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Abstract: In this paper, we present a novel control strategy for active prosthetic legs. The approach uses an intelligent 
robust Proportional-Derivative State-Dependent Riccati Equation controller to reduce the use of 
biomechanical energy, enhance performance and robustness. We include an Iterative Learning Control 
algorithm, to minimise control errors and allow the controller gains to adapt over time, and robust Sliding 
Mode Control to specifically address potential parametric and non-parametric uncertainties, disturbances, and 
noise. We conduct tests to demonstrate that the proposed controller not only maintains stability but also 
outperforms existing methods in terms of energy efficiency and tracking. Application of the proposed method 
in simulations shows significant improvements when compared to other methods from the literature, with up 
to 98.3% reduction in position tracking error and up to 91.9% reduction in control cost. Furthermore, for 
angular tracking of the hip and knee, improvements of up to 32.6% and 44.9%, along with torque reductions 
of up to 67.5% and 87.5%, are observed. This study represents a step forward in providing an effective 
solution for controlling active prosthetic devices. 

1 INTRODUCTION 

The global incidence of lower limb amputation 
continues to rise, with over 200,000 cases reported 
annually in the United States alone (McDonald et al., 
2021, Ziegler-Graham et al., 2008), while there is an 
urgent need for advanced prosthetic solutions that 
restore natural gait and improve the overall quality of 
life for amputees.  Amputations can occur at various 
levels, including transtibial (below the knee), 
transfemoral (above the knee), foot amputations, and 
hip and knee disarticulations (Kibria and Commuri, 
2024). Restoring complete mobility remains 
particularly challenging for transfemoral amputees. 
Currently, there are three primary types of prosthetic 
legs: passive, active (with motor control), and semi-
active ones (control without motors). Passive 
prostheses require users to engage their residual hip 
joint to move the prosthetic knee, which leads to 
increased effort, of up to 60% more biomechanical 
energy usage compared to other individuals, and 
potential discomfort (Bukowski, 2006 and Chin et al., 
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2005). Active prostheses offer some key advantages 
over passive ones, such as a reduced energy usage, 
improved stability, and more natural movement 
(Orendurff et al., 2006, Kaufman et al., 2008, 
Camargo et al., 2022). However, they require 
complex control systems and are more expensive. 
Moreover, ensuring stability, responsiveness, and 
energy efficiency is challenging in the presence of 
uncertainties and disturbances (Müßig et al., 2019, 
Martini et al., 2020). Users of robotic leg prostheses 
often struggle with stability and symmetry compared 
to healthy individuals, largely due to system 
uncertainties and environmental disturbances, such as 
unknown mass distribution and complex foot-ground 
interactions, respectively, and sensor noise (Ma et al., 
2024). 

Designing controllers that provide performance for 
different users and environments remains challenging 
(Kashiri et al., 2018). In this paper, we propose a 
novel control strategy to address the following 
multiple control objectives simultaneously: energy 
efficiency, accurate trajectory tracking, and 
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robustness. While recent studies, such as (Saat et al., 
2024), have explored various advancements in 
Proportional-Integral-Derivative (PID) and 
Proportional-Derivative (PD) control methods, this 
work focuses on a novel approach by proposing an 
intelligent PD State-Dependent Riccati Equation 
(PD-SDRE) control approach, which merges the 
effectiveness of a traditional PD controller with the 
advanced optimisation capabilities of SDRE control. 
SDRE control is designed for systems whose 
dynamics explicitly depend on the state. It aims to 
minimise a predefined cost function while 
maintaining stability. SDRE control does not require 
model linearisation, but the dynamic adjustment of 
controller gains based on the system’s state, making 
it particularly effective for complex nonlinear 
systems (Çimen, 2008, Nekoo, 2019). It has been 
successfully applied in various fields, especially 
robotics (Bavarsad et al., 2020, Bavarsad et al., 2021).  

To further improve the controller, we also integrate 
an Iterative Learning Control (ILC) algorithm. ILC is 
particularly useful in environments that call for 
repeated tasks, as it progressively optimises the 
control using data from prior iterations. This allows 
the system to “learn” from previous errors and to 
improve the performance. Given the repetitive nature 
of activities such as walking and climbing stairs, ILC 
is particularly suitable for improving performance 
over time after the PD-SDRE controller provides the 
initial input (Ahn et al., 2007, Shen, 2018, Nekoo et 
al., 2022, Memon and Shao, 2021).  

Our approach also includes the integration of robust 
Sliding Mode Control (SMC) for managing 
uncertainties. In principle, it drives the system’s state 
to “slide” along a predefined surface, known as the 
sliding surface, on which the system exhibits 
simplified behaviour. Once on this surface, the 
dynamics of the system become less sensitive to 
model uncertainties and external disturbances, 
making SMC particularly useful in unpredictable 
environments (Slotine and Li, 1991). This paper 
introduces the following key innovations: 
1. Application of PD-SDRE with ILC: To our 

knowledge, this study is the first one to apply PD-
SDRE in combination with ILC to active 
prosthetic legs. 

2. Enhanced Robustness through SMC: Our 
integration of robust SMC techniques improves 
the system’s ability to cope with parametric and 
non-parametric uncertainties while maintaining 
stability and performance. 

3. Simplified Desired Dynamics Calculation in ILC: 
We simplify the dynamics calculations required 
by the ILC. Instead of computing the Jacobian 

matrix, we use desired trajectory values for 
position, velocity, and acceleration for the 
calculation of the desired dynamics. This reduces 
computational complexity and broadens the 
controller’s applicability to various robotic 
systems, including active prosthetic legs. 
Simulations show that this modified ILC 
approach effectively learns desired dynamics to 
improve trajectory tracking over time. 

The structure of the remainder of this paper is the 
following. In Section 2, we present the model for an 
active transfemoral prosthesis and in Section 3, the 
design of the ILC robust PD-SDRE controller. 
Section 4 provides simulation results and shows the 
effectiveness of our approach. Section 5 discusses the 
results and concludes the paper. 

2 DYNAMIC MODEL OF AN 
ACTIVE TRANSFEMORAL 
PROSTHESIS  

The three degrees-of-freedom dynamical model for 
the active transfemoral prosthesis is given by (Azimi 
et al., 2015): 
 ቀ𝑴𝑷൫𝒒ሺ𝑡ሻ൯ቁ 𝒒ሷ ሺ𝑡ሻ + ቀ𝑪𝑷൫𝒒ሺ𝑡ሻ,𝒒ሶ ሺ𝑡ሻ൯ቁ 𝒒ሶ ሺ𝑡ሻ +𝑮𝑷൫𝒒ሺ𝑡ሻ൯ + 𝑹𝑷൫𝒒ሺ𝑡ሻ,𝒒ሶ ሺ𝑡ሻ൯= 𝒖ሺ𝑡ሻ − 𝑻𝒆൫𝒒ሺ𝑡ሻ൯. (1)

 

In (1), 𝑴𝑷൫𝒒ሺ𝑡ሻ൯  is the invertible inertia matrix, 𝑪𝑷൫𝒒ሺ𝑡ሻ,𝒒ሶ ሺ𝑡ሻ൯ represents  the Coriolis and centripetal 
matrix, 𝑮𝑷൫𝒒ሺ𝑡ሻ൯  denotes  the gravity vector, and 𝑹𝑷൫𝒒ሺ𝑡ሻ,𝒒ሶ ሺ𝑡ሻ൯  accounts for the nonlinear damping  
vector. Vector 𝒒் = ሾ𝑞ଵ 𝑞ଶ  𝑞ଷሿ  describes the 
displacement of the joints, where 𝑞ଵ  corresponds to  
the hip vertical displacement, 𝑞ଶ  is the thigh angle, 
and 𝑞ଷ  is the knee angle. 𝒖ሺ𝑡ሻ  includes the control 
force at the hip and the control torques at thigh and 
knee joints. Term 𝑻𝒆൫𝒒ሺ𝑡ሻ൯  captures the combined 
effects of the horizontal, 𝐹௑ , and the vertical, 𝐹௓ , 
components  of the ground reaction force (GRF) on 
each joint. The complete equations are: 
 𝑃ଵ = 𝑚ଵ + 𝑚ଶ + 𝑚ଷ,   𝑃ଶ = 𝑚ଷ𝑙ଶ + 𝑚ଶ𝑙ଶ + 𝑚ଶ𝑐ଶ ,  𝑃ଷ = 𝑚ଷ𝑐ଷ, 𝑃ସ = 𝐼ଶ௭ + 𝐼ଷ௭ + 𝑚ଶ𝑐ଶଶ + 𝑚ଷ𝑐ଶଶ + 𝑚ଶ𝑙ଶଶ + 𝑚ଷ𝑙ଶଶ +2𝑚ଶ𝑐ଶ𝑙ଶ,  𝑃ହ = 𝑚ଷ𝑐ଷ𝑙ଶ,  𝑃଺ = 𝑚ଷ𝑐ଷଶ + 𝐼ଷ௭ ,  𝑃଻ = 𝑏,  𝑃 = 𝑓, 

 𝑴𝑷= ቎ 𝑃ଵ  𝑚௉ 𝑃ଷ 𝑐𝑜𝑠ሺ𝑞ଶ + 𝑞ଷሻ𝑚௉ 𝑃ସ + 2𝑃ହ 𝑐𝑜𝑠 𝑞ଷ 𝑃଺ + 𝑃ହ 𝑐𝑜𝑠 𝑞ଷ𝑃ଷ 𝑐𝑜𝑠ሺ𝑞ଶ + 𝑞ଷሻ 𝑃଺ + 𝑃ହ 𝑐𝑜𝑠 𝑞ଷ 𝑃଺ ቏, 𝑚௉ = 𝑃ଷ cosሺ𝑞ଶ + 𝑞ଷሻ + 𝑃ଶ cos 𝑞ଶ, 
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𝑪𝑷 = ൥0 𝑐௉ଵ − 𝑞ሶଶ𝑃ଶ sin 𝑞ଶ 𝑐௉ଵ0 −𝑞ሶଷ𝑃ହ sin 𝑞ଷ 𝑐௉ଶ0 𝑞ሶଶ𝑃ହ sin 𝑞ଷ 0 ൩,           (2) 𝑐௉ଵ = −𝑞ሶଶ𝑃ଷ sinሺ𝑞ଶ + 𝑞ଷሻ−𝑞ሶଷ𝑃ଷ sinሺ𝑞ଶ + 𝑞ଷሻ, 𝑐௉ଶ = −𝑞ሶଶ𝑃ହ sin 𝑞ଷ −𝑞ሶଷ𝑃ହ sin 𝑞ଷ, 
 𝑮𝑷 = −𝑔 ൥ 𝑃ଵ𝑃ଶ𝑚௉ 𝑃ଷ 𝑐𝑜𝑠ሺ𝑞ଶ + 𝑞ଷሻ൩ ,      𝑹𝑷 = ൥𝑃 𝑡𝑎𝑛ℎ 𝑞ሶଵ𝑃଻𝑞ሶଶ 0 ൩, 

 𝑻𝒆൫𝒒ሺ𝑡ሻ൯= ቎ 𝐹௓𝐹௓ሺ𝑙ଶ cos 𝑞ଶ + 𝑙ଷ𝑐ଶଷሻ − 𝐹௑ሺ𝑙ଶ sin 𝑞ଶ + 𝑙ଷ𝑠ଶଷሻሻ𝐹௓ሺ𝑙ଷ𝑐ଶଷሻ − 𝐹௑ሺ𝑙ଷ𝑠ଶଷሻ ቏, 𝑐ଶଷ = cosሺ𝑞ଶ + 𝑞ଷሻ ,  𝑠ଶଷ = sinሺ𝑞ଶ + 𝑞ଷሻ 𝐿௭ = 𝑞ଵ + 𝑙ଶ sin 𝑞ଶ + 𝑙ଷ𝑠ଶଷ, 𝐹௓ = ൜          0            , 𝐿௭ ൏ 𝑠௭𝑘௕|𝑠௭ − 𝐿௭|  , 𝐿௭ ൐ 𝑠௭ , 𝐹௑ = 𝛽𝐹௓. 
 
As in (Azimi et al., 2015), we assume that a treadmill 
is used as walking surface and the treadmill belt is 
modelled by a mechanical spring. In (2), 𝐿௭  
represents the vertical position of the lower leg in the 
belt’s global coordinate system ሺ𝑥଴, 𝑦଴, 𝑧଴ሻ (see Figure 
1). Description and specific nominal values for the 
model and the treadmill parameters are provided in 
Table 1. 

To allow for a comparison with the results in 
(Bavarsad et al., 2020) and (Azimi et al., 2015), we 
use parameters from these references. State vector, 
input vector, and reference trajectory are  

 𝒙்ሺ𝑡ሻ = ሾ𝑞ଵ   𝑞ଶ   𝑞ଷ   𝑞ሶଵ   𝑞ሶଶ   𝑞ሶଷሿ, 𝒖்ሺ𝑡ሻ = ൣ𝐹ு௜௣   𝜏்௛௜௚௛    𝜏௄௡௘௘൧,   𝒓்ሺ𝑡ሻ = ሾ𝑟ଵ   𝑟ଶ   𝑟ଷ   𝑟ሶଵ   𝑟ሶଶ   𝑟ሶଷ    𝑟ሷଵ   𝑟ሷଶ   𝑟ሷଷሿ. (3) 

 

For 𝒓ሺ𝑡ሻ, we use walking data from the Motion Study 
Laboratory at the Cleveland Department of Veterans 
Affairs Medical Center (Azimi et al., 2015). Finally, 
the state-space representation of system (1) is given 
by  
 

⎣⎢⎢
⎢⎢⎡
𝑥ሶଵ𝑥ሶଶ𝑥ሶଷ𝑥ሶସ𝑥ሶହ𝑥ሶ଺⎦⎥⎥
⎥⎥⎤ = ⎣⎢⎢

⎢⎢⎡
𝑥ସ𝑥ହ𝑥଺𝑣ଵ𝑣ଶ𝑣ଷ⎦⎥⎥
⎥⎥⎤, 

𝒗ሺ𝑡ሻ =  𝑴𝑷ଵሺ𝒖ሺ𝑡ሻ − 𝑻𝒆 − 𝑪𝑷𝒒ሶ − 𝑮𝑷 − 𝑹𝑷ሻ. 
(4) 

 

 
Figure 1: The Prismatic-Revolute-Revolute structure of the 
active transfemoral prosthesis (Azimi et al., 2015). 

Table 1: Nominal values and specific parameters for 
prosthesis model and treadmill. 

Description Parameter Nominal 
value Unit 

Mass of link 1 𝑚ଵ 40.5969 kg 
Mass of link 2 𝑚ଶ 8.5731 kg 
Mass of link 3 𝑚ଷ 2.29 kg 
Thigh length 𝑙ଶ 0.425 m 

Length from knee joint 
to bottom of shoe 𝑙ଷ 0.527 m 

Center of mass on thigh 𝑐ଶ 0.09 m 
Center of mass on shank 𝑐ଷ 0.32 m 

Rotary inertia of link 2 𝐼ଶ௭ 0.138 kgm2 
Rotary inertia of like 3 𝐼ଷ௭ 0.0618 kgm2 

Sliding friction in link 1 𝑓 83.33 N 
Rotary actuator damping 𝑏 9.75 Nms 
Acceleration of gravity 𝑔 9.81 m/s2 
Vertical distance from 
the origin of belt frame  𝑆௭ 0.905 m 

Belt stiffness 𝐾௕ 37000 N/m 
Friction coefficient 𝛽 0.2 - 

3 LEARNING CONTROL WITH 
ROBUST PD - SDRE  

3.1 SDRE 

Consider the following uncertain nonlinear system, 
 𝒙ሶ ሺ𝑡ሻ = 𝒇෠൫𝒙ሺ𝑡ሻ൯ + 𝒈ෝ൫𝒙ሺ𝑡ሻ൯𝒖ሺ𝑡ሻ. (5)
 

In (5), 𝒇෠൫𝒙ሺ𝑡ሻ൯ and 𝒈ෝ൫𝒙ሺ𝑡ሻ൯𝒖ሺ𝑡ሻ represent the actual 
system dynamics, which include uncertainties due to 
unknown but bounded parameter values. Next, we 
transform (5) using State Dependent Coefficients 
parametrisation matrices, that is, we let 𝒇൫𝒙ሺ𝑡ሻ൯ =
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𝑨൫𝒙ሺ𝑡ሻ൯𝒙ሺ𝑡ሻ , 𝑨൫𝒙ሺ𝑡ሻ൯:ℝ௡ → ℝ௡×௡ , and 𝒈൫𝒙ሺ𝑡ሻ൯ =𝑩൫𝒙ሺ𝑡ሻ൯ , 𝑩൫𝒙ሺ𝑡ሻ൯:ℝ௡ → ℝ௡×௠ , and consider the 
following nonlinear dynamical system, 
 𝒙ሶ ሺ𝑡ሻ = 𝑨൫𝒙ሺ𝑡ሻ൯𝒙ሺ𝑡ሻ + 𝑩൫𝒙ሺ𝑡ሻ൯𝒖ሺ𝑡ሻ, 𝒚ሺ𝑡ሻ = 𝑪൫𝒙ሺ𝑡ሻ൯𝒙ሺ𝑡ሻ. (6) 
 

Note that matrices 𝑨൫𝒙ሺ𝑡ሻ൯  and 𝑩൫𝒙ሺ𝑡ሻ൯  are not 
unique (Çimen, 2008). In this paper, 

 𝑨൫𝒙ሺ𝑡ሻ൯଺×଺= ቈ0ଷ×ଷ 𝐼ଷ×ଷ0ଷ×ଷ −𝑴௉య×యିଵ ൫𝒙ሺ𝑡ሻ൯𝑪௉య×య(𝒙(𝑡ሻ,𝒙ሶ (𝑡ሻ)቉, 
 𝑩൫𝒙(𝑡)൯଺×ଷ = ቈ 0ଷ×ଷ𝑴௉య×యିଵ ൫𝒙(𝑡)൯቉,    
 𝑪൫𝒙(𝑡)൯଺×଺ = 𝐼଺×଺. 

(7) 

 

Definition 1 (Çimen, 2008): (6) is stabilisable 
(controllable) if, for every 𝒙 ∈ Ω , the pair ൛𝑨൫𝒙(𝑡)൯,𝑩൫𝒙(𝑡)൯ൟ  is pointwise linear stabilisable 
(controllable). 

Definition 2 (Çimen, 2008): (6) is detectable 
(observable) if, for every 𝒙 ∈ Ω , the pair ൛𝑨൫𝒙(𝑡)൯,𝑪൫𝒙(𝑡)൯ൟ  is pointwise linear detectable 
(observable).  

If (6) is controllable and observable, then an optimal 
controller is obtained by minimising cost function 

 𝐽଴ = 12න൫𝒙்(𝑡)𝑪்𝑸𝑪𝒙(𝑡) + 𝒖்(𝑡)𝑹𝒖(𝑡)൯𝑑𝑡ஶ
𝟎 , (8) 

 

where weighting matrices 𝑸  and 𝑹  are positive 
definite. The optimal control law is then given by 
 𝒖(𝑺𝑫𝑹𝑬)(𝑡) =  −𝑹ିଵ𝑩்(𝒙)𝑲(𝒙)ሾ𝒆, 𝒆ሶ ሿ் , (9) 
 

where 𝒆 = 𝒙 − 𝒓  , 𝒆ሶ = 𝒙ሶ − 𝒓ሶ , and matrix 𝑲൫𝒙(𝑡)൯  is 
determined by solving the following algebraic SDRE: 𝑨்(𝒙)𝑲(𝒙) + 𝑲(𝒙)𝑨(𝒙) −𝑲(𝒙)𝑩(𝒙)𝑹ି𝟏𝑩்(𝒙)𝑲(𝒙) + 𝑪்𝑸𝑪 = 𝟎. (10) 
 

Note also that we will partition 𝑲(𝒙)  into the 
following four-square blocks: 
 𝑲(𝒙) = ൤𝑲𝟏𝟏(𝒙) 𝑲𝟏𝟐(𝒙)𝑲𝟏𝟐𝑻 (𝒙) 𝑲𝟐𝟐(𝒙)൨. (11) 
 

Finally, as in (Nekoo, 2019, Bavarsad et al., 2021), 
we incorporate unfactored terms into 
 𝒖𝒂𝒅𝒅(𝑡) = 𝑮𝑷൫𝒒(𝑡)൯ + 𝑹𝑷൫𝒒(𝑡)൯ + 𝑻𝒆൫𝒒(𝑡)൯ (12) 
 

such that the control law becomes 
 𝒖(𝑡) =  𝒖(𝑺𝑫𝑹𝑬)(𝑡) + 𝒖𝒂𝒅𝒅(𝑡). (13) 

3.2 PD - SDRE 

To include PD control, the control law is modified to: 
 𝒖(𝑷𝑫ି𝑺𝑫𝑹𝑬)(𝑡) =  −ℵ𝟏(𝒙)𝒆 − ℵ𝟐(𝒙)𝒆ሶ , (14) ℵ𝟏(𝒙) = 𝑹ି𝟏𝑴𝑷𝟏𝑲𝟏𝟐் , 

 ℵ𝟐(𝒙) = 𝑹ି𝟏𝑴𝑷𝟏𝑲𝟐𝟐. (15) 

(16) 
 

Note that matrices (15) and  (16) are not necessarily 
symmetric positive definite. To ensure the stability of 
the controller, the gain matrices must be symmetric 
positive definite (Nekoo et al., 2022). To address this, 
we consider the following transformation, 
 𝑲𝑺𝑷(𝒙) = 𝑲𝟏𝟐𝑴𝑷𝟏𝑹ି𝟏𝑴𝑷𝟏𝑲𝟏𝟐்ฮ𝑲𝟏𝟐𝑴𝑷𝟏ฮ𝟐 , 

 𝑲𝑺𝑫(𝒙) = 𝑲𝟐𝟐் 𝑴𝑷𝟏𝑹ି𝟏𝑴𝑷𝟏𝑲𝟐𝟐ฮ𝑲𝟐𝟐𝑴𝑷𝟏ฮ𝟐 , 
(17) 

 

(18) 

 

and reformulate control law (14) such that 
 𝒖(𝑷𝑫ି𝑺𝑫𝑹𝑬)(𝑡) =  −𝑲𝑺𝑷(𝒙)𝒆 − 𝑲𝑺𝑫(𝒙)𝒆ሶ . (19) 
 

As proving stability for this control law follows a 
procedure like the one in (Nekoo et al., 2022), the 
details are omitted. 

3.3 Robust SMC PD - SDRE 

For robustness, we follow the approach presented in 
(Slotine and Li, 1991) and define the following first 
order sliding surface,  

 𝒔(𝒙, 𝑡) = 𝒆ሶ (𝒙, 𝑡) + 𝜞𝒆(𝒙, 𝑡), (20) 
 

where 𝜞  is a strictly positive constant matrix, 
determined by the user. To drive the system towards 
the siding surface 𝑠 = 0, we add the following to the 
control, 
 𝒖𝑺𝑴𝑪(𝑡) = −𝑲𝒅𝑠𝑔𝑛(𝒔), (21) 
 

where 𝑲𝒅 = 𝑑𝑖𝑎𝑔(𝑘ௗభ , 𝑘ௗమ , 𝑘ௗయ)  is a strictly positive 
constant matrix. Since SMC suffers from the 
chattering phenomenon, which arises from the 
discontinuous nature of the sign function, we replace 𝑠𝑔𝑛(𝑠௜)  by saturation function 𝑠𝑎𝑡(𝑠௜/𝜑௜) , where 𝑠𝑎𝑡(𝑠௜/𝜑௜) = 𝑠௜/𝜑௜ if |𝑠௜/𝜑௜| < 1, 𝑠𝑎𝑡(𝑠௜/𝜑௜) = 𝑠𝑔𝑛(𝑠௜) 
otherwise, and 𝜑௜ > 0  (Slotine and Li, 1991). The 
control law is now given by 
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𝒖𝑹𝒐𝒃𝒖𝒔𝒕ି𝑷𝑫ି𝑺𝑫𝑹𝑬(𝑡) = 𝒖𝑷𝑫ି𝑺𝑫𝑹𝑬 + 𝒖𝑺𝑴𝑪 =−𝑲𝑺𝑷(𝒙)𝒆 − 𝑲𝑺𝑫(𝒙)𝒆ሶ − 𝑲𝒅𝑠𝑎𝑡(𝜱ିଵ𝒔),𝛷௜,௜ =𝜑𝑖, 𝛷௜,௝ஷ௜ = 0. (22) 

3.4 Iterative Learning Robust  
PD -SDRE Control  

To apply ILC, we modify the equation of motion by 
adding and subtracting desired dynamics ൫𝑫𝒅(𝒓ሷ , 𝒓ሶ , 𝒓)൯ 
from (1): 
 ሾ𝑴𝑷(𝒒) −𝑴𝑷(𝒓)ሿ(𝒒ሷ − 𝒓ሷ ) + ሾ𝑪𝑷(𝒒,𝒒ሶ ) −𝑪𝑷(𝒓, 𝒓ሶ )ሿ(𝒒ሶ − 𝒓ሶ ) + 𝑮𝑷(𝒒) + 𝑹𝑷(𝒒,𝒒ሶ ) + 𝑻𝒆 =𝒖(𝑡) −𝑫𝒅(𝒓ሷ , 𝒓ሶ , 𝒓) , 

(23) 

 

Where 
 𝑫𝒅(𝒓ሷ , 𝒓ሶ , 𝒓) = 𝑴𝑷(𝒓)𝒓ሷ + 𝑪𝑷(𝒓, 𝒓ሶ )𝒓ሶ . (24) 
 

Since we wish to minimise the sum of tracking errors 
over time, the performance index is defined as 
follows, 
 𝐽௅் = 12෍ฮ𝑯𝑰𝑳𝑪௜ (𝑡) −𝑫𝒅௜ (𝑡)ฮଶே಺

௜ୀଵ , (25) 

 

where 𝑁ூ is the number of iterations and 𝑫𝒅௜ (𝑡) is the 
desired dynamics at the 𝑖 -th iteration. We, thus, 
express the final control law as 
 𝒖𝑭𝒊𝒏𝒂𝒍(𝑡) =  𝒖𝑹𝒐𝒃𝒖𝒔𝒕ି𝑷𝑫ି𝑺𝑫𝑹𝑬(𝑡) + 𝑯𝑰𝑳𝑪௜(𝑡)+ 𝒖𝒂𝒅𝒅(𝑡). (26) 
 

Applying the gradient descent method to (25) yields 
the following training rule updating 𝑯𝑰𝑳𝑪௜ (𝑡): 𝑯𝑰𝑳𝑪௜ = 𝑯𝑰𝑳𝑪௜ିଵ − 𝛼 × ቀ𝑯𝑰𝑳𝑪௜ିଵ − 𝑫𝒅௜ିଵ(𝑡)ቁ,   0 < 𝛼 < 1.  (27) 
 

Training rule (27) uses the desired dynamics to update 
the control, where learning rate 𝛼 is a constant scalar 
(Nekoo et al., 2022). 

Note that this paper presents an alternative approach 
to (Nekoo et al., 2022). In (Nekoo et al., 2022), 
computing the desired dynamics requires, both, the 
forward kinematics and the Jacobian matrix. 
However, for some systems, the determinant of the 
Jacobian matrix can become zero (see (Richter and 
Simon, 2015)), which renders the approach 
unsuitable for them. We circumvent the need for 
above computations by using directly the desired 
trajectory values for position, velocity, and 
acceleration, given in (24). Figure 2 provides a block 
diagram that illustrates the overall system 
architecture and highlights the integration and 
interaction among the components of the proposed 
three-layer control framework.  

4 SIMULATION RESULTS 

DC motors are responsible for generating the torque 
necessary for operating the prosthesis. These motors 
have specific speed and torque limitations, which 
determine permissible control signal ranges, and are 
given by: 

 𝑢௜(𝑡)= ቐ𝑢௜,௠௔௫(𝑡) 𝑖𝑓 𝑢௜(𝑡) > 𝑢௜,௠௔௫(𝑡)𝑢௜(𝑡) 𝑖𝑓 𝑢௜,௠௜௡(𝑡) < 𝑢௜(𝑡) < 𝑢௜,௠௔௫(𝑡)𝑢௜,௠௜௡(𝑡) 𝑖𝑓 𝑢௜,௠௜௡(𝑡) > 𝑢௜(𝑡), 𝑖 = 1,2,3.     (28) 

 

To closely align simulation results with reality, we 
use the following saturation limits: (−1200 N, 1200 
N) for hip displacement force, (−900 Nm, 900 Nm) for 
thigh torque, and (−400 Nm, 400 Nm) for knee torque. 

To assess the performance of the proposed control, 
we employ two metrics: The Root Mean Square 
Error, 𝑅𝑀𝑆𝐸௜ , for each state and the Root Mean 
Square for each control input 𝑅𝑀𝑆𝑈௝.  These metrics 
evaluate the steady-state error and control effort, 
providing a measure of controller performance: 

 𝑅𝑀𝑆𝐸௜ = ටଵ் ׬ (𝑥௜ − 𝑟௜)ଶ𝑑𝑡଴் ,   𝑖 = 1,2,3,             (29) 
                                                                         

       𝑅𝑀𝑆𝑈௝ = ඩ1𝑇න൫𝑢௝൯ଶ𝑑𝑡்
଴ , 𝑗 =  1,2,3 

For comparing the proposed method with those in 
references (Bavarsad et al., 2020) and (Azimi et al., 
2015), we use the same initial conditions. 
Specifically, the initial state is set to 𝒙𝒊𝒏𝒊𝒕𝒊𝒂𝒍 =ሾ0.019, 1.13, 0.09, 0.09, 0, 1.6ሿ்  (omitting units). 
Weighting matrices 𝑸 and 𝑹, along with the design 
parameters for the ILC and SMC, represented by 𝑲𝒅, 𝜞, and 𝜱, are specified in Table 2. 

Table 2: Controllers’ parameters.  

Controllers Design Parameters and Values 

PD-SDRE 
𝑸 = 𝑑𝑖𝑎𝑔[10ଵଷ, 10ଵଵ, 10ଵଵ, 10଺, 10ହ, 5× 10ହ] 𝑹 = 𝑑𝑖𝑎𝑔[0.1,0.1,0.1] 

ILC 
𝛼 = 0.7 

Number of iterations = 10 

SMC 
𝑲𝒅 = 𝑑𝑖𝑎𝑔[50,75,40] 𝜞 = 𝑑𝑖𝑎𝑔[51,27,9] 𝜱 = 𝑑𝑖𝑎𝑔[2,2,2] 
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Figure 2: A control system block diagram of proposed approach. 

4.1 Nominal Parameter Values 

Table 3 provides a detailed comparison of the RMSE 
and the RMSU, where, for better comparability, we 
“normalised” 𝑅𝑀𝑆𝐸ଵ  by dividing it by 0.02 m 
(maximal hip displacement). The results show 
significant improvements in, both, tracking accuracy 
and energy efficiency of the proposed control 
approach (ILC + PD-SDRE + SMC) relative to two 
other methods: Integral State Control + SDRE + SMC 
(Bavarsad et al., 2020) and Robust Adaptive 
Impedance Control (Azimi et al., 2015).  In position 
tracking (𝑅𝑀𝑆𝐸ଵ), our method reduces the error by 
95.4% relative to (Bavarsad et al., 2020) and by 
98.3% relative to (Azimi et al., 2015). For the first 
angular tracking metric 𝑅𝑀𝑆𝐸ଶ, an improvement of 
32.6% compared to (Bavarsad et al., 2020) and 28.1% 
compared to (Azimi et al., 2015) is achieved, while 
the second angular tracking metric 𝑅𝑀𝑆𝐸ଷ shows a 
44.9% improvement over (Azimi et al., 2015). 

In terms of control cost, the proposed strategy 
achieves reductions of 77.8% and 91.9% compared to 
(Bavarsad et al., 2020) and (Azimi et al., 2015) in 𝑅𝑀𝑆𝑈ଵ, respectively. The first control torque metric 𝑅𝑀𝑆𝑈ଶ indicates a 67.5% improvement over (Azimi 
et al., 2015) but a 35.8% increase over (Bavarsad et 
al., 2020). For the second control torque metric 𝑅𝑀𝑆𝑈ଷ, we observe reductions of 87.5% relative to 
(Azimi et al., 2015) and an increase of 75.8% 
compared to (Bavarsad et al., 2020).  While the 

proposed approach improves tracking performance 
and energy efficiency, we see that they may not 
improve simultaneously. 

The integration of ILC leads to improvements in 
various performance parameters. Notably, the 
displacement error improves by 2.36%, while the first 
angular parameter shows an 8.13% reduction in error 
and the second angular parameter improves by 
4.77%. Furthermore, the necessary force is reduced 
by 0.72% and the torque by 12.42%. However, there 
is a slight increase in knee torque of 3.59%.  

Table 3: Comparison with references (Bavarsad et al., 
2020), (Azimi et al., 2015). 

 

ILC + 
PD-

SDRE + 
SMC 

PD-
SDRE 
+ SMC 

Integral 
State 

Control + 
SDRE + 

SMC 
(Bavarsad 

et al., 2020) 

Robust 
Adaptive 

Impedance 
Control 

(Azimi et 
al., 2015) 𝑅𝑀𝑆𝐸ଵ0.02 m 0.0120 0.0123 0.26 0.715 𝑅𝑀𝑆𝐸ଶ (rad) 0.0032 0.0035 0.0048 0.0045 𝑅𝑀𝑆𝐸ଷ (rad) 0.0030 0.0031 0.0011 0.0054 𝑅𝑀𝑆𝑈ଵ (N) 31.6 31.8 142 388 𝑅𝑀𝑆𝑈ଶ (Nm) 22.1 25.23 16.28 68 𝑅𝑀𝑆𝑈ଷ (Nm) 4.514 4.358 2.568 36 
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4.2 Changing Parameter Values 

To test the robustness of the proposed approach, first, 
we investigate the effect of a ±30% change in the 
parameters’ vector. We observe a minor 
increase/decrease in tracking error and control cost. 
Figure 3 illustrates the horizontal and vertical GRFs. 
The resulting forces closely match those observed in 
able-bodied individuals. Figure 4 depicts the 
performance of the proposed controller in tracking 
desired trajectories. Despite non-zero initial errors in 
all states, the controlled system quickly converges to 
desired values. Moreover, despite a ±30% change in 
system parameters, the amplitudes in the graphs 
exhibit very minimal variations. This indicates the 
reliability of the proposed method.  
 

 
Figure 3: Horizontal and vertical GRF in nominal mode and ±30% parametric change, considering saturation bounds. 

 
(a) 

 
(b) 

 
(c) 

Figure 4: Tracking performance in nominal mode and ±30% parametric change, considering saturation bounds: 
a) Hip displacement, b) Thigh angle, c) Knee angle. 

Figure 5 shows the control signals. Evidently, a peak 
occurs at the start of the motion, which is due to the 
difference between the initial state values and the 
starting points of the desired trajectories. The good 
performance of the proposed controller is 
demonstrated also by the fact that the control signals 
always remain within saturation limits. Furthermore, 
the amplitude of the control signals, when we change 
parameters, remains almost identical, indicating the 
reliability of the proposed controller.  
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(a) 

 
(b) 

 
(c) 

Figure 5: Control signals in nominal mode and ±30% 
parametric change with saturation bounds a) Hip force, b) 
Thigh torque, c) Knee torque. 

Finally, we also apply a ±30% change to each of the 
eight parameters  𝑃௜ individually, modifying only one 
parameter at a time, with ILC set to five iterations. 
Despite the change, we again observe good 
performance, that is, relatively low RMSE values for 
both position and angle tracking, and a relatively low 
control effort (not shown, for space reasons).  

5 CONCLUSIONS 

In this paper, we present a novel control strategy for 
active prosthetic legs. Our proposed approach, which 
combines a PD-SDRE controller with ILC and robust 
SMC, considerably reduced biomechanical energy 
consumption and improved tracking performance 
compared to existing approaches. The integration of 
robust SMC aimed at managing disturbances, to 
ensure that the system remains resilient under varying 
conditions, as indicated by our various scenarios of 
parametric change, while the integration of ILC 
further improved the control strategy. Our results 
clearly advance the field of prosthesis control. 
Despite these promising results, the proposed control 
strategy has a limitation that should be addressed in 
future studies. Specifically, the SDRE controller 
requires full state information, which may not always 
be directly available in real-world applications. 
Obtaining all necessary state variables typically 
demands a large number of sensors, while reducing 
sensor count remains a significant challenge in 
robotic leg design. To overcome this issue, future 
work will focus on the design and integration of a 
nonlinear state estimator to reduce sensor dependency 
and further enhance the performance of the proposed 
control framework. An initial investigation into 
estimator development has already been reported in 
our recent study (Bavarsad and August, 2025). In 
addition, practical implementation of the three-layer 
controller on a real active prosthetic leg is planned, 
with experimental validation under various gait 
conditions to assess real-world applicability and 
robustness.  This promises to bring significant 
improvements in prosthetics. 
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