
Enhancing Design-by-Contract with Frame Specifications

Yoonsik Cheon and Benjamin Good
Department of Computer Science, The University of Texas at El Paso, El Paso, Texas, U.S.A.

Keywords: Annotation, Design by Contract, Frame Condition, Runtime Check, Dart.

Abstract: This paper introduces an annotation-based approach to extending Design by Contract (DbC) with support for
specifying and enforcing frame properties at runtime. Frame specifications, also known as frame conditions
or frame properties, define which parts of a program’s state may be modified during execution. Our approach
models object states as abstract tuples, ensuring that runtime checks do not introduce unintended side effects.
We implement a proof-of-concept prototype in Dart, utilizing compile-time instrumentation and runtime re-
flection to accommodate optional typing. By automating contract enforcement, this approach reduces the
need for manual assertions, simplifies code maintenance, and enhances clarity by separating program logic
from runtime checks. We evaluate its effectiveness in a cross-platform mobile application, comparing it to
traditional assertion-based methods.

1 INTRODUCTION

Design by Contract (DbC) is a well-established soft-
ware correctness methodology that emphasizes clear
specifications of obligations and guarantees between
software components (Meyer, 1992; Meyer, 1997;
Mitchell and McKim, 2001; Ozkaya, 2019). By em-
bedding formal contracts, such as preconditions, post-
conditions, and invariants, within the code, DbC en-
sures that software behaves as expected during execu-
tion. The fundamental premise is that the client and
provider of a method must adhere to agreed-upon con-
ditions, thereby fostering robustness and reliability.

However, while DbC effectively specifies what a
method must achieve (via postconditions) and what
constraints must hold before execution (via precon-
ditions), it does not specify what parts of the pro-
gram state may change. This missing aspect, known
as frame conditions, is crucial for reasoning about
program behavior modularly (Borgida et al., 1995).
Frame conditions help ensure that methods do not
inadvertently modify unrelated state, a critical prop-
erty for maintaining system integrity—especially in
complex applications where unintended side effects
can lead to subtle and hard-to-detect errors. Indeed,
unforeseen state changes have been identified as a
root cause of serious software failures in both indus-
trial and safety-critical systems (Amusuo et al., 2022;
Gazzola et al., 2017). This highlights the importance
of making state change constraints explicit and verifi-

able as part of the contract.
This paper introduces an annotation-based ap-

proach to integrating frame specifications into DbC
for runtime verification. Our approach enables de-
velopers to specify, at the method level, which parts
of an object or program state may be modified dur-
ing execution. We model objects as tuples of abstract
state components, allowing for fine-grained control
over permissible modifications without unintended
side effects. By leveraging compile-time instrumen-
tation and runtime reflection, our approach enforces
frame conditions dynamically, improving software re-
liability and maintainability. Additionally, we address
challenges inherent to optionally typed languages, en-
suring that our technique remains flexible and appli-
cable across diverse programming environments.

For this study, we chose Dart (Bracha, 2016) as
our implementation platform due to its increasing
popularity in mobile app development and its unique
language features, such as optional typing. To the
best of our knowledge, no existing DbC framework
provides built-in support for specifying and enforc-
ing frame conditions at runtime. While prior research
has explored static analysis and verification of frame
properties (Hatcliff and Dwyer, 2001; Leino and Nel-
son, 2002; Marche et al., 2004; Kassios, 2006; Leino
and Muller, 2006; Darvas and Leino, 2007; Hahnle
et al., 2007), our work is the first to integrate run-
time support for frame conditions within a DbC-based
runtime checking system. A runtime-based technique

378
Cheon, Y. and Good, B.
Enhancing Design-by-Contract with Frame Specifications.
DOI: 10.5220/0013578400003964
In Proceedings of the 20th International Conference on Software Technologies (ICSOFT 2025), pages 378-385
ISBN: 978-989-758-757-3; ISSN: 2184-2833
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

is especially important for dynamically or optionally
typed languages like Dart, where static analysis alone
may be insufficient or ineffective.

Existing work on DbC in Dart includes Chalin’s
Dart Contracts proposal (Chalin, 2014), which intro-
duces mechanisms for specifying function and class
behavior but lacks provisions for defining or en-
forcing frame properties. Our annotation-based ap-
proach addresses this gap by allowing developers to
explicitly specify frame conditions in Dart and ver-
ify them at runtime. Specifically, besides @Modifies
annotation for declaring frame conditions, our ap-
proach introduces the @State annotation, which pro-
vides an abstract representation of an object’s state to
facilitate frame checks (see Section 4.2). This con-
cept is analogous to model variables in Behavioral
Interface Specification Languages (BISLs) (Cheon
et al., 2005), which define specification-only vari-
ables based on concrete program variables. Further-
more, the parts parameter within the @State annota-
tion functions similarly to data groups (Leino, 1998),
allowing developers to group mutable fields under an
abstract state element for more structured and modu-
lar specification of frame conditions.

The rest of this paper is organized as follows. Sec-
tion 2 reviews Design by Contract. Section 3 outlines
key challenges in specifying frame conditions. Sec-
tion 4 describes our annotation-based approach, in-
cluding state modeling and verification. Section 5 de-
tails the prototype implementation. Section 6 presents
our evaluation. Section 7 concludes with a summary
and future work.

2 DESIGN BY CONTRACT

Design by Contract (DbC) is a programming method-
ology that enhances software robustness by explic-
itly defining formal agreements, or “contracts,” be-
tween system components (Meyer, 1992; Mitchell
and McKim, 2001; Ozkaya and Kloukinas, 2014).
These contracts specify the mutual obligations and
guarantees of components, focusing on preconditions,
postconditions, and class invariants to ensure correct-
ness and maintainability.

At the core of DbC are preconditions and postcon-
ditions, which define the expected conditions before
and after a method’s execution, respectively. Precon-
ditions specify the constraints that must hold before a
method is invoked. If these are satisfied, the method
is guaranteed to fulfill its postconditions. Postcondi-
tions describe the expected state of the system after
execution, ensuring that the method behaves as in-
tended. Consider a simple bank account class with a

method responsible for money withdrawal. The con-
tract for this method can be expressed as follows:

@Requires(’amount > 0 && amount <= balance’)
@Ensures(’balance == balance@pre - amount’)
void withdraw(long amount) {
balance -= amount;

}

In this example, the withdraw() method includes
a precondition, denoted by the @Requires annotation,
which states that the withdrawal amount must be posi-
tive (amount > 0) and must not exceed the current bal-
ance (amount <= balance). The postcondition, indi-
cated by @Ensures, guarantees that the balance is cor-
rectly updated by deducting the withdrawn amount.
The notation balance@pre refers to the account bal-
ance before the method execution, providing a refer-
ence for validation after the method completes. By
explicitly defining these expectations and guarantees,
DbC simplifies debugging, maintenance, and soft-
ware evolution. Enforcing such contracts makes soft-
ware behavior more predictable and reliable, reducing
the risk of errors due to violated assumptions.

DbC also support class invariants—properties that
must always hold in an object’s stable state, typically
before and after any public method execution. In-
variants define integrity constraints such as “the bal-
ance must never be negative” and they apply across
all methods that can affect an object’s state.

While DbC enforces preconditions, postcondi-
tions, and invariants, it does not specify how state may
change during a method’s execution. This is where
frame conditions come into play. Frame conditions
define which parts of the state can change between a
method’s entry and exit, ensuring that methods do not
inadvertently modify unrelated parts of the state. For
example, in a bank account class, an invariant might
ensure the balance is never negative, whereas a frame
condition for the withdraw() method would restrict
changes to the balance field and no other part of the
state. Invariants describe a single state, while frame
conditions relate two states: the pre-state and post-
state. Additionally, not all frame properties can be
captured as invariants, especially when expressing the
absence of side effects, which is crucial for modular
reasoning about code behavior.

3 MOTIVATION AND
CHALLENGES

We aim to enhance DbC by integrating frame speci-
fications, which go beyond traditional preconditions
and postconditions to explicitly define which parts

Enhancing Design-by-Contract with Frame Specifications

379

of a system’s state can change during method exe-
cution. This added expressiveness improves contract
clarity, reduces unintended side effects, and enables
automatic runtime verification. While DbC tradition-
ally ensures that specific conditions are satisfied be-
fore and after execution, it does not specify what must
remain unchanged. Frame conditions fill this gap
by listing all variables that can change—known as
“and nothing else changes” (Borgida et al., 1995)—
indirectly asserting that all other variables remain the
same. By clearly stating which variables or struc-
tures may be modified, frame conditions help prevent
subtle bugs caused by unintended state modifications,
contributing to more robust and maintainable soft-
ware. They also support automated runtime checks to
verify that these constraints are upheld. If a method
violates its frame conditions, violations are detected
immediately, improving debugging and maintainabil-
ity. Overall, frame conditions strengthen DbC by pro-
viding clearer and more enforceable specifications.

Although conceptually simple, implementing run-
time frame checks involves significant challenges.
Capturing an object’s initial state and comparing it
post-execution requires true cloning, which is non-
trivial due to reference semantics. For example, in
the withdraw() method:

void withdraw(long amount) {
var preState = captureState(this);
...
assert(ensureFrame(
preState, captureState(this)));

}

Assigning this to preState only stores a ref-
erence, not a copy. Modifications affect both, so
accurate preservation requires cloning, which many
classes lack. Without built-in support, developers
must implement custom cloning, which is error-prone
and inconsistent.

Dynamic and optional typing in modern languages
like Dart complicates frame checks further. Lacking
explicit type information hinders compile-time gener-
ation of reliable check code. For example, enforcing
immutability of unspecified fields in withdraw() be-
comes difficult without clear type declarations. Frame
conditions also become complex with nested or com-
posite objects. Determining whether to clone just the
top-level object or its entire reference graph impacts
both correctness and performance. For instance, ver-
ifying that only the balance changes while the as-
sociated customer object remains untouched requires
deep cloning and precise specification. This also in-
volves deciding between reference and value equal-
ity. Finally, runtime frame checks can introduce sig-
nificant overhead. Capturing and comparing object

states—especially when dealing with deep or com-
plex structures—may impact performance, particu-
larly in systems that require high throughput. Balanc-
ing the need for rigorous frame enforcement with per-
formance considerations remains a key challenge, al-
though this issue is not addressed in the current study.

4 OUR APPROACH

We introduce custom annotations to specify frame
conditions for methods and translates these condi-
tions into runtime checks. These annotations allow
programmers to declare which elements of a pro-
gram’s state may be modified during method execu-
tion while ensuring that all other elements remain
unchanged. For example, consider the annotated
withdraw() method and its instrumented code:

@Modifies(’balance’)
void withdraw(long amount) {
var preState = state;
state.frame(’this.balance’);
...
assert(preState == state);

}

get state => State({’this’:
{’balance’: balance, ... }});

In this example, the @Modifies annotation spec-
ifies that only the balance field may be modified,
while all other elements of the state must remain un-
changed. The skeletal code generated from the an-
notation shows how the annotation enables a runtime
check. Before the method executes, the current state
is captured and stored in a local variable preState.
A getter method, state, constructs a state model, or
a snapshot of the current state, consisting of name-
value pairs. The frame() method of the State frame-
work class is used to capture information about the
mutability of state elements. After the method ex-
ecution, the stored initial state (preState) is com-
pared with the final state to ensure compliance with
the frame conditions. The overridden equality (==)
operator is used to compare only those state elements
that should not have been changed—i.e., elements not
listed in the @Modifies annotation. We can also in-
troduce class-specific state model classes along with
methods to specify and check frame conditions (see
Section 4.3). One limitation of our approach is that
intermediate state changes cannot be detected. While
this is acceptable in sequential environments, it may
be unsuitable for concurrent settings where interme-
diate changes could be observed.

ICSOFT 2025 - 20th International Conference on Software Technologies

380

4.1 State and Object Models

Frame condition checks compare a program’s state
before and after method execution to verify compli-
ance with specified constraints. The pre-state cap-
tures the program state before execution; the post-
state, after. A frame condition declares which parts
of the pre-state may change—implicitly asserting that
the rest must remain unchanged. In our approach,
the pre-state acts as a pattern against which the post-
state is matched. Mutable parts are explicitly marked,
and runtime checks confirm the post-state conforms to
this pattern. The State class constructs abstract state
snapshots, with its frame() method marking mutable
fields, ensuring side-effect-free runtime check.

A program state includes snapshots of all acces-
sible objects within a method’s scope: the receiver
(this), parameters, and global references. While
the receiver’s state can often be generated at com-
pile time (refer to Section 4.3), dynamic or optional
typing may require constructing states for parame-
ters and globals at runtime. We model a program
state as a mapping from variable names to object
states. For example, in a board game method such as
placeStone(Player player, int x, int y), the rel-
evant program state might include (see Section 6):

{this : this, player : player,x : 10,y : 12}
Objects such as boards or players may have nested

structures. A program state captures top-level objects,
while sub-objects represent nested states. Each object
state maps field names to values or other object states,
forming a hierarchical model. For example, a Game
object with a Board and two Player objects (one of
whom has the turn) appears in Figure 1.

[0: ,1:]

{name: ‘Black’}

{board: , players: , turn: }

{name: ‘White’}

Figure 1: An object with nested structures.

The pre-state model serves two main purposes:
(a) identifying which fields may be modified and (b)
preserving the values of fields that must remain un-
changed. To indicate that a field is mutable, we use a
wildcard object (* to represent any value, which sim-
plifies the post-state comparison.

{board : board, players : players, turn : ∗}
In this example, the pre-state model—augmented

with frame conditions—allows changes to turn, while
requiring board and players to remain unchanged.

4.2 Custom Annotations

We introduce custom annotations to specify frame
conditions. The primary one, @Modifies, declares
which parts of the program state a method may mod-
ify. All other state parts are implicitly required to re-
main unchanged. State parts are referenced using field
notation, with comma-separated entries:

@Modifies(’this.places[x][y]’)
void placeStone(Player player, int x, int y)

As explained, we model objects abstractly as
name-value maps: { f1 : v1, . . . , fn : vn}. Names iden-
tify observable parts of an object’s state. For exam-
ple, this.places[x][y] accesses a specific element
in a nested list. In Dart, object fields can also be ac-
cessed through user-defined getters and query meth-
ods. Our approach supports referencing such methods
in @Modifies, making frame conditions applicable re-
gardless of how the state is accessed.

@Modifies(’this.getPlace(x,y)’)
void placeStone(Player player, int x, int y)

4.2.1 Composite Objects

Objects often have nested structure. We use path
expressions like x.y.z to refer to subcomponents.
To improve expressiveness, we may allow limited
wildcards—e.g., x.p* for all fields of x starting with
p. Future work may explore the benefits of such pat-
terns.

4.2.2 Collections

Collections—arrays, lists, sets, maps—are accessed
using index notation (e.g., a[10]), which maps to get-
ter/setter methods. Dart uses lists for arrays, mak-
ing both interchangeable. To reference collection el-
ements in frame conditions, we allow: (a) specific el-
ements: a[1, 10, size], (b) ranges: a[1..10], and
(c) all elements: a[*]. This syntax can be extended
to cover insertions and deletions, capturing dynamic
updates.

4.2.3 State Annotations

At runtime, a frame condition ensures that all framed
state parts remain unchanged:

∀x• x ∈ Statepre ∧ x ∈ Framed ⇒ xpost ≡ xpre

In practice, the relevant objects are those acces-
sible in the pre-state, such as this and parameters.
Deep references via nested calls are harder to track

Enhancing Design-by-Contract with Frame Specifications

381

and often irrelevant. To manage this, we provide
annotations to include or exclude specific state ele-
ments: (a) explicit state such as public fields are in-
cluded by default and (b) implicit state such as getters
and observer methods must be explicitly annotated.
Supported annotations include: (a) @State.includes
and @State.excludes to control what counts as state
and (b) @State(’name’, ’expression’) to define cus-
tom state elements. For example, if player stats are
fetched externally:

@State(’stat’, ’getStat(player)’)
@Modifies(’getPlace(x,y), stat.moves’)
void placeStone(Player player, int x, int y)

Annotations can also define abstract state prop-
erties that encapsulate multiple fields into a single
logical unit. For example, a player’s full name—
composed of first, middle, and last name fields—can
be treated as one abstract state called name. This
abstraction simplifies frame conditions by allowing
related fields to be referenced collectively—for in-
stance, referring to name instead of listing each indi-
vidual component.

@State(’name’, ’"$_first $_middle $_last"’,
parts: ’_first, _middle, _last’)

@Modifies(’name’)
void changeName(...)

4.3 Translation to Runtime Checks

We translate frame conditions into runtime checks
through a combination of compile-time instrumen-
tation and runtime reflection. This hybrid approach
accommodates Dart’s optional typing system, where
types may be implicit or only known at runtime. At
compile time, methods annotated with frame condi-
tions are identified, and instrumented code is inserted
to enforce checks. These checks capture the method’s
initial state and verify it afterward against the spec-
ified frame constraints. When static type informa-
tion is available (e.g., for the receiver this), it guides
the generation of efficient code to access the object’s
state. Otherwise, the code relies on reflection to infer
and access the structure dynamically.

Instrumentation performs four key steps: (a) iden-
tify accessible objects by determining which objects
the method can access (receiver, parameters, rele-
vant globals), using scope analysis and annotations,
(b) capture pre-state by recording the initial state of
all identified objects, (c) apply frame constraints by
marking which parts of the state are allowed to change

based on the annotation, and (d) verify post-state by
comparing the final state with the initial state to en-
sure only allowed changes occurred.

Consider a method annotated with a frame condi-
tion:

@Modifies(’board.getPlace(x,y),
currentPlayer’)

void placeStone(int x, int y)

This method modifies only a specific board posi-
tion and the current player. The instrumented code
might look like:

void placeStone(int x, int y) {
// capture the pre-state.
State preState = State({’this’:
{’board’: board, ’players’: players}});

assert(preState.capture({’x’:x, ’y’:y})));

// augment with frame condition.
assert(preState.frame(
’this.board.getPlace(x,y),’
’this.currentPlayer’));

// execute original code

// verify the post-state.
assert(preState == State(...)
..capture({’x’: x, ’y’: y}));

}

The code begins by capturing the pre-state using
a State object, which stores the initial values of rel-
evant objects. A call to preState.capture() extends
this snapshot to include parameters x and y, although
this is technically unnecessary for value types like
int in Dart. This capture occurs within an assert
statement to avoid runtime overhead in production.
Frame conditions are then applied to identify mutable
elements—in this case, this.board.getPlace(x, y)
and this.currentPlayer—which are marked using
wildcard objects. These wildcards, handled by the
frame() method, signal permissible changes (see Sec-
tion 5). After executing the method body, the instru-
mented code captures the post-state and asserts that
only allowed modifications occurred, using the over-
riden == operation.

4.3.1 Object Comparison and Equality

To detect changes in object states, we compare pre-
and post-state values using a customizable equality
mechanism. Dart supports both reference equality
(identical()) and value equality (==), and our sys-
tem allows developers to choose the method for each
field or object via annotations:

ICSOFT 2025 - 20th International Conference on Software Technologies

382

@State(’currentPlayer’, ’_currentPlayer’,
equality=identity)

final Player _currentPlayer;

The equality parameter accepts built-in compar-
isons (==, identical()) or custom functions. Devel-
opers can also specify defaults at the class or appli-
cation level. The equality choice affects how object
states are captured: (a) reference equality stores only
object identities, (b) value equality requires shallow
or deep copies, and (c) custom equality may need tai-
lored cloning, which can also be annotated. Snap-
shots for comparison may be captured eagerly (dur-
ing pre-state initialization) or lazily (when applying
frame constraints), optimizing storage. Choosing a
default comparison is also important. Although many
developers expect value equality, reference equality is
faster and avoids object copying. Since Dart treats all
values as objects, capturing everything as value state
would be costly. We thus default to reference equality,
allowing overrides as needed.

5 IMPLEMENTATION

We developed a proof-of-concept prototype for frame
annotations in Dart, targeting cross-platform mobile
apps. Dart was chosen for its platform reach and lan-
guage features like optional typing, which pose both
challenges and opportunities for design-by-contract
(DbC) and frame conditions. The prototype currently
supports basic annotations such as @Modifies and
@State. Our implementation leverages several public
Dart packages: (a) source_gen for automating code
generation from frame annotations via custom gener-
ators, (b) build for orchestrating generator execution
during compilation, and (c) analyzer for performing
static code analysis.

A key challenge was Dart’s optional typing. We
addressed this with a hybrid approach that combines
compile-time instrumentation and runtime reflection.
When type information is available, the tool infers ob-
ject structures and generates optimized code. Other-
wise, it falls back on runtime inspection. For example,
given known type information, the tool generates:

State preState = State({’this’:
{’board’: board, ...}});

The structure of this is inferred at compile time.
Its fields (e.g., board) are included as name-value
pairs. If deeper abstraction is needed at runtime, re-
flection can construct nested state models.

To enforce frame conditions, we compare the final
program state against the initial snapshot (preState).

To facilitate this comparison, fields marked mutable
in the initial state are replaced with wildcards using
the frame() method of the State class, which ap-
plies transformations via reflection. For example, for
the @Modifies(’this.board.getPlace(x,y)’) clause,
the following code is generated:

preState.frame(’this.board.getPlace(x,y)’);

This method traverses the preState state, locating
the specified path and replacing it with a wildcard. If
intermediate objects like board are not already mod-
eled as states, they are dynamically converted:

’board’: State({’getPlace(x,y)’: *, ...})

This ensures only declared changes are allowed,
and any undeclared mutations can be detected. If a
composite object isn’t pre-modeled, its state is built at
runtime to preserve consistency and isolation of side
effects. At the core is the State class, which captures
and compares program states. It supports composite
structures, applies wildcard logic for mutable fields,
and verifies frame compliance.

For production, all instrumented code is encapsu-
lated within assert statements. Dart removes these in
release mode (--release), ensuring no runtime over-
head. Tree-shaking further eliminates unused code,
resulting in efficient builds.

Figure 2: Screenshot of Omok game.

6 PRELIMINARY EVALUATION

To evaluate the effectiveness of our annotation-based
approach, we conducted a small case study using a
Dart/Flutter implementation of Omok (also known
as Gomoku), a two-player strategy game played on
a 15 × 15 grid (see Figure 2). Players take turns
placing stones in an attempt to form an unbroken
line of five—vertically, horizontally, or diagonally.
We compared our approach to a previously proposed
assertion-based method (Cheon et al., 2024), in which
frame specifications are manually encoded as exe-
cutable assertions within the source code to enable
runtime checks.

Enhancing Design-by-Contract with Frame Specifications

383

The game logic was encapsulated in three main
classes—Board, Player, and Game—totaling 256
source lines of code (SLOC). These classes defined
21 methods. To compare the annotation and asser-
tion approaches, we specified frame properties for all
methods, even though full coverage is uncommon in
practice. Manually adding frame assertions increased
code size by 59% to 408 SLOC, while the annotation-
based version required only 284 SLOC—an 11% in-
crease (see Table 1).

Table 1: Size complexities.

SLOC Increase (%)

Base code 256 N/A
Assertion 408 59
Annotation 284 11

These results show that annotations significantly
reduce the overhead of specifying frame properties,
making the code more concise and maintainable. The
declarative style eliminates much of the boilerplate re-
quired by manual assertions.

Below is an excerpt of the Game class using our
annotation-based approach to specify which parts of
the state may be modified:

class Game {
@State(’board’)
final Board _board; // other fields ...

@Modifies(’this.* except players’)
void newGame() { ... }

@modifiesNothing
Player get currentPlayer => _currentPlayer;

@Modifies(’currentPlayer’)
Player changePlayerTurn() { ... }

@Modifies(’players[1]’)
set opponentPlayer(Player opponent) { ... }

@Modifies(’board.places[x][y],
board.winRow, currentPlayer’)

Outcome makeMove(int x, int y) { ... }

// other methods ...
}

In this example, the newGame() method modifies
all fields except players. The @modifiesNothing
shorthand is used for the read-only currentPlayer
getter. Given that a majority of methods (57% in
our prior study (Cheon et al., 2024)) are observers,
this annotation simplifies specifications while im-
proving clarity. Methods like changePlayerTurn()
and opponentPlayer() illustrate how annotations

can precisely limit modifications to specific fields,
including individual elements (e.g., players[1]).
The makeMove() method demonstrates fine-grained
specification by allowing updates to only relevant
board state components—places[x][y], winRow—
and currentPlayer. Composite objects such as
board are treated abstractly, referencing only select
internal state elements rather than the entire object.

Although our preliminary evaluation focused only
on code size, the results demonstrate that annotations
offer a practical and scalable approach for specifying
and enforcing frame properties in Dart. By reducing
source lines of code and decoupling frame specifica-
tions from method bodies, annotations improve code
maintainability. This is particularly advantageous in
optionally typed languages like Dart, where annota-
tions provide a flexible mechanism for modeling state
and mutability. When embedded directly in the code-
base, frame annotations promote systematic manage-
ment of state changes, thereby enhancing code clarity
and minimizing unintended side effects.

Despite these benefits, several open challenges re-
main. One issue involves modeling state using get-
ters, which is often necessary when dealing with en-
capsulated internal state—especially in third-party li-
braries or cloud-backed objects. However, using mul-
tiple getters to represent related aspects of state can
lead to redundancy or ambiguity. A promising direc-
tion is to group related getters into unified state ab-
stractions, simplifying frame conditions and improv-
ing readability. Another challenge lies in handling
call-by-value semantics. In Dart, primitive types like
int are passed by value, and any modifications within
a method are local. However, reference types still al-
low mutation of the underlying object, which can re-
sult in visible side effects outside the method scope.
Frame specifications must therefore distinguish be-
tween changes to parameter references and mutations
to the objects they reference. Additional complex-
ity stems from the distinction between reference and
value models. Frame conditions must clarify whether
a reference itself (e.g., a field like board) may be
reassigned, or whether only its internal state (e.g.,
places and winRow) may be modified. This distinc-
tion is crucial for accurately expressing permissible
state changes and maintaining consistent behavior.

Inheritance further complicates the specification
of frame properties. It raises design questions such
as whether subclasses should only extend the abstract
state defined by their superclasses or be allowed to
modify inherited state components. Similarly, when
overriding methods, should subclasses be required to
specify frame conditions that are at least as restric-
tive as those in the superclass? Balancing extensibil-

ICSOFT 2025 - 20th International Conference on Software Technologies

384

ity with contract integrity is essential for safe and pre-
dictable object-oriented design.

7 CONCLUSION

We presented an annotation-based approach for in-
tegrating frame properties into Design by Contract
(DbC) in Dart, with a focus on runtime verification. A
key contribution of our approach is the use of an ab-
stract representation of object states, modeled as tu-
ples, to ensure that runtime checks do not introduce
unintended side effects. This abstraction maintains
a clean separation between program logic and state
management. Additionally, our method supports both
statically and dynamically typed languages, enabling
optional typing through a hybrid of compile-time and
runtime mechanisms. By adding frame conditions in
annotations, our approach can reduce code complex-
ity, enhance maintainability, and simplifyes the veri-
fication process.

As part of future work, we plan to evaluate our
technique on larger and more complex codebases to
better assess its effectiveness, scalability, and broader
impact on verification and validation, beyond just re-
ducing code size. We also intend to explore how well
the approach extends to key object-oriented features
such as inheritance, method overriding, and polymor-
phism to ensure its robustness in diverse design con-
texts. Finally, we aim to refine our prototype into a
practical and user-friendly tool to support developers
in writing safer, more maintainable code.

REFERENCES

Amusuo, P. C., Sharma, A., Rao, S. R., Vincent, A., and
Davis, J. C. (2022). Reflections on software failure
analysis. In ACM Joint European Software Engineer-
ing Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE), pages 1615–
1620, Singapore.

Borgida, A., Mylopoulos, J., and Reiter, R. (1995). On
the frame problem in procedure specifications. IEEE
Transactions on Software Engineering, 21(10):785–
798.

Bracha, G. (2016). The Dart Programming Language.
Addison-Wesley.

Chalin, P. (2014). Ensuring that your Dart will hit the
mark: An introduction to Dart contracts. In Interna-
tional Conference on Information Reuse and Integra-
tion, pages 369–377, San Francisco, CA.

Cheon, Y., Leavens, G. T., Sitaraman, M., and Edwards, S.
(2005). Model variables: Cleanly supporting abstrac-
tion in design by contract. Software: Practice and
Experience, 35(6):583–599.

Cheon, Y., Liu, B., and Rubio-Medrano, C. (2024). As-
serting frame properties. In International Conference
on Software Technologies (ICSOFT 2024), pages 145–
152, Dijon, France.

Darvas, A. and Leino, K. R. M. (2007). Practical reasoning
about invocations and implementations of pure meth-
ods. In International Conference on Fundamental Ap-
proaches to Software Engineering, pages 336–351.

Gazzola, L., Mariani, L., Pastore, F., and Pezze, M. (2017).
An exploratory study of field failures. In IEEE In-
ternational Symposium on Software Reliability Engi-
neering (ISSRE), pages 67–77.

Hahnle, R., Schmitt, P. H., and Beckert, B. (2007). Verifica-
tion of Object-oriented Software: The Key Approach.
Springer.

Hatcliff, J. and Dwyer, M. (2001). Using the Bandera tool
set to model-check properties of concurrent java soft-
ware. In CONCUR 2001–Concurrency Theory: In-
ternational Conference, pages 39–58, Aalborg, Den-
mark.

Kassios, I. T. (2006). Dynamic frames: Support for fram-
ing, dependencies and sharing without restrictions. In
FM 2006: Formal Methods: 14th International Sym-
posium on Formal Methods, pages 268–283, Hamil-
ton, Canada.

Leino, K. R. M. (1998). Data groups: Specifying the modi-
fication of extended state. In ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Lan-
guages, and Applications, pages 144–153.

Leino, K. R. M. and Muller, P. (2006). A verification
methodology for model fields. In Programming Lan-
guages and Systems: 15th European Symposium on
Programming, pages 115–130, Vienna, Austria.

Leino, K. R. M. and Nelson, G. (2002). Data abstraction and
information hiding. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 24(5):491–
553.

Marche, C., Paulin-Mohring, C., and Urbain, X. (2004).
The Krakatoa tool for certification of Java/JavaCard
programs annotated in JML. Journal of Logic and Al-
gebraic Programming, 58(1-2):89–106.

Meyer, B. (1992). Applying ’design by contract’. IEEE
Computer, 25(10):40–51.

Meyer, B. (1997). Object-Oriented Software Construction.
Prentice Hall, Upper Saddle River, NJ, 2nd edition.

Mitchell, R. and McKim, J. (2001). Design by Contract, by
Example. Addison-Wesley, Boston, MA.

Ozkaya, M. (2019). Teaching design-by-contract for the
modeling and implementation of software systems.
In International Conference on Software Technologies
(ICSOFT), pages 499–507.

Ozkaya, M. and Kloukinas, C. (2014). Design-by-contract
for reusable components and realizable architectures.
In ACM SIGSOFT Symposium on Component-Based
Software Engineering (CBSE ’14), pages 129–138.

Enhancing Design-by-Contract with Frame Specifications

385

