1), halting data
flow and delaying TC2.2 detection—demonstrating
full-layer cascade.

Overall, these findings highlight a resilience trade-
off: threshold-based infrastructure detection risks
propagation, while localized event-based detection
curbs it. Thoth’s hybrid model mitigates critical
failures through self-healing and failover strategies,
though optimizing cloud-level failover remains key
for large-scale resilience.

6.4 Communication Reliability and
Data Loss

Beyond temporal metrics, communication resilience
varies notably between Bluetooth disruptions (TC3.1)
and sensor malfunctions (TC4.1, TC4.2). In TC3.1,
a forced Bluetooth disconnection causes 42.237s of
downtime, averaging 9.8 reconnection attempts and
resulting in 9.8 data points lost—highlighting the im-
pact of prolonged communication loss on data conti-
nuity.

In contrast, sensor malfunctions trigger faster de-
tection and intervention. Since the watch remains
Bluetooth-connected, the gateway can quickly re-
spond to missing data (TC4.1) or anomalies (TC4.2),
minimizing data loss. This comparison underscores a
key strength of Thoth: maintaining partial connectiv-
ity enables quicker recovery and better data preserva-
tion than total disconnection.

6.5 Security Mechanisms vs. Other
Failures

Among all test scenarios, TC5.1 shows the fastest re-
sponse, with near-instant detection at 0.040 s. Since
authentication checks occur with each access request,
Thoth blocks unauthorized logins with 100% success
and initiates security measures within 1.5 s. Un-
like threshold-based detection, these real-time, event-
driven triggers enable rapid threat response, high-
lighting Thoth’s emphasis on protecting consumer
IoT devices from misuse and intrusion.

6.6 Energy Consumption Trade-Offs

TC6.1 shows that Thoth imposes minimal energy
overhead. The watch consumes 0% in normal
mode and only 0.3% under intensive tasks; the gate-
way draws 0.4% and 1% respectively. These re-
sults answer RQ5, confirming Thoth’s suitability for
resource-constrained IoT deployments.

Battery logging every 15 minutes ( 902.7 s) bal-
ances data granularity with efficiency. Shorter inter-
vals offer finer analytics but slightly increase power
use, especially on the gateway, while longer intervals
conserve energy at the cost of less frequent updates.
Overall, Thoth supports robust monitoring with mini-
mal resource impact.

6.7 Comparison with Prior Work

Existing frameworks like (Dayalan et al., 2022),
(Behnke et al., 2019), and (Kim et al., 2018) often

ICSOFT 2025 - 20th International Conference on Software Technologies

436



rely on simulations or protocol testing and lack stan-
dardized fault metrics such as detection latency or re-
covery time. Thoth addresses this gap by defining
reproducible metrics across diverse real-world fail-
ure types, laying the groundwork for future bench-
marking. Re-implementing scenarios from prior work
within Thoth can enable direct, fair comparisons.

7 CONCLUSION

Thoth offers a lightweight, comprehensive framework
for end-to-end IoT testing, integrating performance,
reliability, recovery, security, and load testing into a
unified system. It enables holistic evaluation across
diverse fault scenarios and introduces standardized,
quantifiable metrics to ensure objective and repro-
ducible assessments.

A key contribution is Thoth’s ability to simulate
cascading failures, addressing resilience under multi-
layer faults—an often overlooked aspect in exist-
ing frameworks. Real-world deployment shows that
Thoth achieves fast detection and recovery, minimizes
data loss, and maintains low resource overhead, vali-
dating its practicality for lightweight IoT testing.

Limitations and Scalability. The current eval-
uation is limited to a single edge device and con-
trolled fault injections, without large-scale deploy-
ment. Comparisons with prior work remain quali-
tative due to the absence of standardized metrics in
existing frameworks. While Thoth’s modular, event-
driven design supports scalability, further testing in
distributed, high-load environments is needed.

Future Work. We plan to (1) integrate AI-
assisted analysis to recommend optimizations based
on failure patterns, and (2) expand support for large-
scale, distributed IoT testing by improving coordina-
tion, communication, and fault isolation.

These extensions aim to make Thoth a scalable,
intelligent IoT testing platform.

REFERENCES

Akhilesh, R., Bills, O., Chilamkurti, N., and Chowdhury,
M. J. M. (2022). Automated penetration testing frame-
work for smart-home-based iot devices. Future Inter-
net, 14(10):276.

Aly, S. R. (2025). Thoth: E2e-iot-testing-framework.
Amal, G., Aı̈ssaoui, F., Bolle, S., Boyer, F., and De Palma,

N. (2023). Solving the IoT Cascading Failure
Dilemma Using a Semantic Multi-agent System, pages
325–344.

Behnke, I., Thamsen, L., and Kao, O. (2019). Héctor: A
framework for testing iot applications across hetero-

geneous edge and cloud testbeds. In Proceedings of
the 12th IEEE/ACM international conference on util-
ity and cloud computing companion, pages 15–20.

Dayalan, U. K., Fezeu, R. A., Salo, T. J., and Zhang, Z.-L.
(2022). Kaala: scalable, end-to-end, iot system sim-
ulator. In Proceedings of the ACM SIGCOMM Work-
shop on Networked Sensing Systems for a Sustainable
Society, pages 33–38.

Google (2025a). The chromium projects.
Google (2025b). Google cloud bucket.
Google (2025c). Google cloud function.
Google (2025d). Google cloud pub/sub.
Kim, H., Ahmad, A., Hwang, J., Baqa, H., Le Gall, F., Or-

tega, M. A. R., and Song, J. (2018). Iot-taas: Towards
a prospective iot testing framework. IEEE Access,
6:15480–15493.

Ltd, P. (2023). Bangle.js 2 website.
Minani, J., Sabir, F., Moha, N., and Guéhéneuc, Y.-G.

(2024a). A systematic review of iot systems testing:
Objectives, approaches, tools, and challenges. IEEE
Transactions on Software Engineering, PP:1–29.

Minani, J. B., Sabir, F., Moha, N., and Guéhéneuc, Y.-G.
(2024b). A systematic review of iot systems testing:
Objectives, approaches, tools, and challenges. IEEE
Transactions on Software Engineering, 50(4):785–
815.

Poess, M., Nambiar, R., Kulkarni, K., Narasimhadevara,
C., Rabl, T., and Jacobsen, H.-A. (2018). Analy-
sis of tpcx-iot: The first industry standard benchmark
for iot gateway systems. In 2018 IEEE 34th Inter-
national Conference on Data Engineering (ICDE),
pages 1519–1530.

Siboni, S., Shabtai, A., Tippenhauer, N. O., Lee, J., and
Elovici, Y. (2016). Advanced security testbed frame-
work for wearable iot devices. ACM Transactions on
Internet Technology (TOIT), 16(4):1–25.

Statista (2024). Internet of things (iot) connected devices
worldwide 2019–2030. Accessed: 2025-03-27.

Vemula, S. (2024). Exploring challenges and opportunities
in test automation for iot devices and systems. Inter-
national journal of computer engineering and tech-
nology, 15:39–52.

Xing, L. (2021). Cascading failures in internet of things:
Review and perspectives on reliability and resilience.
IEEE Internet of Things Journal, 8(1):44–64.

Thoth: A Lightweight Framework for End-to-End Consumer IoT Rapid Testing

437


