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Abstract: Three models using a cascaded hybrid estimation method with physical models of different degrees of 
accuracy are evaluated for their overall precision and interpretability. Hybrid estimation methods hereby 
denote methods concatenating the properties of physics-based models and artificial neural networks for the 
purpose of improved state estimation. Cascaded hybrid estimation methods are a subtype of these methods, 
combining a physical model and an artificial neural network in a way that one acts as the input of the other. 
In this publication the result of a physical model is fed into a neural network to improve the estimation quality. 
It can be shown that the degree of accuracy of the physical model has an influence on the overall estimation 
quality, with more accurate physical models yielding better results, but less accurate models can provide a 
more significant improvement through the artificial neural network. This is likely due to the larger residual 
error that can be used to train the artificial neural network. 

1 INTRODUCTION 

The requirements for vehicle state estimation 
continue to rise. Therefore, new approaches, so-called 
hybrid methods, have been developed, that combine 
a physics-based model with an artificial neural 
network (Sieberg et al., 2019). As the development of 
artificial neural networks and such hybrid methods 
continues, it is important to examine different 
approaches. Various methods, shown in (Gräber et 
al., 2018; Kim et al., 2021; Li et al., 2021; Wu et al., 
2024), could be interpreted as cascaded hybrid 
estimation models, which thus far has not been 
extensively tested for vehicle dynamics. The 
information flow and the decision-making of artificial 
neural networks tends to be non-transparent, as their 
structure tends to be complex, especially for 
demanding estimation tasks. This could also be the 
case with a cascaded hybrid method, as all 
information is passed through the artificial neural 
network. The EU Artificial Intelligence Act (Smuha, 
2025) shows that the first legal requirements are 
already being placed on artificial neural networks and 
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their operation. The interpretability and therefore 
traceability of the decision-making of an artificial 
neural network are also regulated. Security, 
reliability, transparency, traceability, and 
documentation are focussed and various operators are 
held responsible to ensure these aspects (Smuha, 
2025). Interpretation methods are necessary for 
transparency and traceability. Some of these methods 
are listed in (Carvalho et al., 2019; Linardatos et al., 
2020; Zhang et al., 2021), and offer options for 
interpreting artificial neural networks.  

2 METHODOLOGY 

This publication aims to investigate if cascaded 
hybrid estimation models offer an attractive 
opportunity to enhance state estimation based solely 
on physical modelling. To validate this approach, 
physical models with three different degrees of 
accuracy are used and combined with a subsequent 
artificial neural network. All three estimation tasks 
are chosen from the automotive field, however the 
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findings from the investigation should be applicable 
over a wide variety of application fields. For the 
estimation tasks within this publication a simulation 
environment is used, which combines IPG CarMaker 
and MATLAB & Simulink in a co-simulation. The 
application examples chosen for this investigation are 
the estimation of the side-slip angle, the yaw rate, and 
the tyre load of the front left tyre. For proper 
investigation, the degree of accuracy was varied for 
the physical models utilised for each state estimation. 
Table 1 gives an overview over the physical models 
used and their respective degree of accuracy.  

Table 1: Overview of degree of accuracy for chosen state 
estimation parameters, derived from (Schramm et al., 
2018). 

Parameter Physical Model Degree of 
Accuracy

Side-slip 
angle 

Double-track model High 

Yaw rate Equilibrium of 
momentum of double-

track model 

Medium 

Tyre load  
(front left) 

Quarter-vehicle model Low 

By using models with different accuracy, it can be 
investigated if the estimation quality can be increased 
by cascading physical models with a subsequent 
artificial neural network. To assess the quality of the 
output, three main performance indices are used, root 
mean square error, permutation feature importance, 
and local interpretable model-agnostic explanation. 
The root mean square error takes into account the 
ground truth of IPG CarMaker. Permutation feature 
importance and local interpretable model-agnostic 
explanation, on the other hand, serve to evaluate how 
interpretable the state estimation is. The permutation 
feature importance is a measure for global 
interpretability (Molnar, 2020), while the local 
interpretable model-agnostic does the same locally 
(Ribeiro et al., 2016). This is based on the concern of 
having all information processed through the artificial 
neural network and the estimated state using no 
measured quantity directly. To evaluate how 
beneficial the integration of the artificial neural 
network within the hybrid method is to the overall 
state estimation, the output of each physical model is 
evaluated as well.  

3 MODELLING  

In this section, the used methods will be described. 
First, the overall structure will be presented, followed 

by its subparts, namely the three different physical 
models and the artificial neural network. Lastly, the 
driving manoeuvres, used to generate the data for the 
training of the artificial neural network and the 
overall validation, will be presented.  

3.1 Overall Structure 

As described in the Methodology section, a cascaded 
hybrid state estimation approach shall be used for this 
study. This approach is implemented for each 
estimated parameter individually. The basic structure 
of the artificial neural network remains unchanged for 
the different estimation tasks. The applied physical 
models are presented in Table 1. The IPG CarMaker 
environment, a multi-body vehicle simulation 
validated for example by (Cheok et al., 2023), 
provides the input data into the models as well as the 
ground truth values for the estimation tasks. The 
overall structure is depicted in Figure 1. IPG 
Carmaker provides sensor signals, which are used as 
inputs into the physical model as well as the artificial 
neural network for estimating the target quantities. 
These estimations are then compared to the ground 
truth quantities, which are also provided by IPG 
Carmaker. Thus, the estimation of the physical model 
can be compared against the estimation by the hybrid 
method.  

 
Figure 1: Overall structure of the simulation environment. 

3.2 Model for Side-Slip Angle 
Estimation 

A twin-track model as described in (Schramm et al., 
2018) is used as the basis for the physical model that 
estimates the side-slip angle. All necessary arguments 
for this model are taken from the IPG CarMaker 
environment, except for the vehicle velocity, the 
acceleration as well as the side-slip angle and its 
derivative. These quantities are representing inner 
states of the physical model. Vehicle acceleration and 
side-slip angle derivative are both integrated and the 
fed back to the system, respectively. Both values are 
initialised with zero, as the vehicle starts each 
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simulation run in straight standstill. Constants are the 
vehicle mass and gravitational acceleration. In 
contrast the chassis forces for each suspended wheel, 
the vehicle roll and pitch angle, the wind force acting 
on the entire vehicle, and the tyre velocities are 
dynamic input quantities provided by IPG CarMaker. 
Figure 2 depicts this approach.  

  
Figure 2: Implementation of the physical model for side-
slip angle estimation. 

The side-slip angle 𝛽 is used as the single output 
of the twin-track model and fed into the artificial 
neural network alongside longitudinal, lateral, and 
vertical acceleration, roll, pitch, and yaw angle, 
vehicle velocity, steering angle of the front wheels, 
and the simulated time. This is depicted in Figure 3. 
The structure of the artificial neural network will be 
described in section 3.5. 

 
Figure 3: Implementation of the artificial neural network for 
side-slip angle estimation. 

3.3 Model for Yaw Rate Estimation 

As the degree of accuracy for the yaw rate estimation 
shall be lower compared to the task of estimating the 
side-slip angle, the momentum equilibrium of the 
twin-track model is selected for this purpose instead 
of the direct use of the twin-track model. The time 
integration needed for the calculation of the yaw rate 
with this approach leads to a summation of the 
integration error, as the yaw rate is not fed back into 
the model. The chassis forces for each suspended 
wheel and the steering angle for both front wheels 
serve as the dynamic inputs for this model, while 
wheelbase, the longitudinal position of the centre of 
gravity, front and rear track width and the moment of 
inertia of the vehicle are constant. This structure is 
visualised in Figure 4.  

 
Figure 4: Implementation of the physical model for yaw 
rate estimation. 

As shown in Figure 5, the artificial neural network 
for the estimation of the yaw rate uses the same inputs 
from IPG CarMaker as the one for the side-slip angle 
estimation. In addition, the physical model provides 
the estimation of the yaw rate as an input.  

 
Figure 5: Implementation of the artificial neural network for 
yaw rate estimation. 

3.4 Model for Tyre Load Estimation 

For the estimation of the tyre load, a quarter-car 
model is used for the physical part of the hybrid 
estimation. This model can be represented by a linear 
state-space representation. The structure of the 
quarter-car model is based on the equations from 
(Schramm et al., 2018). The constants such as tyre 
stiffness, spring and damper constants, tyre mass and 
body mass of the front left vehicle body are taken 
from the IPG CarMaker environment, as shown in 
Figure 6. The damping of the tyre is assumed to be 
zero. Other constants used for this estimation are the 
inertia of rotation around the tyre’s rotation axis and 
the distances to the vehicle's centre of gravity. The 
excitation caused by the road surface is dynamically 
provided by the IPG CarMaker environment for the 
contact point of the front left tyre and fed to the 
system.  

 
Figure 6: Implementation of the physical model for tyre 
load estimation. 

Alongside the estimated tyre load of the front left 
tyre, the artificial neural network is given 
longitudinal, lateral, and vertical acceleration, pitch 
angle, road excitation, simulated time, and the lengths 
of spring, damper, and distance of wheel carrier to 
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centre of gravity of the front left as well as the rear 
left tyre, as depicted in Figure 7.   

 
Figure 7: Implementation of the artificial neural network for 
tyre load estimation. 

3.5 Structure of Artificial Neural 
Network  

An identical base structure was chosen for the 
artificial neural networks of all three estimation 
models. As the deviation between the outputs of each 
physical and the ground truth model may incorporate 
nonlinearities and represents a time-series prediction 
problem, an artificial neural network based on long 
short-term memory (LSTM) cells was chosen. (Zhang 
et al., 2024) showed that such networks can be used 
for the modelling of vehicle dynamics.  

The concrete network structure used for this study 
is shown in Figure 8 and starts with a sequence input 
layer that feeds the time series data to two LSTM 
layers. To omit overfitting issues, a dropout layer is 
integrated after each LSTM layer, deactivating LSTM 
cells randomly during the training process. Lastly, the 
information passes through one fully-connected 
layer, one rectified linear unit layer, and one single 
fully-connected termination neuron, as only one 
parameter is to be estimated by each artificial neural 
network. A regression layer is added to allow a 
continuous estimation.  

 
Figure 8: Structure of the artificial neural network used for 
all three models presented in this publication. 

Of the generated training data, 70 % are used for 
the training of the artificial neural network itself, 
while the other 30 % are used for in-training 
validation. The data are based on the simulations of 

the driving manoeuvres presented in section 3.6. No 
experimental data were used to train the models. 

A hyperparameter optimisation was carried out 
for each artificial neural network individually. The 
results of this hyperparameter optimisation are shown 
in Table 2 for all three artificial neural networks.  

Table 2: Results of hyperparameter optimisation. 

Hyper-
parameter 

Range Side-
Slip 

Angle 

Yaw 
Rate 

Tyre 
Load 

Sequence 
length

50 – 
200

137 170 184 

Hidden layers 
(LSTM 1)

32 – 
128

122 83 124 

Dropout 1 0.1 – 
0.5

0.1088 0.4454 0.3965 

Hidden layers 
(LSTM 2)

32 – 
128

110 106 120 

Dropout 2 0.1 – 
0.5

0.3164 0.2441 0.4834 

Neurons of 
fully connected 

layer 1

10 – 
100 

61 19 16 

Batch size 50 – 
200

90 53 69 

Gradient 
threshold

0.5 – 5 1.9771 1.6865 4.4373 

Initial learning 
rate 

10-2 – 10-4 0.0028 0.0060 0.0041 

Learning rate 
drop period

5 –  
50

44 33 22 

Learning rate 
drop factor

0.1 – 
0.9

0.1887 0.4875 0.6515 

Validation 
frequency

50 – 
200

151 117 55 

L2 
regularisation 

10-2 – 10-6 1.7509 
 ∙10-6 

1.8262 
 ∙10-6 

1.2816
 ∙10-6 

For this purpose, the sequence length of the input 
and the LSTM network configuration, such as the size 
of the hidden layer, fully connected layer, and the 
values of the dropout layer are chosen as 
hyperparameters. The Adam optimizer is used for this 
purpose. The number of epochs is limited to 50 for 
the Bayesian optimisation method (Frazier, 2018). 
Furthermore, the batch size, gradient threshold, initial 
learning rate, learning rate drop period, learning rate 
drop factor, validation frequency (with validation 
patience of 100), and the use of L2 regularisation are 
defined as hyperparameters. The hyperparameters for 
the three neural networks are approximated after 30 
iterative steps of the Bayesian optimisation method 
with the search for the lowest root mean square error 
of the normalised validation data. The results of this 
optimisation do not use the minimum or maximum 
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values of the specified intervals. L2 regularisation is 
required for each neural network presented here.  

3.6 Manoeuvres for Data Generation 

According to the estimation tasks, the same 
manoeuvres were used to obtain the data used to train, 
validate, and test the hybrid estimation of the side-slip 
angle and the yaw rate. For those manoeuvres, 
attention was paid to high excitation of the estimation 
quantities. Two different slaloms and one double lane 
change setup were used here with multiple velocities 
used for all of them. Table 3 gives an overview over 
the exact manoeuvre setups. All simulation outputs 
were updated every 0.01 s for the duration of the 
manoeuvres. The measure given for each slalom 
determines the distance between consecutive cones of 
the slalom. The double lane change used for training 
data generation was the one from the General German 
Automobile Club (ADAC) (Diehm et al., 2013), 
while the double lane change according to ISO 
3888-1 (Standardization, 2018) with an entry velocity 
of 90 km/h was used to generate the test data for the 
estimation of side-slip angle and yaw rate, which is 
listed in Table 4. 

Table 3: Overview of all manoeuvres used for training data 
generation in this study. 

Manoeuvre Variable Range Interval 
Side-slip angle and yaw rate estimation 

Slalom 18 m Velocity 20 - 60 
km/h 

20 km/h 

Slalom 36 m Velocity 20 - 100 
km/h 

20 km/h 

Double lane 
change (ADAC) 

Velocity 20 - 100 
km/h 

20 km/h 

Tyre load estimation 
Speed bump Velocity 5 - 11 

km/h 
2 km/h 

Bump 
height

0 - 8 cm 2 cm 

To generate the training data for the tyre load 
estimation, a speed bump setup with three subsequent 
speed bumps of equal height was used. Vehicle 
velocity and height of the bumps were varied 
according to Table 3. 

The test data in this case was obtained with a track 
consisting of three bumps of different height and a 
vehicle velocity of 6 km/h. The heights of the bumps 
were set to 1 cm for the first, 7 cm for the second, and 
5 cm for the third bump. Table 4 shows the setups 
used for test data generation. 

 

Table 4: Overview of the manoeuvres used for test data 
generation in this study. 

Manoeuvre Variable Value 
Side-slip angle and yaw rate estimation 

Double lane 
change (ISO)

Entry 
velocity

90 km/h 

Tyre load estimation  
Speed bump Velocity 6 km/h 

Bump height 1 cm (first bump) 
7 cm (second bump)
5 cm (third bump)

These relatively simple manoeuvres were chosen 
on purpose to enable potential reasoning within the 
interpretability part of each estimation evaluation. 

4 RESULTS  

In this section, the results achieved by the hybrid 
method for the different estimation tasks will be 
presented. The structure follows the sequence 
established in Table 1, starting with the results for the 
side-slip angle estimation, followed by the results for 
the yaw rate estimation, and completed by the results 
for the estimation of the tyre load. Each estimation 
approach is discussed individually here, as a 
comparative conclusion follows in the next section.  

4.1 Results for Side-Slip Angle 
Estimation 

First of all, a visual comparison is presented in Figure 
9. As it can be seen in this figure, the direct output of 
the physical model matches the ground truth curve 
better than the output of the artificial neural network 
that was supposed to correct any remaining deviations 
and increase the accuracy.  

This can also be seen in the root mean square error 
that calculates to 0.0004 for the output of the physical 
model and to 0.0023 for the output of the artificial 
neural network.  

 
Figure 9: Visual comparison between ground truth (red), 
physical model (blue) and cascaded hybrid state estimation 
(green) for side-slip angle estimation. 
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The permutation feature importance yields a very 
conclusive result for the artificial neural network used 
as part of the cascaded hybrid state estimation for the 
estimation of the side-slip angle. The artificial neural 
network relies nearly entirely on the estimated side-
slip angle provided by the physical model. However, 
the slight impact of the other inputs seems to worsen 
the estimation instead of improving it. Table 5 shows 
the permutation feature importance for all inputs of 
this artificial neural network.  

Table 5: Permutation feature importance for artificial neural 
network used for side-slip angle estimation. 

Feature Relative Importance 𝛽 199.2931 % 𝑎௬ 0.6652 % 𝑎௫ 0.6643 % 𝜃 0.6259 % 𝜙 0.3648 % 𝛿ଵ 0.3200 % 𝛿ଷ 0.2561 % 𝑣 0.0098 % 𝜓 0.0040 % 𝑡 -0.0054 % 𝑎௭ -0.2826 % 

This assumption can be supported by the local 
interpretable model-agnostic explanation which was 
assessed exemplarily for the deviation highlighted on 
the left side of Figure 9. This analysis shows that at 
that exact deviation the calculation of the artificial 
neural network was dominated by the yaw rate among 
other inputs while the estimation of the physical 
model was completely neglected in this moment, as 
can be seen in Table 6. 

Table 6: Local interpretable model-agnostic explanation for 
the left deviation highlighted in Figure 9. 

Feature Model Coefficient 𝜓 0.0023 𝜃 0.0012 𝑎௫ 0.0012 𝛿ଵ 0.0011 𝛿ଷ 0.0011 𝑎௭ 0.0008 𝜙 0.0007 𝑎௬ 0.0007 𝑡 0.0000 𝑣 0.0000 𝛽 0.0000 

4.2 Results for Yaw Rate Estimation 

Figure 10 shows the great influence of the integration 
error obtained when using the physical model 
described in subsection 3.3 without any correction. 
The output of the physical model was corrected for a 
static offset. 

 
Figure 10: Estimated yaw rate for test data: Ground truth 
model (red), estimation by the physical model (black, 
corrected for static offset) and by cascaded hybrid state 
estimation (green) for yaw rate estimation. 

This drastic improvement is also supported by the 
root mean square error, which is 0.0657 for the 
physical model after the offset correction and 0.0041 
for the output of the artificial neural network on the 
test data, more than one order of magnitude better.  

The permutation feature importance is much more 
balanced for the yaw rate estimation compared to the 
side-slip angle estimation. Longitudinal acceleration 
has the highest importance, followed by the roll 
angle. The results for all inputs can be seen in Table 
7.  

Table 7: Permutation feature importance for artificial neural 
network used for yaw rate estimation.  

Feature Relative Importance 𝑎௫ 88.8793 % 𝜃 56.1443 % 𝑎௬ 20.0293 % 𝜙 13.1013 % 𝛿ଵ 8.0284 % 𝛿ଷ 6.4708 % 𝑣 0.7281 % 𝑡 -0.0033 % 𝜓ሶ  -0.2019 % 𝑎௭ -8.8256 % 
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As no large deviations can be observed, the local 
interpretable model-agnostic explanation, performed 
on the first peak visible in Figure 10, yields similar 
results as the permutation feature importance. These 
results are shown in Table 8.  

Table 8: Local interpretable model-agnostic explanation for 
first peak visible in Figure 10. 

Feature Model Coefficient  𝑎௫ 0.0205 𝜃 0.0156 𝜙 0.0145 𝑎௬ 0.0141 𝛿ଵ 0.0117 𝑎௭ 0.0116 𝛿ଷ 0.0104 𝜓ሶ  0.0008 𝑡 0.0000 𝑣 0.0000 

4.3 Results for Tyre Load Estimation 

For a proper visual examination, Figure 11 shows 
each bump of the test manoeuvre separately. At the 
excitations at about 14 s, 23 s, and 32 s, the direct 
effect of each bump can be seen, while at the 
excitations at about 16 s, 25 s, and 34 s, the effect of 
the rear wheel hitting the same bump is visible. It 
becomes apparent that the quarter-car model is unable 
to replicate these second excitations. The cascaded 
hybrid state estimation, while being worse at the 
estimation of the exact values of the single peaks, can 
replicate the effect caused by the rear wheel. 

When looking at the root mean square error, this 
results in an improvement from 0.0389 for the 
physical model to 0.0174 for the output of the 
artificial neural network.  

The permutation feature importance shows the 
highest influence for the vertical acceleration of the 
vehicle, followed by the elevation of the vehicle’s 
centre of gravity, the estimated tyre load of the 
physical model and the length of the wheel carrier of 
the rear left wheel. Table 9 shows the permutation 
feature importance of all inputs of the artificial neural 
network used for tyre load estimation of the front left 
tyre.  

 
 
 
 
 

 

 

 
Figure 11: Estimated tyre load for front left wheel: Ground 
truth model (red), estimation by the physical model (blue) 
and by cascaded hybrid state estimation (green), portrayed 
separately for each bump of the test manoeuvre. 

The local interpretable model-agnostic 
explanation, calculated for the first peak portrayed in 
Figure 11, shows a similar result as the permutation 
feature importance for this model, with an even 
higher reliance on the estimated tyre load of the 
physical model. All results of this evaluation are 
shown in Table 10. 
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Table 9: Permutation feature importance for artificial neural 
network used for tyre load estimation of front left tyre. 

Feature Relative Importance 𝑎௭ 335.9293 % 𝑧ୗ 149.7106 % 𝐹௭,ଵ, 93.0265 % 𝑙ୖ,ଶ 63.9848 % 𝑎௫ 23.8769 % 𝑙,ଵ 19.2051 % 𝑙ୈ,ଵ 14.9819 % 𝜃 13.2897 % 𝑙ୖ,ଵ 10.9508 % 𝑣 3.6284 % 𝑙ୈ,ଶ 3.1289 % 𝑙,ଶ 1.6099 % 𝑎௬ 0.5285 % 𝑡 -0.0026 % 

Table 10: Local interpretable model-agnostic explanation 
for first peak shown in Figure 11. 

Feature Model Coefficient  𝐹௭,ଵ, 93.7598 𝑎௭ 61.6276 𝑧ୗ 48.2679 𝑣 44.3520 𝑎௫ 31.3720 𝑙ୈ,ଵ 7.9202 𝑡 6.5219 𝑙ୈ,ଷ 5.7612 𝑎௬ 0.0000 𝜃 0.0000 𝑙,ଵ 0.0000 𝑙,ଶ 0.0000 𝑙ୖ,ଵ 0.0000 𝑙ୖ,ଶ 0.0000 

5 CONCLUSION  

The results for the root mean square error are 
ambiguous, as Table 11 shows. For the side-slip angle 
estimation, the root mean squared error increases for 
the hybrid method compared to the sole use of the 
physical model, but at a very low level compared to 
the other two estimation tasks. Yaw rate and tyre load 
estimation show an improvement in estimation 
quality.  

Table 11: Overview of root mean square error for chosen 
state estimation parameters. 

Parameter Physical Model Cascaded 
Hybrid State 
Estimation

Side-slip angle 0.0004 0.0023
Yaw rate 0.0657 0.0041
Tyre load 0.0389 0.0174

The permutation feature importance shows a 
different dependency of the artificial neural networks 
on the parameters estimated by the physical models. 
While the artificial neural network for the estimation 
of the side-slip angle relies nearly completely on this 
input, the artificial neural network used for the 
estimation of the yaw rate near-completely omits the 
use of the input provided by the physical model. The 
artificial neural network of the model estimating the 
tyre load uses the value estimated by the connected 
physical model as one of the most important inputs, 
while also relying strongly on some of the other 
inputs provided.  

These findings lead to the conclusion that the 
artificial neural network as part of a cascaded hybrid 
state estimation needs a certain room for improving 
the estimation to be able to train properly. This is an 
interesting finding as normalised values were used for 
the training of the artificial neural networks. But it is 
reasonable to assume that the small deviation 
remaining after the physical model for the side-slip 
angle estimation might have been incidental rather 
than being related to any of the other inputs provided 
to the artificial neural network in this specific case. 

6 OUTLOOK  

One evaluation parameter currently not analysed, is 
the computational effort needed to carry out the 
cascaded hybrid state estimation models. This could 
be achieved by comparing the effect of the different 
simulation stages (ground truth model, with added 
physical model, and with added cascaded hybrid 
method) on the central processing unit. The cascaded 
hybrid models obtained in this study should also be 
tested with more difficult test manoeuvres on their 
robustness. Lastly, a comparison to other (hybrid) 
state estimation methods, including Kalman filter 
based methods, should be undertaken to find the 
optimal structure for a given estimation task.  

The original contributions presented in this study 
are included in the article. Further inquiries can be 
directed to the corresponding author. 
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