
A Controlled Experiment on the Effect of Ownership Rules and
Mutability on Localizing Errors in Rust in Comparison to Java

Lukas Poos1, Stefan Hanenberg2 a, Stefan Gries3 and Volker Gruhn2 b

1Independent Researcher, Germany
2University of Duisburg–Essen, Essen, Germany

3codecentric AG, 42697 Solingen, Germany

Keywords: Programming Languages, Empirical Study, User Study.

Abstract: The programming language Rust introduces language constructs such as ownership rules and mutability whose
effect is, that undesired side-effects can be detected by the compiler. However, it is relatively unknown what
the effect of such constructs on developers is. The present work introduces an experiment, where Rust and Java
code was given to ten participants. The code, that consisted of ten function calls, contained one function that
performed an undesired side-effect which led to an error in the main function. The participants’ task was to
identify the function that caused this effect. The experiment varied (in the Rust code) the number of calls where
a parameter was passed as mutable (which is inherently the case in languages such as Java). Such variation
had a strong (p < .001) and large (η2

p = .459) effect on participants. On average, it took the participants 29%
more time to identify the function in Java. However, this number varied between -4.3% and 117%, depending
on how many parameters where passed as mutable. Altogether, the experiment gives evidence that an explicit
passing of variables as mutable has a positive effect on developers under the experimental conditions.

1 INTRODUCTION

The programming language Rust1 is a relatively new
programming language whose development started
before 2010 and whose version 1.0 appeared in 2015.
The language has its focus on performance, type
and memory safety. While its syntax shares some
similarities with other languages, it contains a number
of innovative constructs that differ widely from main
stream languages such as Java, C++, etc. One of these
constructs are the ownership rules, where variables
can be passed to other functions, but where the target
function becomes owner of the passed value, and the
client method loses its ownership. Another construct
is the definition of mutability, where developers
explicitly have to declare that a variable is permitted
to change while the program is running.

While the theory behind ownership rules and
mutability is quite well-understood and well-
described (see, for example, (Clarke et al., 2013)
among others), it is not clear what the effect of such

a https://orcid.org/0000-0001-5936-2143
b https://orcid.org/0000-0003-3841-2548
1https://www.rust-lang.org/

constructs on developers is: whether developers
are able to cope with such language constructs
remains unclear. I.e., while there is no doubt about
the theoretical implications of ownership rules and
mutability, there is not much empirical evidence
about the effect of ownership rules on developers:
possibly developers have troubles to understand the
effect of ownership rules. Having said this, a survey
from 2024 by the Mozilla Rust team reports that a
larger number of developers consider Rust to be hard
to learn.2 A survey from the same group reported in
2020 that ownership rules are considered as the most
difficult part of the language.3

It is in general a well-documented phenomenon
that not much empirical evidence exists for
programming languages constructs in general.
For example, Kaijanaho documented that the
number of human-centered studies using randomized
controlled trials (RCTs) in the field of programming
language design up to 2012 on specific languages

2https://blog.rust-lang.org/2025/02/13/2024-State-O
f-Rust-Survey-results.html

3https://blog.rust-lang.org/2020/12/16/rust-survey-202
0.html

410
Poos, L., Hanenberg, S., Gries, S. and Gruhn, V.
A Controlled Experiment on the Effect of Ownership Rules and Mutability on Localizing Errors in Rust in Comparison to Java.
DOI: 10.5220/0013647500003964
In Proceedings of the 20th International Conference on Software Technologies (ICSOFT 2025), pages 410-421
ISBN: 978-989-758-757-3; ISSN: 2184-2833
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

features was just 22–such low number of studies was
confirmed by other authors as well (see, for example,
(Buse et al., 2011; Ko et al., 2015) among others).

The present paper introduces a controlled
experiment, where participants were required to
identify a function that accidentally causes an
undesired side-effect. More precisely, participants
were given a main function where a data structure
was defined and passed to other functions. It turned
out that the explicit declarations of mutability had
a measurable, positive effect on participants: on
average, participants required 29% more time when
the programming language Java was used.

2 OWNERSHIP RULES AND
MUTABILITY IN RUST

We first introduce ownership rules in Rust, followed
by an introduction of mutability. Then, we discuss the
possible effects of both concepts on developers.

2.1 Ownership Rules

The principle of ownership rules in Rust is relatively
simple: a function that defines a variable owns such
variable. But when such variable is passed to another
function, the passing function looses the ownership
of the passed variable. As a consequence, the passing
function can no longer access such variable.

Figure 1 illustrates the effect of ownership rules
in Rust. There, the variable text is passed
from the client function to the target function
pass_and_print. Since the client function no longer
owns text, it is not possible to access it a second
time–the Rust code cannot compile.

Ownership in Rust is strongly connected to
references. For example, it is possible to rewrite the
code from Figure 1 in a way that it can be compiled
(and executed). Instead of passing the ownership of
text to another function, one can pass a reference
to that variable. This requires to declare in the
client method that a reference is being passed (and
it requires the target method to declare that it expects
a reference).

Figure 2 illustrates the previous code in a
compilable way. The variable is passed as a
reference (&text) which implies that only the
ownership of such reference is passed to the function
pass_and_print_referenced_string. As a
consequence, the main method can still access text
and print it out (although text–as a reference–was
previously passed).

1 fn main() {
2 let text:String = String::from("Hello , world!");
3
4 // text is passed to function pass_and_print,
5 // i.e., ownership
6 pass_and_print(text);
7
8 // ERROR: tries to access variable text
9 // that is no longer owned by the present function

10 println!("{}", text);
11 }
12
13 fn pass_and_print(text: &String) {
14 println!("{}", text);
15 }

Figure 1: Faulty code in main function.

1 fn main() {
2 let text:String = String::from("Hello , world!");
3
4 // reference to text is passed to function
5 // pass_and_print_referenced_string
6 pass_and_print_referenced_string(&text);
7
8 // access variable text
9 // that is still owned by the present function

10 print!("{}", text);
11 }
12
13 fn pass_and_print_referenced_string(text: &String) {
14 print!("{}", text);
15 }

Figure 2: Valid code that accesses a variable a second time.

Ownership rules also imply that the ownership of
returned values is passed from the returning function
to the invoking function. As a consequence, it is
not unusual to use multiple variables in a client
method (where some variables contain values that are
passed to functions and some variables contain values
returned from functions).

From first glance, ownership rules do not look
as essential as they are–it looks like one must just
take care how variables are passed. Practically,
the effect for developers is larger than one would
expect, especially for developers that are used to side-
effects. For example, it is usual in object-oriented
programming to keep an object’s state and pass this
state to other objects, while the passed state is still
available in the original object. For example, in Java it
is usual to share parts of an object’s state via so-called
getter methods. I.e., while Rust has ownership rules
with a special focus on the potential problems caused
by side-effects, there are programming languages
where side-effects are not considered as a notable
problem.

2.2 Mutability

Although the connection to ownership rules is not
directly obvious, the concept of mutability is another
language feature in Rust that has an effect on how
variables can be passed and used: only variables that

A Controlled Experiment on the Effect of Ownership Rules and Mutability on Localizing Errors in Rust in Comparison to Java

411

1 fn main() {

2 let vector = vec![1, 2, 3, 4, 5, 6, 7] ;

3 work_on_vector(vector);

4 }

5
6 fn work_on_vector(mut v: Vec<i32 >) {

7 v[2] = 42;

8 println!("{}", v[3]);

9 }

Figure 3: Example code where a vector is passed and the
target method changes the passed variable.

are declared as mut are mutable. Mutability plays
(again) a larger role, when variables are passed to
other functions. Such invoked functions cannot just
decide to change a given variable. Instead, they must
declare whether they require to mutate a variable.

Figure 3 illustrates and example, where a function
work_on_vector is invoked with a vector as a
parameter and where the target method changes the
vector at index two (and prints out the vector at index
three). Because of the change of the vector, the
parameter v needs to be declared as mutable.

2.3 Combined Occurance of Mutability
and Ownership

Although ownership rules and mutability do not
seem to be closely related, there are frequent
situations where both constructs need to be applied in
combination. Such a situation is given when a client
function owns a variable that needs to be changed
by multiple functions. Actually, in such situation
developers have the choice whether a passed variable
should be passed as reference, or whether the invoked
functions returns the changed variable. Figure 4
illustrates for an even more simplified example two
alternatives how the implementation could look like.

• In the first alternative, the invoking function
passes the ownership of the list to the function
remove_endings that returns the ownership
back. Therefore, it is necessary to declare
the variable vector as mutable and to add an
assignment operator to the client function in
addition to a return statement in the target method.
Additionally, it is necessary to declare the target
method’s return type Vec<i32> in its header. In
the example, it is necessary to declare the list as
mutable, because the returned value is passed to
that variable. The alternative would have been to
introduce a new variable.

• In the second alternative, the list is passed as a
reference. Since the target method changes that
reference, it is necessary to pass the list as mutable

1 // Alternative 1:

2 // passed ownership, returned vector

3 fn main() {

4 let mut list = vec![1, 2, 3] ;

5 list = remove_endings(list);

6 }

7
8 fn remove_endings(mut l: Vec<i32 >)->Vec<i32> {

9 l.remove(0); l.pop();

10 l

11 }

12
13 // Alternative 2:

14 // passed reference

15 fn main() {

16 let mut list = vec![1, 2, 3] ;

17 remove_endings(&mut list);

18 }

19
20 fn remove_endings(l: &mut Vec<i32 >) {

21 l.remove(0); l.pop();

22 }

Figure 4: Two alternative implementations of a client
function that invokes a function that changes the passed list.

reference (parameter &mut list).

There might be reasons for or against one alternative,
but from our perspective it is plausible that the second
alternative should be preferred over the first one,
because the header of remove_endings is probably
easier to understand and it is neither necessary to
assign the result of remove_endings to the variable
list nor is it necessary to return the incoming
parameter in remove_endings. However, we are
aware that in the second alternative the invocation
of the function is more difficult than in the first
alternative.

2.4 Possible Effects on Developers

It is plausible that developers who use ownership
rules and mutability for the first time (and who
are used to side-effects), have problem with these
concepts. However, this is from our perspective not
problematic, because we think it is plausible that new
technology requires some training.

However, we think that it is worth thinking about
the potential problem that the design of programs is
(probably) different than the design of programs in
traditional programming languages with side-effects.
For example, Figure 5 illustrates a simple example
where a string is passed to a function and where the
string (in addition to its length) is returned. The
target function returns a tuple consisting of the string
and its length, and the invoking method declares a
new variable with corresponding names. Such a

ICSOFT 2025 - 20th International Conference on Software Technologies

412

1 fn main() {
2 let s1 = String::from("hello");
3 let (s2, len) = calculate_length(s1);
4 println!("The length of ’{s2}’ is {len}.");
5 }
6
7 fn calculate_length(s: String) -> (String , usize) {
8 let length = s.len();
9 (s, length) // returning tuple

10 }

Figure 5: Example code of a trivial function where a
returned value is used in a method (taken with minor
changes from https://doc.rust-lang.org/book/ch04-01-w
hat-is-ownership.html).

program looks noteworthy different than in traditional
languages with side-effects where no second variable
s2 is required in the client method and where a
target method is not required to return the incoming
parameter in addition to result of the method’s
computation (the variable length). Considering that
an additional identifier appears in the program (the
identifier s2), it is plausible to assume that this
decreases the readability of a program.

Additionally, we already discussed that mutability
and ownership rules might lead to different program
designs (see Figure 4) that probably differ in the
readability of the code. As discussed, the design
where the number of identifiers increases potentially
decreases the readability of the code.

While we agree that Rust might imply a number
of challenges for developers, there could be still
a positive effect on code readability. We believe
that the explicit passing of an object as mutable
helps developers to identify more quickly where an
undesired side-effect potentially occurs in a program.
I.e., it is plausible to us that the additional annotation
&mut–once it is in a valid piece of code–permits
developers to identify more quickly potential sources
of errors.

Hence, the present work’s goal is to test, whether
the previously said holds in a controlled setting.

3 RELATED WORK

In the following, we describe works that are related
to the present one. We consider works as related,
where empirical data was collected on the use or the
usability either of the programming language Rust, or
on the language construct mutability.

3.1 Studies on Rust

Astrauskas et al. studied developer code declared
as unsafe in the programming language Rust (see
(Astrauskas et al., 2020)) – a language feature that

permits to write Rust code that does not rely on the
typical static guarantees Rust give. The study is based
on the collection of existing source code snippets.
It turned out that – while the majority of code does
not use the unsafe feature–that most often occurences
of unsafe is in blocks where the motivation for such
blocks “result from need to provide interoperability
with custom hardware and native code written in
C” (see (Astrauskas et al., 2020, p. 136:25)). A
comparable study by Evans et al. (on the same
code repository) came to comparable conclusions (see
(Evans et al., 2020)).

A study by Zhu et al. concentrated on the
learnability of Rust (see (Zhu et al., 2022)). In a
first step, the authors inspected questions on Stack
Overflow. Based on that, an survey with more
than 100 Rust programmers was executed where
four Rust programs where shown to each participant,
who were asked questions about these programs
(from identifying a program’s error root cause up to
subjective rating of the program’s difficulty). One
of the results of the study was that developers are
at least sometimes confused about Rust’s lifetime (or
ownership) rules.

Zhang et al. studied 790 bug fixes of Rust
programs (Zhang et al., 2024) in order to characterize
common bugs and their fixes beyond memory safety
concerns. Most interesting, the authors identified
several index out-of-bounds exceptions, i.e., the error
that is in the focus of the present work. However, the
authors identified that only a small number of bugs
were caused by violations of ownership rules.

A study by Coblenz et al. (Coblenz et al., 2023)
used observations of students doing Rust tasks to
classify Rust questions from Stack Overflow. It
turned out that most questions are related to data
structures, followed by libraries. A similar study
by Chakraborty et al. (Chakraborty et al., 2021)
(based on the analysis of question and answers of QA-
sites) came to a comparable conclusion with respect
to Rust.4

Scott et al. (Scott et al., 2024) studied on a
single undergraduate student the possible effects of
the programming language Rust for a given project
(web server program). The study concluded that
“memory-related features take a high learning curve”
(Scott et al., 2024, p. 120).

Based on 178 interviews, the study by Fulton et
al. (Fulton et al., 2021) tried to identify challenges
developers face when adopting Rust. It turned out
that while developers are more convinced to write
bug-free programs, developers did not agree that Rust

4The mentioned study was not only restricted to Rust,
but considered other languages as well.

A Controlled Experiment on the Effect of Ownership Rules and Mutability on Localizing Errors in Rust in Comparison to Java

413

requires less time to produce prototypes.
The study by Crichton and Krishnamurthi

(Crichton and Krishnamurthi, 2024) focused on the
more general process of learning a programming
language. There, quizzes were added to the main
textbook for Rust (Klabnik and Nichols, 2023). While
several results of the study are related to how learners
handle the content of the book, an interesting insight
is that most readers only read the first chapters of a
teaching book and then give up. It is noteworthy that
the first chapters of the text book introduce ownership
rules and references. Under the assumption that one
of the reasons why learners give up early is, that the
concepts are hard to understand, this study’s results
is in line with previous studies stating that developers
consider ownership rules as hard to understand.

3.2 Studies on Mutability

While the previous studies were related to the
Rust programming language, there are studies that
explicitly focus on immutability / mutability.

Coblenz et al. (Coblenz et al., 2016) interviewed
eight software engineers. It turned out that “important
requirements, such as expressing immutability
constraints, were not reflected in features available
in the languages participants used.”(Coblenz et al.,
2016, p. 736), respectively, that “the participants
who worked on software with significant amounts of
state said that incorrect state change was a major
source of bugs”(Coblenz et al., 2016, p. 742).

While a different study by Coblenz et al. (Coblenz
et al., 2017) focused on a new language feature
that permits the declaration of immutable state, it
turned out that a number of developers using the
programming language Java used the keyword final
in a rather problematic way – which seems to
suggest that the differences between final variables
and immutable state is not as good understood by
developers as one would expect.

4 EXPERIMENT

4.1 Initial Considerations

A number of initial considerations were required in
order to design the experiment.
Task: The experiment’s goal is to give developers a
piece of code where an accidental side-effect leads to
an error. As discussed in Section 2.4, the underlying
idea is give participants code where functions operate
on a previously defined data structure–and it is up to
the participant to detect the function that accidentally

changes the data structure. We decided to show
one main method and eight additional functions to
developers, where the name of the functions is simply
function_1 to function_8 (in the following, we
call the called functions API functions). That way, the
developer can respond to the given task by pressing
the keys 1–8.
Code Difficulty (Main Function): In order to
determine where in a given code base a data structure
is accidentally changed, it is necessary to read the
code where such data structure was originally defined.
Additionally, one must read the code where the data
structure is potentially changed. The problem is that
differences in difficulty in the code have an influence
on how quickly developers are able to find the code
that causes the error. Consequences, the goal is to
design the experiment in a way, that as few as possible
differences in the difficulty in the code exist–and that
the code itself is relatively simple. We decided to
design the code in the following way: there is the
main function that defines the original data structure
(a vector) that is changed by invoked functions. Such
main method consists of 10 lines of code.
Code Difficulty (API Functions): Participants of
the experiment need to read those functions that
potentially change the incoming vector. Due to this,
we see the need to design the code of such functions
as homogeneous as possible to avoid confounding
factors caused by such functions. The invoked
functions only consist of declarations of new variables
(that are initialized by a previous variable, the passed
parameter, a clone of a previous variable or the passed
parameter, or a new vector). The last line of the
invoked functions is just the call clear() to one of
the local variables. Each of the invoked methods has
exactly 12 lines of code.
Distribution of Candidates and Error Function:
Functions that potentially change the state of the
vector (we call such functions candidate functions in
the following) differ to the other functions that they
require a mutable reference as incoming parameter.
It is plausible that the more candidate functions are
available, the more time the participant probably
requires to identify the function that causes the error
(in the following, we call this candidate function the
error function). Furthermore, it is plausible that the
position of the error function plays a role: if, for
example, the error function is the first function to
be read, there is no need to read any other function.
Because of this, it is not only necessary to control the
number of candidate functions: it is also necessary
to control the position of the error function to some
extent.
Position of Error Function: While it sounds

ICSOFT 2025 - 20th International Conference on Software Technologies

414

plausible that the position of the error function
should randomly vary, we think that it is plausible
that this variation should be controlled to a certain
extent. We decided that the position of the error
function among the candidate functions should be
controlled by a relative position among the candidate
functions. Thereto, we only distinguish whether the
error function appears in the first or the second half of
the candidate functions.
Language: Since the goal of the experiment is to
test the effect of certain language features in Rust,
there is a need to have another language to compare
with. We decided to use Java as such a language.
An implication of using a language that does not
provide ownership rules and mutability as language
constructs is that each called function is a candidate
function. I.e., a main method in Java that matches
the previously described form corresponds to a main
method in Rust, where each method call passes its
parameters as mutable references.

Finally, the experiment followed the general idea
of N-of-1 studies (see (Hanenberg and Mehlhorn,
2021; Hanenberg et al., 2024)), where all treatment
combinations are assigned to each single participant.

4.2 Experiment Layout

The experiment layout consisted of the following
variables:

• Dependent Variable:
– Time until an answer was given (response

time).

• Independent Variables:
– Group: Rust 2 (Rust with 2 candidate

function), Rust 5, Rust 8, Java 8.
– Area: 1st = the error function occurs in the

first half of the candidate functions, 2nd = the
error function occurs in the second half of the
candidate functions.

• Fixed Factors:
– Main Function: the main function consists

of one line of code where a vector is defined,
eight function calls that only pass this vector,
and one line where a non-existing element was
accessed. Figure 6 illustrates an example for
Rust with two candidate functions, Figure 7
illustrates the translation to the treatment Java
8.

– API Functions: Each API function receives a
vector. In case, the API function is a candidate
function, the parameter is declared as mutable.
The API function’s body consists of 10 lines

1 fn main () {

2 let mut vector: Vec<i32 > =

3 vec! [32, 53, 24, 18, 56, 33, 58] ;

4 function_1(&mut vector);

5 function_2(&vector);

6 function_3(&vector);

7 function_4(&mut vector);

8 function_5(&vector);

9 function_6(&vector);

10 function_7(&vector);

11 function_8(&vector);

12 // ERROR: OUT OF BOUNDS

13 let vec_value_7 = vector[6];

14 }

Figure 6: Example code for treatment Rust 2. The line
break in line 2 was only added for illustration purposes and
was not contained in the original experiment.

1 public static void main(String[] args) {

2 var vector =

3 Vector.new(32 , 53, 24, 18, 56, 33, 58);

4 function_1(vector);

5 function_2(vector);

6 function_3(vector);

7 function_4(vector);

8 function_5(vector);

9 function_6(vector);

10 function_7(vector);

11 function_8(vector);

12 // ERROR: OUT OF BOUNDS

13 var vec_value_7 = vector.get(6);

14 }

Figure 7: Translation of Figure 6 to the treatment Java 8.
The line break in line 2 was only added for illustration
purposes and was not contained in the original experiment.

where new local variables are introduced that
are either initialized with a previous variable
(including the incoming parameter), clone, or a
new vector. The variable names were randomly
chosen from a dictionary. The last two lines
of each method are a new line and a line,
where the vector of one variable is cleared.
Figure 8 illustrates an API function that
is a candidate function (incoming parameter
declared as mutable) that is responsible for the
error in the application (the last line cleares the
incoming vector).

– Number of Repetitions: Each treatment
combination was repeated four times (32 tasks
in total).

• Random Factors:
– Candidate Position in Function Call: For

the Rust code, the number of candidates were
randomly set among the eight function calls.
For Rust 8 and Java 8, no such random position
was necessary (because each called function is

A Controlled Experiment on the Effect of Ownership Rules and Mutability on Localizing Errors in Rust in Comparison to Java

415

a candidate function).
– Error Position in Error Function: The line

that is responsible in the error function–the
assignment of the incoming parameter to a
variable that is (directly or indirectly) cleared–
was randomly chosen.

1 fn function_1 (v_start: &mut Vec<i32 >) {
2 let &mut v_album = v_start;
3 let mut v_berry = v_album.clone() ;
4 let &mut v_crown = v_album;
5 let mut v_dance = vec![60, 84, 28, 37, 64, 63, 61] ;
6 let mut v_elbow = v_crown.clone() ;
7 let mut v_fruit = vec![75, 21, 2, 67, 3, 86, 91] ;
8 let &mut v_ghost = v_berry ;
9 let mut v_hear t = v_dance.clone () ;

10 let mut v_image = v_elbow.clone () ;
11 let mut v_judge = v_dance.clone () ;
12
13 v_crown.clear();
14 }

Figure 8: Example Rust candidate function that changes the
state of the incoming parameter (the variable v_crown is
defined as the incoming parameter in line 4).

4.3 Execution

The experiment was executed on ten volunteers
based on purposive sampling. Each volunteer was
a computer science student in the sixth semester or
higher (age 22-26). The volunteers received a link
to the online application that collected the data. The
online application contained a short training phase
including a description of the language constructs
ownership rules, references, and mutability.

4.4 Results

An ANOVA was performed on the resulting data
using the software Jamovi (version 2.3). The variable
participant was additionally used in order to detect the
possible influence of each individual on the results.
Table 1 illustrates the results of the analysis.

It turns out that all independent variables were
significant (with p <.001) and the effect size of all
variables was large (η2

p ≥ .345) where the variable
participant had the lowest effect size (η2

p = .345).
Additionally, there was a strong interaction effect
between the variables group and area (p < .001; η2

p
=. 123).

Figure 9 illustrates this interaction effect. With
an increasing number of candidate functions the
differences between the first and the second area get
larger. For eight candidate functions, there seems to
be hardly a difference between Java and Rust. To test
this, we ran a Tukey post-hoc test and found neither a
difference between the first area for Rust 8 and Java 8
(p > .999), as well a no difference for the second area

Figure 9: Estimated means for group * area.

(p=.881).5

Due to the strong effect of the variable participant
(and its interaction with the variable area), it is
plausible to take a closer look to the different
participants.

Table 2 illustrates the results for each individual.
It turns out that only three participants revealed the
same effect as the results for all participants (variable
group and area significant, significant interaction
between both variables). However, taking a close look
at the mean variables for the treatments R2, R5, R8,
and J8 reveals that the same tendencies can be seen for
all participants: the smaller the number of candidate
functions, the faster is the response. Another notable
result is that only three participant had a larger mean
for Java 8 than for Rust 8 – there is some small
tendency that the Java code was slightly easier to
read than the Rust code with a comparable number
of candidate functions.

To understand the main result of the study, Table
3 summarizes the ratios of Java response times and
Rust response times. What can be seen is that the
less candidate functions exist, the larger the ratio –
and in case the number of candidate functions are
comparable, there is even a (small) negative effect of
Rust.

However, when considering Table 3 we need to
keep in mind that the ratios also operate on averages
of the variable area (from which we know that it has
a strong and large effect on the result).

5 THREATS TO VALIDITY

Code Difficulty: The code in the experiment was
designed in a way that it has (from our perspective)

5Actually, due to the strong overlapping confidence
intervals for Rust 8 and Java 8, it is obvious that no
difference could be found.

ICSOFT 2025 - 20th International Conference on Software Technologies

416

Table 1: Experiment results. Confidence intervals (CI) and means (M) are given in seconds; Treatments (TRT), respectively
treatment combinations, are abbreviated to ease the readability of the table (R2 = Rust 2, etc.)

ANOVA on Response Times
Variable df F p η2

p TRT CI95% M

group (g) 3 67.84 <.001 .459

R2 7.68; 8.98 8.3
R5 12.9; 16.5 14.7
R8 16.9; 20.8 18.8
J8 15.9; 20.0 18.0

area(a) 1 182.53 <.001 .432 1st 9.91; 12.2 11.0
2nd 17.6; 20.1 18.9

participant(p) 9 14.07 <.001 .345 (see Table 2)

g * a 3 11.26 <.001 .123

R2/1st 6.5; 7.8 7.15
R2/2nd 8.5; 10.5 9.51
R5/1st 8.1; 13.4 10.7
R5/2nd 16.8; 20.4 18.6
R8/1st 11.2; 15.4 13.3
R8/2nd 22.2; 26.6 24.4
J8/1st 10.3; 15.8 13.0
J8/2nd 20.7; 25.1 22.9

g * p 27 1.10 .338 .110 skipped, because not significant
a * p 9 4.82 <.001 .153 (see Table 2)
g*a*p 27 1.45 .076 .140 skipped, because not significant

Table 2: Results per participant. The columns g, a, and g *
a show the p-value for each individual as well as the means
for the treatments R2, R5, R8, and J8. The highlighted
participants show significant results for all independent
variables.

ANOVA on each participant
p g a g * a R2 R5 R8 J8
p1 .003 .613 .648 9.98 18.4 27.0 25.4
p2 .001 <.001 .061 7.62 12.7 19.7 18.8
p3 .004 <.001 .037 8.13 14.0 15.3 14.7
p4 .004 .005 .051 11.0 24.7 25.9 22.0
p5 <.001 <.001 .003 8.26 14.2 19.4 16.7
p6 <.001 <.001 .113 7.25 12.2 16.0 16.7
p7 .008 <.001 .081 10.1 14.9 20.5 19.9
p8 <.001 <.001 .145 7.82 13.3 14.3 14.6
p9 <.001 <.001 .165 5.15 8.61 12.7 12.3
p10 <.001 <.001 <.001 7.48 14.0 17.5 18.4

Table 3: Ratios of response times of Java (with eight
candidates) and Rust. The last column describes the ratio
of Java response times in comparison to average response
times in Rust.

MJava8
MRust2

MJava8
MRust5

MJava8
MRust8

MJava8
ØMRust

2.17 1.22 .957 1.291

a low difficulty. The main function only consisted
of a vector definition and function calls, while the
called fuctions just consisted of the definition of local
variables, that were either initialized with other local
variables, or which defined a new vector. We believe
that the results of the experiment would be quite
different if more difficult code would be used, because
more difficult code (probably) introduces a larger
deviation in response times. It is also possible that

very difficult code–such as algorithmic code–would
hide the here measured positive effect of ownership
rules and mutability. However, this would be from
our perspective not mean that the effect is not there.
Instead, the effect would just be hidden.
Difficulty of Candidate Functions: We are aware
that the measured differences depend to some extent
on the difficulty: it is plausible that the measured
differences occur not only because of the mutable
declaration of a passed parameter, but also because
of the time spent in each candidate function. Hence,
increasing the time spent on each candidate function
would probably increase the effect measured in the
present experiment. However, such a change in the
experiment would also require that the difficulty of
each candidate function is comparable.
Flat Code Structure: The present experiment relies
on code with a flat structure: a main function invokes
some functions that work on the passed parameter–
but those ones do not pass the parameter to other
functions. We are aware that a change in the structure
of the code (which probably goes in line with an
increase in the code’s difficulty) will probably change
the experiment results.
Variable Names and Types: The code in the
experiment used random words from a dictionary for
parameter names and we are aware that the identifier
style has an effect on the readability of the code
(see, for example (Binkley et al., 2013; Lawrie et al.,
2006) among others). Furthermore, the code uses
no type declarations for the local variables (we use
the keyword var in the Java code, in Rust, we do

A Controlled Experiment on the Effect of Ownership Rules and Mutability on Localizing Errors in Rust in Comparison to Java

417

not explicitly define the type of the variables in
each candidate function), and we are aware that type
information influence the readability of the code (see,
for example, (Gannon, 1977; Prechelt and Tichy,
1998; Endrikat et al., 2014; Fischer and Hanenberg,
2015; Ray et al., 2017) among others).
No Unnecessary Mutable Declarations: The
experiment relied on the assumption that developers
use mutable declarations only in situations, where
a function potentially changes a variable’s state.
In case, one would always pass parameters as
mutable (with references), one would (probably) not
measure a difference between Java and Rust. The
experiment already gave evidence for that, because
the experiment did not reveal a difference between
the treatments Rust and Java with eight candidate
functions.
Unsafe Rust: The code in the experiment assumes
that Rust is used in a safe manner. We are aware that it
is common to use Rust by using code blocks declared
as unsafe. Actually, we are not aware how unsafe
code would change the results of the experiment.
Error Identification Versus Error Fixing: In the
present experiment, participants were only asked to
identify the error function–but it was not up to them to
fix the error. Actually, fixing an error in a completely
randomized experiment is (probably) quite difficult:
for the present experiment, a strategy could be to
add a method call clone() to all variables, another
strategy could be to simply delete all function calls
in the main function–both strategies are obviously
not the intention of such an experiment. We think
in order to design a randomized experiment on error
fixing, one has to articulate clearly what kinds of
changes are permitted (and which ones are not).
Hence, we think that it is possible that results for error
fixing experiments can differ from the here presented
results–and this might also be partly because of
required differences in the experiment design.
Reading Direction: The experiment introduced the
variable area, which indicated that it leads to smaller
response times in case the error function appears
in the first half of the functions. However, this
probably depends on the reading direction of the
code: probably, participants read the code from
top to bottom–which inherently means (under the
assumption that they spent a comparable amount of
time in each candidate function) that the sooner the
error function appears, the quicker is a participant
able to answer. However, this probably changes as
soon as participants change their reading direction.
I.e., we think that the variable area mainly indicates
the reading direction and in case most participants
read the code from bottom to top, the effect of that

variable would be the opposite.
Measurement Technique: The proposed experiment
uses the response times of participants. We are
aware that this measurement has a potential problem:
participants could just guess what the function is,
or could just type in all possible answers (until the
correct one is found). So far, we do not have a solution
to this potential problem. Actually, we think that this
is a common problem today’s controlled experiments
potentially suffer from.
Influence of Used Programming Languages: The
present study relies on the languages Rust and Java,
where the latter one was considered as a language
without the constructs to be studied. We cannot
judge to what extent the used languages influence the
result of the study. For example, it is plausible to us
that the syntax of Rust was (under the experimental
conditions) relatively easy to understand, because in
principle one just needs to distinguish parameters that
were passed as &mut. However, whether the syntax of
this construct has other effects cannot be judged from
the experiment.
Generalizability: It is unclear to what extent the
results are generalizable. The most general problem
is, to what extent the participants can be considered
as being representative. We cannot answer this
question, but we assume that participants who are
more familiar with Rust probably require less time
than participants who are not familiar with reading
code in general. In our case, the participants
were students who are familiar with reading code.
Another general threat comes from the relatively
small sample size: the experiment was just executed
on 10 participants. However, we should emphasize
that the main effect (significance of variable group)
was shown for each single participant. I.e., the
experiment does not give much evidence to doubt that
under the experimental conditions no positive effect
is measured. Furthermore, one should not forget,
that the design of N-of-1 studies explicitly focuses
on a small number of participants–while the number
of data points is (still) quite high (see, for example,
(Hanenberg and Mehlhorn, 2021; Hanenberg et al.,
2023; Klanten et al., 2024)).

6 SUMMARY AND DISCUSSION

The present work introduces an experiment with
the focus on the language features ownership and
mutability that are provided by the programming
language Rust: features that are commonly
considered as one of the most innovative elements
of Rust. Both features in combination are used in

ICSOFT 2025 - 20th International Conference on Software Technologies

418

situations where side-effects occur in a program–and
both features in combination guarantee that no
undesired side-effects occur.

While the theoretical aspects of both features are
unquestioned, the present experiment has the focus
on the readability of the resulting code. Thereto, an
experiment was designed where a given data structure
was passed to eight functions, where one of the
functions performs an undesired side-effect. The
result of this undesired side-effect is that one line in
the invoking method is invalid.

We summarize the present work in different steps:
first, we summarize and discuss the experiment
design, then we summarize and discuss the results,
followed by the interpretation. Finally, we discuss the
possible implications for future work.

6.1 Experiment Design

To compare the effect of language features with a
language without such features, the programming
language Java was used for the comparison. However,
based on some initial considerations, such an
experiment should also consider how many candidate
functions possibly cause an undesired side-effect.
Therefore, the experiment introduced an independent
variable group with different numbers of candidate
functions: two, five, and eight candidate functions
for Rust, and eight candidate functions for Java.
In principle, it would have been desirable to use
the number of candidate function as independent
variable as well as the programming language as
an independent variable. However, this is not
possible under the assumption that the rest of the
code is comparable, because Java does not permit
to distinguish between mutable and non-mutable
parameters.

Additionally, the experiment introduced a variable
area which defined in what half of the candidate
functions the error function occurred. Again, it can be
argued that it would have been desirable to introduce a
variable that states, what invoked function leads to the
error (with the treatments 1–8). However, combining
such a variable with the variable group would lead
to a large increase of treatment combinations and the
insights would be (from our perspective) rather low.
Hence, the variable area should only be considered
as an indicator that not only the number of candidate
functions matter, but also, where the call of the error
function occurs.

6.2 Results

The result of the experiment is quite clear: the lower
the number of candidate functions, the larger is the
difference in the response times in the experiment: the
variable group influences the response times (with p
< .001; η2

p=.459), and so does the interaction group
* area (p < .001, η2

p = .123). This implies for the
comparison to Java, that there is a large difference
between Java and Rust that has only 2 candidate
functions (MJava8

MRust2
= 2.17), while this ratio decreases,

if the number of candidate functions increases (up to
MJava8
MRust8

= .957)6. On average, participants required
29% more time in Java in comparison to Rust
(MJava8

ØMRust
=1.291).

It is important to emphasize not only the effect of
the variable group, but also the effect of the variable
area. I.e., when speaking about the readability effect
one must take into account where the error function is
(among the list of candidate functions).

However, the effects were only observable on all
participants in combination. On an individual basis,
only three out of ten participants revealed a significant
effect of group, area, and group * area. However, for
each individual participant a positive effect of Rust
was measured, although the differences between the
participants were remarkable: while, for example, for
participant p3 the ratio MJava8

MRust2
was just 1.8, participant

p10 revealed a ratio of 2.46.
Although not all effects could be observed

on each participant, we think that this might be
due to the relatively low number of repetitions:
the experiment just used four repetitions for each
treatment combination.

6.3 Interpretation

The present experiment should and must not be
understood as a general proof that Rust increases the
readability of code (in comparison to Java). Instead,
the experiment only focuses on a situation where
somewhere in a program some undesired side-effect
occurs that leads to an error. We tested (in a controlled
setting) whether the passing of a variable as a mutable
reference has a positive effect on the identification
of a function that changes the passed parameter. In
such situation, these additional annotations turned out
to be beneficial for participants–and the effect (with
MJava8
ØMRust

=1.291) is large enough that it can be hardly
argued that this effect is not relevant.

The interesting part of the work is, that

6This difference in response times was not significant.

A Controlled Experiment on the Effect of Ownership Rules and Mutability on Localizing Errors in Rust in Comparison to Java

419

the language constructs ownership and mutability–
although especially the first one is considered as hard
to learn–can help developers to identify problematic
situations in the code. I.e., a technical construct that
was mainly designed to increase memory safety can
even have a positive effect on developers. However,
we should keep in mind that the code for the
experiment was already given. I.e., it is not possible
to infer from the experiment, what the effect of
such language constructs on the construction of new
code is–and it should remind us, that studies indicate
that ownership rules are probably hard to learn (see
Section 3).

6.4 Implications for Future Work

The general setup of the experiment–the random
generation of code snippets–shows, that it is possible
to study the readability of constructs in a controlled
setting. Such approach could be used to study
more constructs–and this approach could be used to
study language constructs upfront, i.e., before such
constructs are added to a language. This permits to
check upfront, whether a language construct implies
problems for developers. I.e., we think that the
approach of generating random code and give it
participants to read to identify certain phenomena
could be a general approach for language design.
However, we should make explicit that we do not
think the readability of ownership and mutability is
solved by the present work–we only consider this
as a starting point. Further experiments could, for
example, check, to what extend mixtures of passed
ownerships, references and mutability potentially
confuse developers. Additionally, we think is it
reasonable to use the same approach to identify errors
in existing code (such as a wrong use of ownership
rules).

In the same way, it seems plausible that syntax
could be studied in more detail. For the given
scenario, we think it is plausible to test whether a
syntax such as the phrase &mut is a good design
choice. This could help language developers in the
future to test even syntax constructs upfront.

Having said this, we think that future work
should also emphasize the construction of code.
I.e., instead of giving developers a piece of code
to read (to identify some phenomenon), one should
give participants concrete code snippets to write.
However, we are aware that such an experiment will
probably largely differ from the present one.

7 CONCLUSION

The present work studied the effect of ownership
rules and mutability in Rust. In a controlled setting,
participants were asked to identify a function that
changes a program’s state in an undesired way.
The result was that ownership rules and mutability
helped participants to identify a problematic function
faster in comparison to the situation, where it cannot
be judged from a passed parameter, whether it
potentially changes the program state.

However, we should emphasize that the
experiment just tests the readability of Rust code in
a concrete setting with pre-defined code. I.e., we
cannot judge from the experiment what the effect of
such constructs on the design of new code is.

REFERENCES

Astrauskas, V., Matheja, C., Poli, F., Müller, P., and
Summers, A. J. (2020). How do programmers
use unsafe rust? Proc. ACM Program. Lang.,
4(OOPSLA).

Binkley, D. W., Davis, M., Lawrie, D. J., Maletic, J. I.,
Morrell, C., and Sharif, B. (2013). The impact of
identifier style on effort and comprehension. Empir.
Softw. Eng., 18(2):219–276.

Buse, R. P., Sadowski, C., and Weimer, W. (2011).
Benefits and barriers of user evaluation in software
engineering research. In Proceedings of the 2011
ACM International Conference on Object Oriented
Programming Systems Languages and Applications,
OOPSLA ’11, pages 643–656, New York, NY, USA.
Association for Computing Machinery.

Chakraborty, P., Shahriyar, R., Iqbal, A., and Uddin, G.
(2021). How do developers discuss and support new
programming languages in technical q&a site? an
empirical study of go, swift, and rust in stack overflow.
Inf. Softw. Technol., 137:106603.

Clarke, D., Östlund, J., Sergey, I., and Wrigstad, T. (2013).
Ownership Types: A Survey, pages 15–58. Springer
Berlin Heidelberg, Berlin, Heidelberg.

Coblenz, M., Nelson, W., Aldrich, J., Myers, B., and
Sunshine, J. (2017). Glacier: Transitive class
immutability for java. In 2017 IEEE/ACM 39th
International Conference on Software Engineering
(ICSE), pages 496–506.

Coblenz, M., Porter, A., Das, V., Nallagorla, T., and Hicks,
M. (2023). A Multimodal Study of Challenges Using
Rust.

Coblenz, M., Sunshine, J., Aldrich, J., Myers, B., Weber, S.,
and Shull, F. (2016). Exploring language support for
immutability. In Proceedings of the 38th International
Conference on Software Engineering, ICSE ’16, pages
736–747, New York, NY, USA. Association for
Computing Machinery.

ICSOFT 2025 - 20th International Conference on Software Technologies

420

Crichton, W. and Krishnamurthi, S. (2024). Profiling
programming language learning. Proc. ACM
Program. Lang., 8(OOPSLA1).

Endrikat, S., Hanenberg, S., Robbes, R., and Stefik, A.
(2014). How Do API Documentation and Static
Typing Affect API Usability? In Proceedings
of the 36th International Conference on Software
Engineering, ICSE 2014, pages 632–642, New York,
NY, USA. ACM.

Evans, A. N., Campbell, B., and Soffa, M. L. (2020). Is rust
used safely by software developers? In Proceedings
of the ACM/IEEE 42nd International Conference on
Software Engineering, ICSE ’20, pages 246–257,
New York, NY, USA. Association for Computing
Machinery.

Fischer, L. and Hanenberg, S. (2015). An empirical
investigation of the effects of type systems and
code completion on api usability using typescript
and javascript in ms visual studio. SIGPLAN Not.,
51(2):154–167.

Fulton, K. R., Chan, A., Votipka, D., Hicks, M., and
Mazurek, M. L. (2021). Benefits and drawbacks
of adopting a secure programming language: rust
as a case study. In Proceedings of the Seventeenth
USENIX Conference on Usable Privacy and Security,
SOUPS’21, USA. USENIX Association.

Gannon, J. D. (1977). An experimental evaluation of data
type conventions. Commun. ACM, 20(8):584–595.

Hanenberg, S. and Mehlhorn, N. (2021). Two N-of-1 self-
trials on readability differences between anonymous
inner classes (AICs) and lambda expressions (LEs) on
Java code snippets. Empirical Software Engineering,
27(2):33.

Hanenberg, S., Morzeck, J., and Gruhn, V. (2024).
Indentation and reading time: a randomized control
trial on the differences between generated indented
and non-indented if-statements. Empir. Softw. Eng.,
29(5):134.

Hanenberg, S., Morzeck, J., Werger, O., Gries, S., and
Gruhn, V. (2023). Indentation and reading time:
A controlled experiment on the differences between
generated indented and non-indented JSON objects.
In Fill, H., Mayo, F. J. D., van Sinderen, M., and
Maciaszek, L. A., editors, Software Technologies -
18th International Conference, ICSOFT 2023, Rome,
Italy, July 10-12, 2023, Revised Selected Papers,
volume 2104 of Communications in, pages 50–75.
Springer.

Klabnik, S. and Nichols, C. (2023). The Rust Programming
Language, 2nd Edition. No Starch Press.

Klanten, K., Hanenberg, S., Gries, S., and Gruhn, V.
(2024). Readability of domain-specific languages:
A controlled experiment comparing (declarative)
inference rules with (imperative) java source code in
programming language design. In Fill, H., Mayo, F.
J. D., van Sinderen, M., and Maciaszek, L. A., editors,
Proceedings of the 19th International Conference on
Software Technologies, ICSOFT 2024, Dijon, France,
July 8-10, 2024, pages 492–503. SCITEPRESS.

Ko, A. J., Latoza, T. D., and Burnett, M. M. (2015). A
practical guide to controlled experiments of software

engineering tools with human participants. Empirical
Softw. Engg., 20(1):110–141.

Lawrie, D. J., Morrell, C., Feild, H., and Binkley,
D. W. (2006). What’s in a name? A study of
identifiers. In 14th International Conference on
Program Comprehension (ICPC 2006), 14-16 June
2006, Athens, Greece, pages 3–12. IEEE Computer
Society.

Prechelt, L. and Tichy, W. F. (1998). A controlled
experiment to assess the benefits of procedure
argument type checking. IEEE Trans. Softw. Eng.,
24(4):302–312.

Ray, B., Posnett, D., Devanbu, P., and Filkov, V. (2017). A
large-scale study of programming languages and code
quality in github. Commun. ACM, 60(10):91–100.

Scott, J., Zuo, F., and Rhee, J. (2024). Student-perspective
observations from the comparison of rust and c++
languages. J. Comput. Sci. Coll., 40(1):112–121.

Zhang, C., Feng, Y., Zhang, Y., Dai, Y., and Xu, B.
(2024). Beyond memory safety: an empirical study
on bugs and fixes of rust programs. In 2024 IEEE
24th International Conference on Software Quality,
Reliability and Security (QRS), pages 272–283.

Zhu, S., Zhang, Z., Qin, B., Xiong, A., and Song, L.
(2022). Learning and programming challenges of rust:
a mixed-methods study. In Proceedings of the 44th
International Conference on Software Engineering,
ICSE ’22, pages 1269–1281, New York, NY, USA.
Association for Computing Machinery.

A Controlled Experiment on the Effect of Ownership Rules and Mutability on Localizing Errors in Rust in Comparison to Java

421

