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Abstract:  Anthropogenic activities such as agriculture, deforestation and expansion of infrastructure have significantly 
changed land use land cover. These changes have raised environmental concerns, including soil erosion, 
landslides, water-catchment degradation and loss of biodiversity, with adverse consequences for food 
production and thus livelihoods. This study sought to explore how the associations between slope, elevation, 
distance to roads and rivers, population growth and hillshade influence spatial and temporal variations in land 
use change. The methodology involved integrating remote sensing, geographic information systems and 
spatial modelling. The study found that deforestation is a persistent phenomenon, with forest cover falling 
from 32.34% (2014) to 14.40% (2054). Similarly, the rangeland coverage is projected to decrease significantly 
from 17.74% in 2014 to 8.91% in 2054.Urbanization, on the other hand is rapidly increasing, tripling from 
18.27% in 2014 to 48.55% in 2054. It has been shown that population growth, distance from roads, elevation 
and slope are strongly correlated, with the latter being very strong. Among the identified potential synergies, 
built up areas are expected to almost reach 50% by 2054 at the expense of deforestation, land degradation and 
water loss. Based on the identified synergies, it is recommended that a balance between economic growth and 
environmental sustainability be sought to promote land use change management.  

1 INTRODUCTION 

Over the years, anthropogenic activities have 
significantly altered land use and land cover (LULC) 
(Ojelabi et al., 2025). These changes have triggered 
environmental concerns, including soil erosion, 
landslides, water catchment degradation, and 
biodiversity loss (Aduku et al., 2024), and have had 
undesirable effects on food production, thus 
threatening livelihoods, especially in developing 
countries (Luwa et al., 2024). These changes have 
incited global debate as they directly affect 
sustainable development and human well-being 
(Aduku et al., 2024). 

Spatial analysis, GIS, and remote sensing support 
informed land use decisions by revealing connections 
across sectors and balancing environmental, social, 
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and economic priorities. This approach supports the 
integration of geographic data, predictive modeling, 
and decision support tools, thereby advancing 
planning, policymaking, and sustainability efforts 
(Bielecka, 2020).  

Additionally, spatial analysis provides 
geographic specificity, enhancing the realism of 
models by incorporating factors such as topography, 
climate, and infrastructure (Oztuna, 2023). 
Consequently, extensive research has been 
undertaken at various spatial and temporal scales for 
diverse purposes highlighting the essential role of 
spatial analysis in land use change management. 

Between 1987 and 2015 in Côte d’Ivoire, 1.44% 
of forestland and 3.44% of dense forest were 
converted to agricultural and degraded forest areas, 
respectively (Kouassi et al., 2021). In Ethiopia, 
cultivated and settlement areas increased by 6.4% and 
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6.5%, while grassland and forest cover are projected 
to decline by 22.3% and 63.8% by 2050 (Mathewos 
et al., 2022). Similarly, urban areas in Southwestern 
Nigeria expanded from 341.7 km² to 520.6 km² 
between 1984 and 2019 (Fashe et al., 2020). These 
rapid LULC changes pose major challenges to 
sustainable development, affecting forest cover, 
increasing flood risks, complicating urban planning, 
and straining agriculture and water resources 
(Akinyemi, 2021). 

In Uganda's Mt. Elgon region, various studies 
have addressed LULC dynamics. Luwa et al. (2020) 
used intensity analysis to assess change patterns; 
Opedes et al. (2022) examined land cover change and 
subsistence farming; and Bamutaze et al. (2021) 
evaluated erosion risk via Global Positioning System 
data. However, these studies explicitly underscored 
the associations between population growth, 
proximity to rivers, proximity to roads, slope, digital 
elevation model (DEM), hill shade, and aspect. This 
study explored how the associations between these 
factors influence spatial and temporal variations in 
land use change.  

2 MATERIALS AND METHODS  

2.1 Study Area 

The study was conducted in Mbale, Bududa, 
Manafwa and Namisindwa (Figure 1). The study area 
is positioned between 0°40'0"N and 1°10'0"N latitude 
and 34°10'0"E and 34°30'0"E longitude. The region 
encompasses a total area of 320 km² with a population 
of approximately 1,338,178 people. The topography, 
climatic conditions and socio-economic activities 
provide a complex context for analysing LULC 
changes, making ideal setting for this research.  

 
Figure 1: The Study Area. 

The methodological approach integrates remote 
sensing with geographic information systems (GIS) 
to assess LULC dynamics in the region. 

2.2 Data Collection  

2.2.1 Satellite Imagery  

Multi-temporal satellite images from Landsat 8, with 
a spatial resolution of 30 m, were acquired from the 
United States Geological Survey (USGS) Earth 
Explorer (https://earthexplorer.usgs.gov/) for the 
years 2014, 2019 and 2024. The imagery was chosen 
based on phenological considerations, seasonality 
and minimal cloud cover to ensure precise analysis.  

2.2.2 Cramer's V Analysis of Driver 
Variables  

To evaluate the strength of association between 
selected drivers and LULC changes, Cramer's V 
values were computed using the R-Processing plugin 
in QGIS. Cramer's V, ranging from 0 (no association) 
to 1 (strong association), quantifies relationships 
between categorical variables. This analysis revealed 
how spatial factors such as population growth, 
proximity to rivers and roads, slope, elevation 
(DEM), and hillshade contribute to LULC dynamics. 
The results highlighted which variables most strongly 
influenced land use changes in the Mount Elgon 
region.  

2.2.3 Ancillary Data 

Roads and rivers were derived from OpenStreetMap 
(http://www.openstreetmap.org/), providing essential 
infrastructure data. Population growth data were 
sourced from WorldPop (http://www.worldpop.org), 
offering insights into demographic pressures.  

2.3 Data Pre-processing 

2.3.1 Geometric Correction  

Geometric correction was conducted on all satellite 
images to ensure spatial alignment using reference 
layers such as DEM, slope, and distance from roads. 
The correction process utilized the MOLUSCE 
plugin in QGIS to preserve data consistency across 
temporal layers.  

2.3.2 Image Classification  

A supervised classification technique, specifically the 
maximum likelihood algorithm within ArcGIS, was 
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employed to categorize LULC types. Training 
samples were selected based on expert knowledge 
and field validation, ensuring the accuracy of the 
classification process. To assess the reliability of the 
classified maps, their accuracy was evaluated using a 
confusion matrix and kappa coefficient, comparing 
the classified outputs with ground-truth data. This 
approach ensured a robust validation of the 
classification results.  

2.4 Analysis of Spatial and Temporal 
Variations 

2.4.1 Land Use Change Detection  

The LULC maps for 2014, 2019, and 2024 were 
analyzed to detect spatial and temporal changes. The 
MOLUSCE plugin in QGIS was used for change 
detection, specifically employing post-classification 
comparison to identify transitions among different 
LULC categories over time. This method was chosen 
because it allowed for accurate identification of land 
use changes by comparing classified maps from 
different years, making it ideal for assessing spatial 
dynamics and temporal trends in LULC.  

2.4.2 Spatial Variable Analysis  

This  study  examined  how  factors  such  as  DEM,  

slope, proximity to rivers and roads, and population 
influenced land use change in the Mount Elgon 
region. DEM and slope determine land suitability by 
identifying areas vulnerable to erosion and landslides, 
thereby guiding human activities. Proximity to rivers 
impacts agriculture and settlement patterns due to 
water availability and flood risk, while proximity to 
roads drives urban expansion, agricultural 
development, and resource extraction. Population 
growth increases the demand for farmland and 
settlements. Together, these factors shape the spatial 
and temporal dynamics of land use change in the 
region. Spatial analysis tools in ArcGIS were 
employed to calculate proximity metrics and generate 
thematic layers.  

2.5 Future Land Use Land Cover 
Prediction  

The MOLUSCE module in QGIS was used to predict 
future LULC changes using a Cellular Automata and 
Neural Network (CA-ANN) model. This approach 
utilizes historical LULC maps for 2014, 2019 and 
2024 as input layers, integrating spatial variables to 
simulate future scenarios. The projected maps offer 
insights into potential LULC dynamics based on 
observed trends.  

 

Table 1: Area statistics of LULC classes for the years 2014, 2019 and 2024 and percentages of change. 

LULC 
Classes 2014 2019 2024 Change in 

2014-2019 
Change in 
2019-2024 

Change in 
2014-2024 

sq.km % sq.km % sq.km % Δ % Δ % Δ % 

Water 0.04 0.00 0.33 0.02 0.08 0.01 0.02 -0.018 0.00 
Trees 443.56 32.34 410.69 29.95 316.71 23.09 -2.40 -6.852 -9.25 
Crop land 433.95 31.64 506.14 36.91 434.02 31.65 5.26 -5.259 0.00 
Built areas 250.54 18.27 276.73 20.18 418.23 30.50 1.91 10.318 12.23 
Rangeland 243.31 17.74 177.52 12.94 202.36 14.76 -4.80 1.812 -2.99 

Table 2: Classification Accuracy Assessment of each Land use Maps. 

LULC Classes 2014 2019 2024 

Producer's 
Accuracy 

User's 
Accuracy 

Producer's 
Accuracy 

User's 
Accuracy 

Producer's 
Accuracy 

User's 
Accuracy 

Trees 0.97 1.00 0.97 1.00 0.96 0.77 
Crop land 1.00 1.00 1.00 0.93 0.57 0.93 
Built areas 0.96 1.00 0.92 1.00 0.79 0.54 
Rangeland 1.00 0.86 1.00 1.00 0.90 0.69 
Overall accuracy (%) 97.00 

 
80.00 

 
98.00 

 

Kappa coefficient 0.97 
 

0.96 
 

0.64 
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3 RESULTS  

3.1 Land Use Land Cover 
Classification 

The LULC area statistics are shown in Table 1. The 
total surface area of the analysed area is 1,371.4028 
km2. The distribution of the Elgon LULC classes 
shows that in the year 2014, 32.34% of the area was 
forested, 31.64% cropland, 18.27% built-up, 17.74% 
rangeland and 0% water body. Whereas the year 2019 
analysis shows that 36.91% of the Elgon region is 
agricultural land (cropland), 29.95% forest, 20.18% 
built-up, 12.94% pasture and 0.02% water body. In 
the year 2024, the agricultural, built-up, forest, 
rangeland and water bodies were 31.65, 30.50, 23.09, 
14.76 and 0.01 percent respectively.  

3.2 Classification Accuracy Assessment 

The classification accuracy assessment (Table 2) for 
the LULC maps of 2014, 2019, and 2024 reveals a 
clear decline in both overall accuracy and class-
specific reliability in 2024. While the Producer’s and 
User’s Accuracies for most land cover classes 
remained high in 2014 and 2019 with Overall 

Accuracy values of 97% and 98%, and Kappa 
Coefficients of 0.97 and 0.96, respectively, a 
substantial drop was observed in 2024. The Overall 
Accuracy fell to 80%, and the Kappa Coefficient 
dropped markedly to 0.64, indicating a notable 
decrease in agreement between the classified and 
reference data.  

Class-specific performance in 2024 illustrates the 
nature of this decline. Built-up areas showed a 
pronounced reduction in both Producer’s Accuracy 
(0.79) and User’s Accuracy (0.54), implying 
increased confusion with other classes and potential 
overestimation of urban expansion. Cropland also 
exhibited a major drop in Producer’s Accuracy from 
1.00 (in 2014 and 2019) to 0.57 in 2024, indicating 
significant misclassification, even though its User’s 
Accuracy remained stable at 0.93. Trees and 
rangeland, while more stable, also showed decreased 
User’s Accuracy, suggesting reduced reliability in 
mapping these categories. 

The reduced classification quality in 2024 may 
have compromised the accurate detection of land 
cover changes between 2019 and 2024. 
Misclassification of built-up or cropland areas could 
have resulted in either exaggerated or underestimated 
land transitions during this period.  

Table 3: Change of area between LULC classes for the years 2014-2019, 2019-2024 and 2014-2024. 

Changes between LULC classes 2014-2019 (sq.km) 2019-2024 (sq.km) 2014-2024 (sq.km) 
Water to Water 1.00 0.22 0.86 
Water to Trees 0.00 0.08 0.01 
Water to Cropland 0.00 0.60 0.07 
Water to Built-up areas 0.00 0.09 0.02 
Water to Rangeland  0.00 0.02 0.04 
Trees to Water 0.00 0.00 0.00 
Trees to Trees 0.82 0.71 0.67 
Trees to Cropland 0.05 0.05 0.07 
Trees to Built-up areas 0.05 0.14 0.14 
Trees to Rangeland  0.09 0.10 0.11 
Cropland to Water 0.00 0.00 0.00 
Cropland to Trees 0.03 0.01 0.02 
Cropland to Cropland 0.86 0.75 0.74 
Cropland to Built-up areas 0.06 0.16 0.19 
Cropland to Rangeland  0.04 0.08 0.05 
Built areas to Water 0.00 0.00 0.00 
Built areas to Trees 0.05 0.00 0.00 
Built areas to Cropland 0.08 0.03 0.05 
Built areas to Built-up areas 0.86 0.96 0.94 
Built areas to Rangeland  0.01 0.01 0.01 
Rangeland to Water 0.00 0.00 0.00 
Rangeland to Trees 0.09 0.10 0.04 
Rangeland to Cropland 0.37 0.14 0.28 
Rangeland to Built-up areas 0.06 0.10 0.15 
Rangeland to Rangeland  0.48 0.66 0.5 
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Moreover, since future LULC projections up to 
2054 are based on trends derived from historical and 
current maps, the 2024 dataset serves as a critical 
input. Lower classification confidence in this dataset 
may propagate uncertainty into the projection model, 
potentially distorting forecasts of land cover change 
particularly for rapidly evolving classes like urban or 
agricultural land.  

3.3 Change of Area Between Land Use 
Land Cover Classes 

When the change values are examined (Table 3); 
shrinkage was detected in water, trees, cropland, and  
rangeland by 0.02%, 9.25%, 5.26%, and 2.99 
respectively with greater shrinkage in the trees 
(forested area) by 9.25% in the year 2014-2024, 
whereas expansion was observed in built-up areas 
throughout the years with greater expansion values by 
12.23%, for the period 2014-2024.  

The change analysis of the LULC classes showed 
that the expansion in the built-up areas had arisen 
from water bodies, Trees, Cropland and rangeland 
where 0.09, 0.14,0.19, and 0.15 Km2 of respective 
LULC classes were transformed into built-up areas 
from the year 2014 to the year 2024. Over a 30-year 
period (2024-2054), the built-up area is projected to 
increase from 30.5 to 48.6 and the trees, croplands 
and rangelands to decrease from 23.1 to 14.4, 31.7 to 
28.1 and 14.8 to 8.9 percent respectively, with 
minimal changes in water bodies.  

3.4 Projected LULC Area Statistics for 
2054 Relative to the Baseline (2014) 

Figures 2 and 3 illustrate LULC changes between 
2014 and 2024, along with projections for 2054. 
These figures highlight trends across various land 
cover categories, revealing a steady transformation of 
natural landscapes into urban and built-up areas.  

A key trend is deforestation, with forest cover 
decreasing sharply from 32.34% in 2014 to a 
projected 14.40% by 2054. This persistent loss is 
driven by urban expansion, agricultural 
encroachment, illegal logging, and land degradation.  

Urbanisation is another prominent trend, with 
built-up areas projected to nearly triple from 18.27% 
in 2014 to 48.55% by 2054. This surge is likely fueled 
by population growth, increased housing demand, 
infrastructure development, and rural-to-urban 
migration affecting green spaces and croplands, 
greater pollution, urban heat island effects, and 
heightened pressure on water and waste management 
systems. 

Cropland initially increased between 2014 and 
2019 due to agricultural expansion but is expected to 
decline from 2024 onward due to urban 
encroachment, soil degradation, and the impacts of 
climate change on agricultural productivity. The 
shrinking cropland base poses risks to food security 
and signals a shift in economic focus from agriculture 
toward industry and services. 

Rangelands have also seen a significant decline 
from 17.74% in 2014 to a projected 8.91% in 2054. 
Contributing factors may include overgrazing, land 
degradation, urban encroachment, and climate 
change affecting pasture availability. This threatens 
livestock farming and may exacerbate soil 
degradation if unsustainable grazing continues.  
 

 
Figure 2: Visualizing Land Use Land Cover changes from 
2014 to 2054. 

 
Figure 3: Spatial distribution of the LULC for the years 
2014, 2019, 2024 and Prediction for 2054. 

3.5 Association Between Driving 
Forces of Land Use Land Cover 
Change 

Table 4 presents the explanatory power of each driver 
variable influencing LULC changes, measured using  
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Table 4: Cramer's V Values of Driver Variables. 

Cramer's Coefficient 
Variable  Cramer's V Value Interpretation 
Population Growth 0.5316 Strong association 
Distance from Rivers 0.3801 Moderate association 
Distance from Roads 0.5337 Strong association 
Slope 0.7205 Very strong association 
DEM (Digital Elevation Model) 0.5236 Strong association 
Hillshade 0.2973 Weak association 
Aspect 0.4171 Moderate association 

 
Figure 4: Distribution of driver variables. 

the Cramer's V coefficient. All variables 
demonstrated significant associations, with Cramer's 
V values exceeding 0.15. Among them, distance from 
rivers (0.3801) and aspect (0.4171) exhibited 
moderate explanatory power. Hillshade showed a 
weaker association (0.2973), while population 
growth, distance to roads, elevation (DEM), and slope 
demonstrated strong correlations, slope showed a 
very strong relationship. Following the identification 
of these key drivers, the specified land cover 
transitions were modeled within a unified transition 
sub-model. This process produced transition potential 
maps, which demonstrated accuracy levels ranging 
between 40% and 95%. 

4 DISCUSSION OF RESULTS 

Land use and land cover change at global level is a 
problem for the environment and for development 
because of its complex nature and local occurrence. 
For the coming decades, the world population is 
expected to continue growing, causing major 
problems (Unger & Lakes, 2023). Land demand is 

reflected in different land-use interests, which can 
lead to land-use synergies that are manifested locally.  

Satellite data allow continuous monitoring of land 
use change at various scales. It should also be noted 
that understanding the interrelationships between the 
various land use factors and their effects is conducive 
to optimising land use patterns and promoting land 
use sustainability. However, spatial differences and 
the drivers of synergies between the various land use 
factors in the region have not been well studied.  

4.1 Historical Land Use Land Cover 
Change Dynamics Analysis  

Historical changes in the LULC (Table 1) shows that 
agricultural land and rangelands have been reduced 
between 2014 and 2024. Trees have declined over the 
years, while built-up areas have increased steadily. 
Agricultural expansion (Alshari & Gawali, 2022) and 
urbanisation (Gündüz, 2025) has caused more than 
28.6% of forest cover to be lost in the last 10 years. 
Similarly, studies in the region have reported that the 
conversion of forests and the reduction of rangelands 
are indicators of an increase in anthropogenic activity 
and food demand (Ojelabi et al., 2025). Historical 
findings on LULC dynamics align with studies 
showing that agricultural and urban expansion are 
driving the loss of natural vegetation (Alshari & 
Gawali, 2022).  

4.2 Spatial and Temporal Land Use 
Change Trends  

The analysis of Cramer's V values provided insights 
into the key drivers influencing LULC changes in the 
Mount Elgon region. These results are consistent with 
a study conducted in Sana’a City in Yemen (Ouma et 
al., 2024). Slope exhibited the strongest association 
(0.7205) (Xu et al., 2021).  
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Distance from roads (0.5337) and population growth 
(0.5316) also had strong associations, defining 
infrastructure development and urban expansion 
(Rahnama, 2021). DEM (0.5236) and distance from 
rivers (0.3801) influenced land use patterns (Abbas et 
al., 2021; Gharaibeh et al., 2020), while hillshade 
(0.2973) showed the weakest association (Ouma et 
al., 2024). These findings are consistent with the 
findings of Abijith et al. (2025) where DEM, slope 
and distance from roads including population growth 
contribute to the change in land use. 

5 CONCLUSION AND FUTURE 
WORK 

The study modeled LULC changes by analyzing key 
environmental and human-driven factors such as 
elevation, slope, distance from roads and rivers, and 
population growth. Accurate LULC modeling 
requires careful selection of relevant predictors and 
the use of spatiotemporal data to capture complex 
dynamics. Among the variables analyzed, slope 
showed the strongest influence, followed by distance 
to roads, elevation, and population growth. Distance 
to rivers and aspect had moderate associations, while 
hillshade had the weakest. Despite these insights, the 
study acknowledges limitations in simulating human 
behaviour and policy influences. To enhance 
predictive accuracy, future research should 
incorporate integrated models, scenario-based 
simulations, and advanced techniques like machine 
learning or Artificial Intelligence. Incorporating 
socio-economic drivers is also essential, as human 
activity significantly shapes LULC patterns.  
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