
LLMs as Code Generators for Model-Driven Development

Yoonsik Cheon
Department of Computer Science, The University of Texas at El Paso, El Paso, Texas, U.S.A.

Keywords: Model-Driven Development, Large Language Model, UML/OCL, Code Generation, Dart/Flutter.

Abstract: Model-Driven Development (MDD) aims to automate code generation from high-level models but traditionally
relies on platform-specific tools. This study explores the feasibility of using large language models (LLMs)
for MDD by evaluating ChatGPT’s ability to generate Dart/Flutter code from UML class diagrams and OCL
constraints. Our findings show that LLM-generated code accurately implements OCL constraints, automates
repetitive scaffolding, and maintains structural consistency with human-written code. However, challenges re-
main in verifying correctness, optimizing performance, and improving modular abstraction. While LLMs
show strong potential to reduce development effort and better enforce model constraints, further work is
needed to strengthen verification, boost efficiency, and enhance contextual awareness for broader adoption
in MDD workflows.

1 INTRODUCTION

Model-Driven Development (MDD) responds to the
growing complexity of software engineering by em-
phasizing high-level, abstract models instead of man-
ual coding (Stahl and Volter, 2006). A leading ap-
proach is the Object Management Group’s Model-
Driven Architecture (MDA) (Meservy and Fenster-
macher, 2005), which attempts to automate trans-
formations from computation-independent models to
platform-specific implementations. Central to MDA
are standardized modeling languages such as the Uni-
fied Modeling Language (UML)for structural design
and the Object Constraint Language (OCL) (Warmer
and Kleppe, 2003) for specifying precise constraints.
The success of MDD depends not only on the expres-
siveness of these models but also on the availability of
tools capable of reliably transforming them into work-
ing systems. This paper explores whether combining
UML and OCL with large language models (LLMs)
offers a practical alternative to traditional platform-
specific transformation and code generation tools.

While UML and OCL provide a strong modeling
foundation, the automatic generation of executable
code from these models continues to pose substantial
challenges (France et al., 2006). Realizing the MDD
vision of seamless model-to-code transformation has
proven elusive. UML often omits implementation-
level details, and OCL, though formal and expres-
sive, may not fully capture dynamic behaviors and

interactions. Additionally, developing and maintain-
ing platform-specific code generation tools is labor-
intensive and error-prone, as these tools must con-
stantly be updated to accommodate new programming
languages, frameworks, and execution environments.
Traditional generators rely heavily on rigid templates
and predefined transformation rules, requiring man-
ual tuning to resolve ambiguities—ultimately limiting
their scalability, flexibility, and adaptability.

Recent advances in LLMs offer a promising new
direction. With their capability to process both struc-
tured inputs (such as models) and unstructured lan-
guage, LLMs are well-positioned to bridge the gap
between high-level abstractions and concrete imple-
mentations. Unlike traditional tools, LLMs can adapt
to context, generate platform-specific code dynami-
cally, and support natural-language-based refinements
and prototyping. Their general-purpose design also
suggests the potential to serve as a universal code gen-
eration tool, eliminating the need for separate genera-
tors tailored to each platform. By automating routine
coding tasks and adapting to evolving ecosystems,
LLMs could significantly streamline MDD workflows
and reduce development effort.

In this paper, we explore the feasibility of us-
ing LLMs as code generators within MDD processes.
Specifically, we evaluate whether UML and OCL
models can be used in combination with LLMs to
generate accurate, platform-specific code. To ground
our investigation, we present a case study involving

386
Cheon, Y.
LLMs as Code Generators for Model-Driven Development.
DOI: 10.5220/0013580300003964
In Proceedings of the 20th International Conference on Software Technologies (ICSOFT 2025), pages 386-393
ISBN: 978-989-758-757-3; ISSN: 2184-2833
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)



the development of a Sudoku game app using Dart
and Flutter (Bracha, 2016; Flutter, 2025). The study
assesses (a) the suitability of UML and OCL for mod-
eling, (b) the ability of LLMs to interpret and translate
these models into code, and (c) the practical strengths
and limitations of this approach. While focused on
a single application domain, our findings offer early
insights into the potential of LLMs for generalizing
MDD workflows. We also highlight the challenges
that remain and identify avenues for future research
involving broader and more diverse applications.

The rest of the paper is organized as follows. Sec-
tion 2 reviews related work. Section 3 outlines our
modeling approach and LLM integration. Section 4
presents a case study involving a Sudoku game, de-
tailing the model design and the LLM-driven code
generation process. Section 5 evaluates the quality
and correctness of the generated code, and Section 6
summarizes our findings and future directions.

2 RELATED WORK

Traditional MDD code generation has used template-
and rule-based approaches (Sebastian et al., 2020).
Tools like Eclipse Acceleo use predefined templates
to transform high-level models into code (Syriani
et al., 2018; Jurgelaitis et al., 2021; Tsiounis and
Kontogiannis, 2023), while rule-based methods, in-
cluding XSLT transformations, convert models us-
ing explicit rules (Carnevali et al., 2009; Frantz and
Nowostawski, 2016). Although effective, these tech-
niques require significant manual effort to maintain
templates and rules, limiting adaptability to changing
requirements and domains.

In contrast, LLMs have been widely applied in
software engineering tasks such as code generation,
refactoring, and providing intelligent assistance (Fan
et al., 2023; Hou et al., 2024; Wang et al., 2024;
Zheng et al., 2025). Models like OpenAI’s Codex
support snippet generation, completion, and error de-
tection (Jain et al., 2022; Xue et al., 2024). Research
has explored enhancing LLMs via prompt engineer-
ing, domain tuning, few-shot prompting, and chain-
of-thought reasoning.

However, the use of LLMs in the MDD context
remains largely unexplored. Specifically, their po-
tential to generate platform-specific implementations
from structured inputs such as UML and OCL has not
been thoroughly examined. This study addresses this
gap by evaluating LLMs as an alternative to conven-
tional code generation in MDD workflows.

/squares

Square

x: Integer

y: Integer

number: Integer

hasNumber: Boolean()

permittedNumbers(): Set(Integer)

isConsistent(): Boolean

Box

x: Integer

y: Integer

/size: Integer

at(x: Integer, y: Integer): Square

Board

size: Integer

/boxSize: Integer

at(x: Integer, y: Integer): Square

box(x: Integer, y: Integer): Box

column(x: Integer): Set(Square)

row(y: Integer): Set(Square)

isSolved(): Boolean

boxes

81

9

squares9

Figure 1: Sudoku class diagram.

3 APPROACH

This study explores the use of LLMs for MDD, trans-
forming platform-independent and platform-specific
models into executable code. Our goal is not only to
automate code generation but also to evaluate the ef-
fectiveness of LLMs in handling well-defined, struc-
tured models. Unlike traditional MDD workflows
that emphasize transformation toolchains, we focus
on assessing how LLMs process pre-defined UML
and OCL models. Our model consists of both struc-
tural and behavioral components:

• UML for structure: UML diagrams define key ele-
ments such as classes, attributes, associations, and
multiplicities to model system relationships.

• OCL for behavior: OCL constraints refine UML
by specifying invariants, preconditions, postcon-
ditions, and derived elements, ensuring consis-
tency and eliminating ambiguities.

This study primarily focuses on UML class dia-
grams, as shown in Figure 1, which models the Su-
doku puzzle (detailed in Section 4). The diagram de-
fines key classes—Board, Box, and Square—and a
derived association, squares, linking Board to Square.
However, a UML diagram alone does not specify how
derived associations are computed or how behaviors
are enforced. OCL complements UML by expressing
constraints and behaviors that graphical models can-
not capture. It defines class invariants, derived asso-
ciations, and operational constraints to ensure model
consistency and preciseness (see examples below).

context Board
inv: size >= 9 and Set{1..size}→exists(i | i * i = size)

context Board::squares: Set(Square)
derive: boxes.squares→asSet()

context Board::at(x: Integer, y: Integer): Square
pre: 0 <= x and x < size and 0 <= y and y < size
post: result = squares@pre→any(s | s.x = x and s.y = y)

LLMs as Code Generators for Model-Driven Development

387



These constraints ensure correctness, such as en-
forcing board size, defining derived associations, and
constraining method behavior. The first constraint en-
forces a class invariant ensuring the board size is a
square number of at least 9. The second constraint
uses the derive clause to compute a derived associ-
ation. The third constraint defines the behavior of
the Board::at() operation with a precondition vali-
dating index bounds and a postcondition ensuring the
correct Square is returned, using the pseudo-variable
result and the @pre suffix for pre-state evaluation. As
shown, OCL provides powerful collection operations
like exists and any for expressing complex rules (Ob-
ject Management Group, 2014).

Once the model is defined, it is converted into a
structured format for LLM processing, involving: (a)
model translation, (b) LLM configuration and execu-
tion, and (c) output analysis. UML and OCL elements
are encoded as textual data. Structural elements are
described hierarchically, while OCL constraints are
presented as declarative, textual rules. This study
uses PlantUML (PlantUML, 2025) due to its com-
pact, human-readable syntax and wide tool support.
For code generation, we use an interactive LLM, such
as ChatGPT-4, to iteratively refine outputs. Default
configurations are used, except for tailored prompts
to guide LLM behavior. The generated code is re-
viewed for correctness, completeness, and adherence
to the model. Results are compared to manually writ-
ten implementations to evaluate effectiveness.

4 CASE STUDY: SUDOKU APP

To demonstrate our approach, we developed a Su-
doku puzzle app (see Figure 2). Sudoku features a
9 × 9 grid where players fill in numbers 1–9 such
that each row, column, and 3 × 3 sub-grid contains
all digits without repetition. Games begin with a
partially filled grid—typically with at least 17 given
numbers—while players deduce the rest. Fixed values
are shown as gray squares in Figure 2. We followed a
lightweight model-driven approach using UML and
OCL to capture both structure and behavior. This
model serves as the basis for automated code genera-
tion, ensuring design consistency and precision.

4.1 Modeling with UML and OCL

The first step in our lightweight MDD approach in-
volves constructing a platform-independent model
(PIM) using UML and OCL, in line with established
MDD practices (Cheon and Barua, 2018). As shown
in Section 3, the UML class diagram defines the struc-

New

Figure 2: Sudoku puzzle app.

tural backbone of the Sudoku game, capturing core
components—Board, Box, and Square—and their as-
sociations. The Board class models the entire 9× 9
grid, which is subdivided into Box instances, each
containing a 3 × 3 group of Square objects. A de-
rived association, squares, links the Board directly to
all its Square instances, enabling holistic analysis and
reasoning over the grid.

To complement the structural model, we incor-
porate OCL constraints that capture domain-specific
rules and behavioral logic beyond what UML alone
can express. These include: (a) class invariants that
enforce structural properties (e.g., grid dimensions),
(b) operation contracts specifying preconditions and
postconditions, and (c) derived attributes and asso-
ciations formalizing relationships—such as the indi-
rect link between Board and Square via Box. Be-
low are two more example constraints: isSolved()
in the Board class verifies that all squares are cor-
rectly filled, and permittedNumbers() in the Square
class computes valid entries for a square. To improve
readability of complex expressions, we use a custom
where clause.

context Board::isSolved(): Boolean
body: squares→forAll(hasNumber() and isConsistent())

context Square::permittedNumbers(): Set(Integer)
body: result = all − b − h − v where
all = Sequence{1..board.size}→asSet(),
b = box.squares→excluding(self)→collect(number),
h = board.row(x)→excluding(self)→collect(number),
v = board.column(y)→excluding(self)→collect(number)

Together, UML and OCL yield a complete and
precise model of the game’s logic while remaining
platform-agnostic. Our model includes 196 lines of
OCL constraints covering structural invariants, de-
rived properties, and behavioral specifications (Cheon
and Barua, 2018).

After finalizing the PIM, we develop a platform-

ICSOFT 2025 - 20th International Conference on Software Technologies

388



Square

BoxBoard

<<widget>>

SudokuWidget

<<widget>>

BoardWidget

<<state>>

SudokuModel

Solver

/squares81

0..1

squares

9

boxes

9

selected

<<use>>

Figure 3: Refined class diagram in PSM.

specific model (PSM) for Dart/Flutter (Bracha, 2016;
Flutter, 2025), a cross-platform mobile framework for
Android and iOS (Cheon, 2021; Cheon et al., 2023).
Flutter’s reactive UI model facilitates state manage-
ment by automatically updating interface components
in response to changes in application state. The PSM
extends the PIM by incorporating user interface (UI)
components and interaction logic while preserving
the domain model and its associated constraints (see
Figure 3). As illustrated in Figure 2, the UI consists
of a 2D Sudoku grid and control buttons, with user in-
teractions such as taps bound to operations defined in
the PSM. This integration tightly couples the interface
with the game logic, ensuring seamless interaction.

To support this behavior, the PSM introduces sev-
eral new classes: (a) widget classes to render the Su-
doku grid and control buttons, (b) a state management
class (SudokuModel) that maintains game state, han-
dles user events, triggers UI updates, and manages un-
do/redo via helper classes, and (c) a solver class using
a backtracking algorithm, aided by additional helper
classes not shown in the diagrams. Core logic classes
like Board, Box, and Square are reused from the PIM
but extended with platform-specific features such as
property accessors and new methods. To improve
modularity, some operations are refactored into helper
classes while preserving key behaviors like move val-
idation and board state management.

The PSM includes approximately 450 lines of
OCL constraints: 199 for core logic, 95 for the solver,
and 156 for state management. We deliberately ex-
clude UI-specific constraints to focus on ensuring do-
main consistency and correct state behavior. A central
role of SudokuModel is to trigger UI updates when
the application state changes. While such behav-
ior can be described using pre/postconditions, these
are often too vague to guarantee that specific up-
date methods are invoked. To address this limita-
tion, we use the ^ (hasSent) operator in OCL to assert
that particular signals—such as UI notifications—are
sent. For example, the selectSquare() operation not
only sets the selected square but also verifies that
notifyListeners, the method responsible for updat-
ing the UI, is triggered:

context SudokuModel::selectSquare(square: Square)
pre: square <> null
post: self.selectedSquare = square
post: self.notifyListeners^

This ensures that user interface elements (e.g.,
number buttons) are updated in response to the new
selection. Similarly, tapping the ‘New’ button in-
vokes startNewGame(), whose postconditions enforce
a fresh puzzle, reset selection, cleared undo/redo
stacks, and the triggering of notifyListeners:

context SudokuModel::startNewGame()
post: informally("board contains a new puzzle")
post: self.selectedSquare = null
post: self.history.undoStack→isEmpty() and

self.history.redoStack→isEmpty()
post: self.notifyLiseners^

To capture intent that is difficult to formalize pre-
cisely, we introduce an informally() clause (see the
above example). It communicates developer intent
without requiring full formal specification. This hy-
brid approach balances formal rigor with practical ex-
pressiveness, allowing specifications to remain both
precise and accessible. While a complete formal-
ization is theoretically possible, it often introduces
complexity that can obscure intent—highlighting the
value of combining formal and informal constraints.

Finally, to evaluate the reasoning capabilities of
LLMs, we include partial and underspecified con-
straints. For example, the undo() operation describes
only the change in undo stack size, omitting con-
straints on the stack’s content or the redo stack:

context SudokuModel::undo()
pre: hasUndo
post: history.undoStack→size() =

history.undoStack@pre→size() − 1

These partial constraints serve as a testbed for as-
sessing whether the LLM can infer consistent and in-
tended behavior from incomplete information, chal-
lenging it to maintain behavioral coherence in the
presence of gaps in formal specification.

4.2 Code Generation and Integration

Dart/Flutter code will be incrementally generated by
an LLM and organized into three Dart libraries: (a)
core model classes defining domain concepts and re-
lationships, (b) solver classes implementing puzzle
solving and generation logic, and (c) state manage-
ment classes handling game state and UI updates.

LLMs as Code Generators for Model-Driven Development

389



This phased approach facilitates systematic verifica-
tion and smooth integration with existing compo-
nents. We currently have a fully functional, man-
ually developed app (Cheon, 2021; Cheon et al.,
2023). Our goal is to replace all modules except the
UI with LLM-generated components while preserv-
ing full functionality.

We begin with generating the core model classes
(e.g., Board, Box, Square), which form the appli-
cation’s foundation and have minimal dependencies.
Next, we generate the solver classes, which add com-
plexity through puzzle-solving and validation logic.
Each component is verified against the original de-
sign and constraints. Finally, we generate and in-
tegrate the state management classes, which involve
the most interactions—managing state transitions and
triggering UI updates. This iterative, modular strategy
supports efficient debugging, refinement, and integra-
tion. By starting with the least dependent module, we
reduce cascading errors and establish a stable base for
subsequent phases.

5 EVALUATION

We evaluated ChatGPT-4 (January 2025, GPT-4o) by
prompting it to generate Dart code from UML class
diagrams written in PlantUML along with associated
OCL constraints. We began with a simple prompt: “I
will provide a UML class diagram written in Plan-
tUML syntax and a set of OCL constraints defin-
ing additional design requirements. Write a Dart
implementation that conforms to this design.” De-
spite the prompt’s simplicity, the LLM produced code
that closely adhered to both the structural and behav-
ioral specifications. Moreover, when instructed to in-
corporate a specific state management framework, it
correctly imported the relevant package and invoked
the appropriate framework methods, demonstrating a
strong ability to adapt to additional context.

Three Dart libraries—model, solver, and state
management—were generated and integrated into an
existing Sudoku app by replacing manually written
modules (Cheon, 2021; Cheon et al., 2023). Well-
defined interfaces enabled smooth integration. Minor
issues during model integration were quickly resolved
through small diagram updates and code regenera-
tion; an OCL constraint error was also detected.

The LLM translated OCL constraints into Dart us-
ing intuitive mappings (see Table 1). For example,
the Board class correctly applied invariants, precon-
ditions, and derived associations (see Section 4.1):

Table 1: OCL-to-Dart mapping.

OCL Concept Dart Implementation
invariant pre-state assert statement
precondition pre-state assert for input validation
postcondition method logic
derived field or getter
body and def query method

Board([this.size = 9])
: assert(size >= 9),
assert(sqrt(size).floor()
* sqrt(size).floor() == size),

boxSize = sqrt(size).floor() { ... }

Square at(int x, int y) {
assert(x >= 0 && x < size && y >= 0
&& y < size, ’Index out of bounds.’);

return squares.firstWhere(
(s) => s.x == x && s.y == y);

}

Set<Square> get squares =>
boxes.expand((box) => box.squares).toSet();

It made good use of Dart features such as fi-
nal fields, getters, and optional parameters. Named
parameters in Dart were used in place of OCL de-
faults, while positional optional parameters required
explicit square brackets in the UML diagram. No-
tably, the LLM successfully interpreted custom no-
tation like where and informally() clauses without
special instructions. It also demonstrated inference
capabilities. For example, when the undo() opera-
tion was underspecified—constraining only the stack
size—it generated a complete implementation, show-
ing its ability to infer plausible behavior even with
partial specifications:

void undo() {
assert(hasUndo);
_history.undo();
notifyListeners();

}

When some parts of the design were missing,
e.g., constructors or dependent classes, the LLM au-
tonomously generated them, fully implemented when
sufficient context was available, or as placeholders
otherwise. More consistent results could be achieved
by explicitly specifying module dependencies and in-
terfaces, which the LLM can also document.

Although generally accurate and functional, the
LLM-generated code had a few limitations: (a) it
avoided introducing helper methods or abstractions,
likely adhering closely to the explicit design, (b) com-
plex solving techniques like backtracking required
explicit prompting, and (c) derived attributes (e.g.,

ICSOFT 2025 - 20th International Conference on Software Technologies

390



squares, rows) were recomputed on each access.
While this favored clarity, caching could improve per-
formance.

Table 2: Code size and complexity.

Lib
LLM-generated Hand-written

Cl Meth SLOC Cl Meth SLOC
Model 3 34 (15) 210 3 37 208
Solver 4 21 (2) 171 4 22 218
State 3 23 (8) 136 3 23 149
Total 11 78 (25) 517 11 82 575

5.1 Code Size

We evaluated the size and structural complexity of
LLM-generated code by comparing it to a manu-
ally written baseline implementation (Cheon, 2021;
Cheon et al., 2023). The generated code comprises
11 classes, 78 methods, and 517 source lines of code
(SLOC), excluding documentation comments. Of the
78 methods, 32% (25 methods) are simple getters
or setters. Table 2 summarizes the size comparison
across the model, solver, and state management li-
braries.

The LLM-generated code is 10% more compact
than the manual version (517 vs. 575 SLOC), even
though it includes 31 assert statements—each one
or two lines—derived from invariants and precondi-
tions. This suggests that LLMs reduce verbosity with-
out sacrificing structure, producing a similar number
of classes and methods. Among the three libraries,
the model layer has the most methods (34), reflect-
ing its central role in representing application logic
and data. The state management layer follows with
23 methods, while the solver contains 21, aligning
with their respective responsibilities. Overall, the
generated code matches the structural complexity of
hand-written code while offering modest size reduc-
tions. Automating boilerplate code—such as getters
and setters—may improve productivity. However,
further study is needed to evaluate impacts on read-
ability, maintainability, and performance.

5.2 Code Quality

We now compare LLM-generated and handwritten
code across key aspects such as structure, perfor-
mance, error handling, and usability. The goal is
to highlight the strengths and trade-offs of LLM-
generated code compared to manually written imple-
mentations. The analysis is organized into distinct
categories, emphasizing the impact of each approach
on development efficiency, maintainability, and opti-
mization. A summary of our findings is provided in
Table 3.

LLM-generated code is more verbose, with de-
tailed comments, explicit types, and comprehensive
error messages. Methods include assertions for in-
put validation, enhancing readability and robustness,
making it accessible to beginners. However, this ver-
bosity can reduce maintainability for experienced de-
velopers who prefer concise solutions. Handwritten
code, on the other hand, is concise, minimizing com-
mentary and leveraging Dart’s type inference for ef-
ficiency. It focuses on performance, using techniques
like caching and optimized property access. While it
may present a steeper learning curve due to reduced
documentation, it offers better long-term maintain-
ability through modularity and simplicity.

Both codebases include consistency checks and
validation, but differ in granularity and modularity.
The LLM-generated code provides detailed checks,
such as the isConsistent() method in the Board
class, which verifies constraints for rows, columns,
and blocks. This approach improves traceability but
can lead to verbosity and code bloat. The handwrit-
ten code, in contrast, abstracts validation into private
helper methods, reducing repetition and enhancing
maintainability. While this modular approach simpli-
fies the code, it relies on external validation or correct
inputs, potentially increasing the risk of errors when
validation is insufficient.

The data structures used in the LLM-generated
and handwritten code strike a balance between sim-
plicity and efficiency. The LLM-generated code uses
basic Dart collections like Set and List to store distinct
and ordered values, aligning with OCL constraints.
However, it lacks caching, leading to repeated recom-
putation of attributes like rows and columns, which
impacts performance. In contrast, the handwritten
code uses Iterable and List with caching for derived
attributes, improving data structure flexibility and per-
formance. Lazy initialization is employed, computing
rows and columns once and storing them for future
access, reducing computational overhead. Algorith-
mically, the LLM-generated code uses a simple deter-
ministic solver that is easy to read but less efficient
for complex puzzles. The handwritten code employs
a backtracking algorithm with randomness, making it
more efficient for handling complex puzzles but in-
troducing additional complexity that may increase the
learning curve.

The error-handling strategies in both codebases
vary in terms of robustness and usability. The LLM-
generated code uses defensive programming, relying
heavily on assertions to enforce preconditions and
class invariants. These checks help catch potential is-
sues early in development, though they can lead to
verbosity. However, assertions are stripped in pro-

LLMs as Code Generators for Model-Driven Development

391



Table 3: Qualitative comparison of LLM-generated vs. handwritten code across key software attributes.

Category LLM Code Handwritten Code Observations
Code Style Verbose, with comments, explicit types,

assertions, and direct property modifica-
tions.

Concise, modular, optimized for experi-
enced developers, using helper methods.

LLM code is beginner-friendly and ro-
bust; handwritten code is efficient and
modular.

Validation Uses assertions for preconditions and ex-
plicit validation.

Modular validation with helper methods
and defensive checks.

LLM emphasizes robustness; handwrit-
ten code prioritizes reusability.

Data Structures Uses Set, recomputes rows/columns
without caching, and generates puzzles
deterministically.

Uses Iterable with cached data, a
backtracking solver, and randomized
puzzle generation.

LLM favors built-in collections and de-
terministic behavior; handwritten code is
optimized for adaptability.

Error Handling Defensive programming with assertions
and detailed error messages.

Assumes valid inputs; minimal explicit
error handling.

LLM code is resilient; handwritten code
relies on external validation.

Performance Recomputes data frequently, lacks
caching, and provides fine-grained
methods.

Implements caching, reduces redun-
dancy, and optimizes computations.

LLM code is flexible but less efficient;
handwritten code is optimized for perfor-
mance.

duction builds, reducing runtime overhead. Develop-
ers must ensure meaningful error handling for pro-
duction. In contrast, the handwritten code minimizes
assertions, relying on simpler checks and external val-
idation. This reduces performance overhead but as-
sumes inputs are validated externally, increasing the
risk of errors if invalid data is passed. Without built-
in safeguards, the responsibility for correctness falls
on developers. The LLM-generated code is more ro-
bust and accessible, suitable for beginner-friendly en-
vironments, while the handwritten code prioritizes ef-
ficiency and simplicity for experienced developers.

The LLM-generated code and handwritten code
differ considerably in terms of performance optimiza-
tion and granularity. The LLM-generated code fa-
vors simplicity and flexibility, often recomputing data
rather than using caching. This makes the code easier
to understand but less efficient, especially in scenarios
requiring frequent recalculations. The fine-grained
methods offer extensibility but can lead to perfor-
mance inefficiencies. In contrast, the handwritten
code prioritizes performance with caching and con-
solidated operations, reducing redundant tasks and
computational overhead. While this improves effi-
ciency, it sacrifices flexibility, making the code less
adaptable to frequent changes.

5.3 Lessons Learned

This case study highlights LLMs’ adaptability in
translating formal design specifications into func-
tional Dart/Flutter code. LLMs effectively process
OCL constraints and handle complex logic, show-
casing their potential in model-driven development.
Their ability to balance formality by omitting less
critical components, like getters and setters, reduces
specification overhead and allows developers to fo-
cus on high-level design. LLMs can also interpret
domain-specific notations, enabling tailored designs

and accelerating prototyping, which is beneficial for
rapid experimentation.

While LLMs successfully handled complex con-
straints, including derived attributes and a Sudoku
solver, challenges remain in verification, integration,
and optimization. Subtle errors can emerge during
system testing, emphasizing the need for automated
verification. LLMs prioritize clarity over efficiency,
often lacking caching and optimization unless explic-
itly instructed, and their lack of persistent context
across interactions requires manual updates to main-
tain consistency.

The effectiveness of LLM-generated code relies
on clear, precise prompts, as ambiguity can result in
incorrect implementations or missing constraints. De-
spite these challenges, LLMs significantly enhance
productivity in model-driven development when used
with careful oversight, rigorous verification, and iter-
ative refinement.

The choice between LLM-generated and hand-
written code depends on the goals of projects. LLM-
generated code, with its clarity and beginner-friendly
structure, suits collaborative or educational projects
but could benefit from performance improvements
like caching and disabling assertions in production.
Handwritten code excels in performance-critical ap-
plications due to its modularity and caching, though
adding basic verification could improve robustness
without compromising efficiency. LLMs provide ver-
satility in code generation, enabling customization to
suit specific project requirements. For example, a
straightforward prompt can direct the LLM to gener-
ate a backtracking-based solving algorithm, demon-
strating its flexibility for performance-focused devel-
opment.

ICSOFT 2025 - 20th International Conference on Software Technologies

392



6 CONCLUSION

This study demonstrates the potential of large lan-
guage models (LLMs) as code generators in Model-
Driven Development (MDD), translating UML and
OCL specifications into executable code and enhanc-
ing productivity through rapid prototyping. An em-
pirical comparison with manually written implemen-
tations showed that LLMs can interpret incomplete
or informal designs, handle custom OCL extensions,
and respond effectively to prompt engineering. While
the well-known Sudoku domain may bias results pos-
sibly due to its presence in training data, the study
highlights the LLM’s ability to generate structured,
semantically aligned code from formal models. How-
ever, the ease of producing large volumes of code in
a single prompt may tempt developers to skip manual
checks, reinforcing the need for automated verifica-
tion to ensure correctness and consistency.

Future work will explore novel domains to as-
sess generalization and address integration and per-
formance challenges. Key directions include advanc-
ing verification techniques, refining prompts, and im-
proving context tracking for iterative development.
Though unlikely to replace traditional MDD tools,
LLMs can serve as powerful assistants when coupled
with rigorous verification and validation frameworks.

REFERENCES

Bracha, G. (2016). The Dart Programming Language.
Addison-Wesley.

Carnevali, L., D’Amico, D., Ridi, L., and Vicario, E.
(2009). Automatic code generation from real-time
systems specifications. In IEEE/IFIP International
Symposium on Rapid System Prototyping, pages 102–
105, Paris, France.

Cheon, Y. (2021). Toward more effective use of assertions
for mobile app development. In IEEE International
Conference on Progress in Informatics and Comput-
ing (PIC), pages 319–323, Shanghai, China.

Cheon, Y. and Barua, A. (2018). Model driven develop-
ment for Android apps. In International Conference
on Software Engineering Research & Practice, pages
17–22, Las Vegas, Nevada.

Cheon, Y., Lozano, R., and Senthil-Prabhu, R. (2023). A
library-based approach for writing design assertions.
In IEEE/ACIS International Conference on Software
Engineering Research, Management and Applications
(SERA), pages 22–27, Orlando, FL.

Fan, A., Gokkaya, B., Harman, M., Lyubarskiy, M., abd
S. Yoo, S. S., and Zhang, J. M. (2023). Large language
models for software engineering: Survey and open
problems. In IEEE/ACM International Conference on
Software Engineering, pages 31–53, Melbourne, Aus-
tralia.

Flutter (2025). Build for any screen. https://flutter.dev/.
Accessed: 2025-04-24.

France, R. B., Ghosh, S., Dinh-Trong, T., and Solberg, A.
(2006). Model-driven development using UML 2.0:
promises and pitfalls. IEEE Computer, 39(2):59–66.

Frantz, C. K. and Nowostawski, M. (2016). From in-
stitutions to code: Towards automated generation of
smart contracts. In IEEE 1st International Workshops
on Foundations and Applications of Self-* Systems
(FAS*W), pages 210–215, Augsburg, Germany.

Hou, X., Zhao, Y., Liu, Y., Yang, Z., Wang, K., Li, L., Luo,
X., Lo, D., Grundy, J., and Wang, H. (2024). Large
language models for software engineering: A system-
atic literature review. ACM Transactions on Software
Engineering and Methodology, 33(8):1–79.

Jain, N., Vaidyanath, S., Iyer, A., Natarajan, N.,
Parthasarathy, S., Rajamani, S., and Sharma, R.
(2022). Jigsaw: Large language models meet program
synthesis. In International Conference on Software
Engineering, pages 1219–1231, Pittsburgh, PA.

Jurgelaitis, M. et al. (2021). Smart contract code gener-
ation from platform specific model for Hyperledger
Go. Trends and Applications in Information Systems
and Technologies, 4(9):63–73.

Meservy, T. O. and Fenstermacher, K. D. (2005). Trans-
forming software development: an MDA road map.
IEEE Computer, 38(9):52–58.

Object Management Group (2014). Object Constraint Lan-
guage, version 2.4. http://www.omg.org/spec/OCL/.
Accessed: 2025-04-24.

PlantUML (2025). PlantUML at a Glance.
https://plantuml.com. Accessed: 2025-04-24.

Sebastian, G., Gallud, J., and Tesoriero, R. (2020). Code
generation using model driven architecture: A system-
atic mapping study. Journal of Computer Languages,
56:100935.

Stahl, T. and Volter, M. (2006). Model-Driven Software
Development. Wiley.

Syriani, E., Luhunu, L., and Sahraoui, H. (2018). Sys-
tematic mapping study of template-based code gen-
eration. Computer Languages, Systems & Structures,
52:43–62.

Tsiounis, K. and Kontogiannis, K. (2023). Goal driven code
generation for smart contract assemblies. In Interna-
tional Conference on Software and Computer Appli-
cations, pages 112–121, Kuantan, Malaysia.

Wang, J. et al. (2024). Software testing with large language
models: Survey, landscape, and vision. IEEE Trans-
actions on Software Engineering, 50(4):911–936.

Warmer, J. and Kleppe, A. (2003). The Object Constraint
Language: Getting Your Models Ready for MDA.
Addison-Wesley, 2nd edition.

Xue, J. et al. (2024). Self-planning code generation with
large language models. ACM Transactions on Soft-
ware Engineering and Methodology, 33(7):1–30.

Zheng, Z. et al. (2025). Towards an understanding of large
language models in software engineering tasks. Em-
pirical Software Engineering, 30(2):50.

LLMs as Code Generators for Model-Driven Development

393


