CloReCo: Benchmarking Platform for Code Clone Detection

Franz Burock!, Wolfram Amme!, Thomas S. Heinze? and Elisabeth Ostryanin

1

Friedrich Schiller University Jena, Jena, Germany

2Cooperative University Gera-Eisenach, Gera, Germany

Keywords:

Abstract:

Benchmark, Container, Reproducibility, Code Clone, Code Clone Detection.

In this paper, we present the Clone Recognition Comparison (CloReCo) platform which supports an uni-

form performance analysis of code clone detectors. While there exists various benchmarks for code clone
detection, these benchmarks on their own have limitations, so that the idea of using multiple benchmarks is
promoted. Such a more comprehensive evaluation however requires a benchmarking platform, which inte-
grates the different benchmarks and tools. The CloReCo platform addresses this challenge by implementing a
container infrastructure, providing consistent environments for multiple benchmarks and clone detectors. Us-
ing CloReCo’s web interface or command line interface then allows for conducting performance experiments,
adding new clone detectors or benchmarks, managing or analyzing experimental results and thereby facilitates
reproducibility of performance analysis by researchers and practitioners in the area of code clone detection.

1 INTRODUCTION

Copy & paste is a pervasive practice in software de-
velopment and code fragments which are plainly du-
plicated or rather copied and modified are frequently
found in software repositories (Inoue and Roy, 2021).
In the evolution of code, such code clones can fur-
ther syntactically deviate from their origin and iden-
tifying code clones becomes harder, though impor-
tant, e.g., for remediating software bugs or vulnera-
bilities which have been propagated conjoined with
the code clones. There exists a large variety of tools
for finding code clones, so-called clone detectors. On
the one hand, these tools usually find exact or near-
miss clones, i.e., code fragments which either equal
the original code or only exhibit minor modifications,
with reasonable performance (Inoue and Roy, 2021;
Roy et al., 2009). On the other hand, developing clone
detectors for finding code clones which feature larger
syntactical deviations is an open problem.
Development in code clone detection requires
benchmarks for analyzing and comparing the perfor-
mance of tools for clone detection. Besides the tools’
abilities in finding real code clones and distinguish-
ing them from spurious ones (i.e., the tools’ recall
and precision), such benchmarks need to focus on the
tools’ capabilities in finding code clones in large code
bases comprising multiple million lines of code in a
timely fashion (i.e., runtime and scalability). Note

394

Burock, F., Amme, W., Heinze, T. S. and Ostryanin, E.
CloReCo: Benchmarking Platform for Code Clone Detection.
DOI: 10.5220/0013644900003964

that defining such a benchmark is not trivial, rea-
soned by the rather fuzzy definition of what consti-
tutes a code clone which is based upon a a given
similarity function (Roy et al., 2009). This similar-
ity function can include syntactical as well as func-
tional similarity and the minimum similarity required
for a code clone can be disputed, such that the con-
crete definition of code clones usually resorts to hu-
man judgement. BigCloneBench/BigCloneEval pro-
vides such a state-of-the-art benchmark for code clone
detection for Java (Svajlenko and Roy, 2015; Sva-
jlenko and Roy, 2016; Svajlenko and Roy, 2022). The
benchmark consists of more than 8 million code clone
samples with different levels of syntactical similar-
ity, ranging from exact code clones to code clones
with more than 50% syntactical deviation, assembled
among over 250 million lines of Java code clones
from real-world software projects.

Unfortunately, BigCloneBench has certain lim-
itations, e.g., missing capability to estimate preci-
sion, flawed quality of ground truth, bias towards cer-
tain functionalities (Svajlenko and Roy, 2022; Krinke
and Ragkhitwetsagul, 2022). Developers of clone
detectors therefore often use their own benchmark
or combine several benchmarks in the tools’ eval-
uations. Other complementary benchmarks though
stem from programming contests (e.g., Google Code-
Jam, Project CodeNet (Puri et al., 2021)), which may
not generalize to, e.g., industrial code. In conjunc-

In Proceedings of the 20th International Conference on Software Technologies (ICSOFT 2025), pages 394-399

ISBN: 978-989-758-757-3; ISSN: 2184-2833
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

ubuntu 18.04
ubuntu 22.04

ubuntu:XX

FROM ubuntu:xX detector-tool-base:ubuntu18.04-jdk8

detect I 22.04-jdk8
detector-tool-base:ubuntu22.04-jdk11
detector-tool-base:ubuntu18.04-jdk17

detector-tool-base:XX

[_

stone-detector [

gpt-clone-bench-
benchmark
{ ' google-code-jam
g - MOUNT - sl
sourcerer-cc MOL:JNT volume benchmark

FROM detector-tool-base:XX

nicad

Figure 1: Components of the CloReCo platform.

tion with publicly unavailable implementations of
clone detectors, inconsistent or incomplete informa-
tion about tool and benchmark configurations, com-
parability and reproducibility of performance analysis
for clone detection is cumbersome and often tends to
be flawed. This becomes an even larger problem con-
sidering the current interest in Deep learning. Deep
learning approaches have been used for code clone
detection in recent years (Wei and Li, 2017; Wang
et al., 2020; Guo et al., 2021). In order to assess
their generalizability and performance atop the data
used in their training, additional data reflecting a wide
spectrum of code clones is needed. As is emphasized
by other research (Schifer et al., 2022; Krinke and
Ragkhitwetsagul, 2022; Sonnekalb et al., 2022), us-
ing BigCloneBench or other benchmarks alone is in-
sufficient and can lead to bias and impaired perfor-
mance analysis of code clone detectors.

In this paper, we present our novel Clone Recogni-
tion Comparison (CloReCo) platform (Burock, 2024;
Ostryanin, 2024)1. CloReCo allows for the uniform
evaluation and comparison of the performance of
code clone detectors on multiple benchmarks. To this
end, CloReCo implements a Docker-based container
infrastructure for supporting scriptable and consistent
benchmarking environments. Based upon containers,
researchers and practitioners can share and automate
benchmarking environments in an uniform manner,
implying more coherent and reproducible evaluation
results. CloReCo supports the following use cases:

* Code clone detection performance analysis on
preregistered benchmarks: BigCloneBench (Sva-
jlenko and Roy, 2015), Google CodeJam, GPT-
CloneBench (Alam et al., 2023), Project Co-
deNet (Puri et al.,, 2021) and clone detectors:
NiCad (Roy and Cordy, 2008), CCAligner (Wang
et al., 2018), StoneDetector (Amme et al., 2021;
Schifer et al., 2020) Oreo (Saini et al., 2018),
SourcererCC (Saini et al., 2016), NIL (Nakagawa
et al., 2021)

! Available online: https://github.com/Glopix/Cloreco

CloReCo: Benchmarking Platform for Code Clone Detection

Figure 2: Screenshot of CloReCo’s web interface.

* Managing benchmarking/tool configurations

* Managing and analyzing benchmarking results
* Registration of additional clone detectors

* Registration of additional benchmarks

With our contribution, we hope to amplify the de-
velopment and evaluation of clone detectors and to
facilitate the reproducibility of experimental bench-
marking and performance analysis by researchers and
practitioners (cf. (Collberg et al., 2014)).

2 THE CloReCo PLATFORM

CloReCo is based upon the Docker container infras-
tructure*. Containers implement lightweight, stan-
dalone, and executable software packages that include
everything required to execute a certain piece of soft-
ware, e.g., its code, dependencies and configuration
settings. Containers work by isolating the software
from the host system, where it is executed, ensuring
that the software runs consistently regardless of where
it is deployed. This isolation is put into effect through
virtualization at the operating system level, such that a
container shares the host operating system though op-
erates in its own isolated user space. Container infras-
tructures support the easy creation, provisioning, dis-
tribution, and management of containers, allowing for
packaging software conjoined with its dependencies
into a single image that can be deployed everywhere.
This way, portability and consistency is achieved.
We here advocate for the usage of containers
to enhance reproducibility in benchmarking experi-
ments for code clone detection. Containers can be
used to encapsulate the required benchmarking en-
vironment, including clone detectors, benchmarking
datasets, dependencies and configuration settings, en-
suring that benchmarking experiments can be repli-
cated across different systems. This consistency is
crucial for evaluating and assessing clone detectors’
performance metrics like precision, recall, runtime,
or scalability. Note that encapsulation is not only

Zhttps://www.docker.com/

395

ICSOFT 2025 - 20th International Conference on Software Technologies

I CCAligner B NIL
B NiCad

Emm SourcererCC
BN Oreo WM StoneDetector

100

80 4

604

Recall

40

204

0-
TL T2 VST3 ST3 MT3 T4

Figure 3: Sample performance results on benchmark Big-
CloneBench (T1: Type 1, T2: Type 2, VST3: Very-Strongly
Type 3, ST3: Strongly Type 3, MT3: Moderatly Type 3, T4:
Type 4 code clones; cf. (Svajlenko and Roy, 2016)).

important for the clone detectors, in order to har-
monize their execution environments and configura-
tion parameters, but also for the benchmarks, due to
potentially required dependencies, evaluation scripts
and settings. Based upon containers, researchers and
practitioners can thus share their benchmarking envi-
ronments, implying more coherent and reproducible
results. Additionally, containers facilitate the automa-
tion of the benchmarking process, allowing for exten-
sive analysis and validation with only limited or even
without manual intervention. This approach not only
streamlines the development workflow but also en-
hances the credibility and reliability of performance
analysis in this area (Collberg et al., 2014).

For benchmarking experiments in clone detection,
two components are basically needed: a clone detec-
tor and a benchmarking dataset. Both components are
encapsulated by separate containers in the CloReCo
infrastructure, as can also be seen in Fig. 2. As
shown in the figure, a container for a certain clone
detection tool is derived from a standard Ubuntu im-
age and a base image (detector-tool-base in Fig.2).
The latter provides the uniform environment for clone
detection benchmarking, including Python and Java
installations as well as several helper and configu-
ration scripts for orchestrating and automating the
benchmarking process. CloReCo already comes with
predefined container images of some clone detectors
(e.g., sourcerer-cc in Fig. 2), but also allows for the
inclusion of other clone detectors or varying configu-
rations of the same clone detector by means of addi-
tional containers. Besides the containers for clone de-
tectors, the CloReCo infrastructure comprises bench-
mark containers, where each benchmark has its own
container image (e.g., gpt-clone-bench-benchmark in
Fig. 2). Again, besides the benchmarks predefined

396

Emm SourcererCC
NN Oreo WM StoneDetector

I CCAligner B NIL
B NiCad

70 4

60 4

50 4

Recall

30 4

204

101

04
GPTCloneBench Google CodeJam Project CodeNet

Figure 4: Sample performance results on other benchmarks.

in CloReCo, further benchmarks may be included in
terms of additional container images.

For conducting a benchmarking experiment, a
number of tool and benchmark containers is selected,
configured, launched, and integrated using a tempo-
rary volume (again compare with Fig. 2). Config-
uration is implemented based upon uniform config-
uration files for setting the tools’ and benchmarks’
parameters, e.g., applied similarity threshold or ac-
cepted minimum size of code fragments (Svajlenko
and Roy, 2016). Due to the usually long-running na-
ture of the benchmarking, the experiment’s progress
is logged and monitored in the CloReCo platform.
After the experiment finishes, the experiment’s results
(logfiles, metrics like recall, precision, runtime, etc.)
as well as its configuration settings become available
for (visual) analysis and are also made persistent in
the platform’s database. The platform supports the
interactive management of multiple experiments.

CloReCo offers both, a web application and a
command line application as user interface. While the
former assists researchers and practitioners in the easy
usage of the platform, the latter enables the platform’s
headless operation. An example of CloReCo’s web
interface is shown in Fig. 2. The screenshot depicts
the dialogue for registering a new clone detection tool
to be added to the CloReCo platform. A container
image will subsequently be generated and the tool be-
comes available for benchmarking experiments. As
can be seen, adding a clone detector to the platform
only requires a link to the tool’s code repository, and
an standardized runner script and configuration file.

We have conducted exhaustive performance anal-
ysis of clone detectors using CloReCo (Burock, 2024;
Ostryanin, 2024). The results of two sample bench-
marking experiments regarding the tools’ recall are
depicted in Fig. 3 and Fig. 4. In Fig. 3, the clone
detectors’ ability to find code clones is depicted

for the six tools CCAligner (Wang et al., 2018),
NiCad (Roy and Cordy, 2008), NIL (Nakagawa et al.,
2021), Oreo (Saini et al., 2018), SourcererCC (Saini
et al., 2016), and StoneDetector (Amme et al., 2021,
Schifer et al., 2020) on BigCloneBench (Svajlenko
and Roy, 2015), thereby considering different levels
of syntactical similarities, ranging from almost identi-
cal code duplicates where only the formatting differs
(T1 code clones) to code fragments featuring more
than 50% of syntactical deviations (T4 code clones).
In Fig. 4, the six tools’ recall on three other bench-
marks, i.e., Google CodeJam, Project CodeNet (Puri
etal., 2021), GPTCloneBench (Alam et al., 2023), are
shown, complementing the picture.

3 RELATED WORK

Reproducibility of experiments on software has long
been identified as an issue, reinforced by the sem-
inal report (Collberg et al., 2014). There also has
been substantial research on using container technol-
ogy to support reproducibility in software research.
Carl Boettiger, for instance, describes Docker as a
tool for reproducible experiments, emphasizing its
ability to address common reproducibility challenges
through operating system virtualization and cross-
platform portability (Boettiger, 2015). Several guide-
lines have been published offering best practices for
using containers to ensure reproducibility (Cito and
Gall, 2016). However, we are not aware of such
comprehensive approach, combining multiple bench-
marks and clone detectors for performance analysis in
the area of code clone detection. Comparative eval-
uations in this area tend to either resort to a single
benchmark, i.e., state-of-the-art BigCloneBench (Sva-
jlenko and Roy, 2015) in case of Java, or provide more
exhaustive evaluations which are however flawed by
missing or insufficient replication data.

4 CONCLUSION

In this paper, we present the CloReCo benchmark-
ing platform and advocate for the use of container
technology for facilitating reproducibility of exper-
imental benchmarking and performance analysis by
researchers and practitioners in the area of code
clone detection. Using CloReCo allows for manag-
ing and conducting benchmarking experiments com-
bining multiple benchmarking datasets, clone detec-
tors, and clone detector configurations. The CloReCo
platform therefore offers an extensible integration ap-
proach based upon containers and provides a web as

CloReCo: Benchmarking Platform for Code Clone Detection

well as a command line interface. In future work, we
hope to add more and more clone detectors as well
as benchmarks to the CloReCo platform, besides the
six clone detectors and four benchmarks mentioned in
this paper, and to conduct evaluations on the resulting
larger grounds. In particular, we are interested in the
more comprehensive benchmarking of Deep learning
approaches and tools for code clone detection. While
Deep Learning clone detectors, e.g., Oreo, are already
supported and can be integrated within the platform,
we hope to provide features for more sophisticated
performance analysis regarding aspects like consid-
eration of bias in training/evaluation data, data im-
balance, or reliability of ground truth (Schifer et al.,
2022; Sonnekalb et al., 2022).

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their many in-
sightful comments and suggestions.

REFERENCES

Alam, A. L., Roy, P. R., Al-Omari, F.,, Roy, C. K., Roy,
B., and Schneider, K. A. (2023). Gptclonebench:
A comprehensive benchmark of semantic clones and
cross-language clones using GPT-3 model and seman-
ticclonebench. In IEEE International Conference on
Software Maintenance and Evolution, ICSME 2023,
Bogotd, Colombia, October 1-6, 2023, pages 1-13.
IEEE.

Amme, W., Heinze, T. S., and Schifer, A. (2021). You look
so different: Finding structural clones and subclones
in java source code. In IEEE International Confer-
ence on Software Maintenance and Evolution, ICSME
2021, Luxembourg, September 27 - October 1, 2021,
pages 70-80. IEEE.

Boettiger, C. (2015). An introduction to docker for re-
producible research. ACM SIGOPS Oper. Syst. Rev.,
49(1):71-79.

Burock, F. (2024). Plattform fiir klondetektoren-
automatisierung. Master’s thesis, Faculty of Mathe-
matics and Computer Science, Friedrich Schiller Uni-
versity Jena.

Cito, J. and Gall, H. C. (2016). Using docker contain-
ers to improve reproducibility in software engineer-
ing research. In Dillon, L. K., Visser, W., and
Williams, L. A., editors, Proceedings of the 38th Inter-
national Conference on Software Engineering, ICSE
2016, Austin, TX, USA, May 14-22, 2016 - Compan-
ion Volume, pages 906-907. ACM.

Collberg, C., Proebsting, T., Moraila, G., Shankaran, A.,
Shi, Z., and Warren, A. M. (2014). Measuring repro-
ducibility in computer systems research. Technical re-

397

ICSOFT 2025 - 20th International Conference on Software Technologies

port, Department of Computer Science, University of
Arizona.

Guo, D., Ren, S., Lu, S., Feng, Z., Tang, D., Liu, S., Zhou,
L., Duan, N., Svyatkovskiy, A., Fu, S., Tufano, M.,
Deng, S. K., Clement, C. B., Drain, D., Sundaresan,
N., Yin, J., Jiang, D., and Zhou, M. (2021). Graph-
codebert: Pre-training code representations with data
flow. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net.

Inoue, K. and Roy, C. K., editors (2021). Code Clone Anal-
ysis. Springer Singapore.

Krinke, J. and Ragkhitwetsagul, C. (2022). Bigclonebench
considered harmful for machine learning. In 16th
IEEE International Workshop on Software Clones,
IWSC 2022, Limassol, Cyprus, October 2, 2022,
pages 1-7. IEEE.

Nakagawa, T., Higo, Y., and Kusumoto, S. (2021). NIL:
large-scale detection of large-variance clones. In
Spinellis, D., Gousios, G., Chechik, M., and Penta,
M. D., editors, ESEC/FSE ’21: 29th ACM Joint Eu-
ropean Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering,
Athens, Greece, August 23-28, 2021, pages 830-841.
ACM.

Ostryanin, E. (2024). Evaluierung von klonerkennungsver-
fahren fiir java-quellcode unter verwendung von
cloreco. Bachelor’s thesis, Faculty of Mathematics
and Computer Science, Friedrich Schiller University
Jena.

Puri, R., Kung, D. S., Janssen, G., Zhang, W., Domeniconi,
G., Zolotov, V., Dolby, J., Chen, J., Choudhury, M. R.,
Decker, L., Thost, V., Buratti, L., Pujar, S., Ramji, S.,
Finkler, U., Malaika, S., and Reiss, F. (2021). Co-
denet: A large-scale Al for code dataset for learn-
ing a diversity of coding tasks. In Vanschoren, J.
and Yeung, S., editors, Proceedings of the Neural In-
formation Processing Systems Track on Datasets and
Benchmarks 1, NeurIPS Datasets and Benchmarks
2021, December 2021, virtual.

Roy, C. K. and Cordy, J. R. (2008). NICAD: accurate de-
tection of near-miss intentional clones using flexible
pretty-printing and code normalization. In Krikhaar,
R. L., Lammel, R., and Verhoef, C., editors, The 16th
IEEE International Conference on Program Compre-
hension, ICPC 2008, Amsterdam, The Netherlands,
June 10-13, 2008, pages 172—-181. IEEE Computer
Society.

Roy, C. K., Cordy, J. R., and Koschke, R. (2009). Compari-
son and evaluation of code clone detection techniques
and tools: A qualitative approach. Sci. Comput. Pro-
gram., 74(7):470-495.

Saini, V., Farmahinifarahani, F., Lu, Y., Baldi, P, and
Lopes, C. V. (2018). Oreo: detection of clones in
the twilight zone. In Leavens, G. T., Garcia, A., and
Pasareanu, C. S., editors, Proceedings of the 2018
ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations
of Software Engineering, ESEC/SIGSOFT FSE 2018,
Lake Buena Vista, FL, USA, November 04-09, 2018,
pages 354-365. ACM.

398

Saini, V., Sajnani, H., Kim, J., and Lopes, C. V. (2016).
Sourcerercc and sourcerercc-i: tools to detect clones
in batch mode and during software development. In
Dillon, L. K., Visser, W., and Williams, L. A., editors,
Proceedings of the 38th International Conference on
Software Engineering, ICSE 2016, Austin, TX, USA,
May 14-22, 2016 - Companion Volume, pages 597—
600. ACM.

Schifer, A., Amme, W., and Heinze, T. S. (2020). Detection
of similar functions through the use of dominator in-
formation. In 2020 IEEE International Conference on
Autonomic Computing and Self-Organizing Systems,
ACSOS 2020, Companion Volume, Washington, DC,
USA, August 17-21, 2020, pages 206-211. IEEE.

Schifer, A., Amme, W., and Heinze, T. S. (2022). Exper-
iments on code clone detection and machine learn-
ing. In 16th IEEE International Workshop on Soft-
ware Clones, IWSC 2022, Limassol, Cyprus, October
2, 2022, pages 46-52. IEEE.

Sonnekalb, T., Gruner, B., Brust, C., and Mader, P. (2022).
Generalizability of code clone detection on codebert.
In 37th IEEE/ACM International Conference on Au-
tomated Software Engineering, ASE 2022, Rochester,
MI, USA, October 10-14, 2022, pages 143:1-143:3.
ACM.

Svajlenko, J. and Roy, C. K. (2015). Evaluating clone detec-
tion tools with bigclonebench. In Koschke, R., Krinke,
J., and Robillard, M. P, editors, 2015 IEEE Interna-
tional Conference on Software Maintenance and Evo-
lution, ICSME 2015, Bremen, Germany, September 29
- October 1, 2015, pages 131-140. IEEE Computer
Society.

Svajlenko, J. and Roy, C. K. (2016). Bigcloneeval: A
clone detection tool evaluation framework with big-
clonebench. In 2016 IEEE International Confer-
ence on Software Maintenance and Evolution, ICSME
2016, Raleigh, NC, USA, October 2-7, 2016, pages
596-600. IEEE Computer Society.

Svajlenko, J. and Roy, C. K. (2022). Bigclonebench: A ret-
rospective and roadmap. In 16th IEEE International
Workshop on Software Clones, IWSC 2022, Limassol,
Cyprus, October 2, 2022, pages 8-9. IEEE.

Wang, P., Svajlenko, J., Wu, Y., Xu, Y., and Roy, C. K.
(2018). Ccaligner: a token based large-gap clone de-
tector. In Chaudron, M., Crnkovic, 1., Chechik, M.,
and Harman, M., editors, Proceedings of the 40th
International Conference on Software Engineering,
ICSE 2018, Gothenburg, Sweden, May 27 - June 03,
2018, pages 1066-1077. ACM.

Wang, W., Li, G, Ma, B., Xia, X., and Jin, Z. (2020).
Detecting code clones with graph neural network and
flow-augmented abstract syntax tree. In Kontogian-
nis, K., Khomh, F., Chatzigeorgiou, A., Fokaefs, M.,
and Zhou, M., editors, 27th IEEE International Con-
ference on Software Analysis, Evolution and Reengi-
neering, SANER 2020, London, ON, Canada, Febru-
ary 18-21, 2020, pages 261-271. IEEE.

Wei, H. and Li, M. (2017). Supervised deep features for
software functional clone detection by exploiting lex-
ical and syntactical information in source code. In
Sierra, C., editor, Proceedings of the Twenty-Sixth

CloReCo: Benchmarking Platform for Code Clone Detection

International Joint Conference on Artificial Intelli-
gence, IJCAI 2017, Melbourne, Australia, August 19-
25, 2017, pages 3034-3040. ijcai.org.

399

