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Abstract: This paper addresses the mode switching problem in piecewise smooth implicit multilinear initial value prob-
lems (IVPs), which are relevant for modeling hybrid dynamical systems like HVAC and power systems. Unlike
traditional switched systems with explicit mode descriptions, this work focuses on systems where mode in-
formation is implicitly encoded in binary-valued variables and switching conditions are defined by inequality
constraints. The paper investigates the transversal motion discontinuities that occur when the system meets the
boundary surfaces defined by these constraints. A method is presented to determine the discontinuous motion
by analyzing the total derivative of the inequality constraints. The modeling framework utilizes hybrid implicit
multilinear time-invariant (iMTI) functions and describes the system using inequality-constrained index-1
differential-algebraic equations (DAEs). The Jacobian matrices and thus the total derivatives can be estimated
algebraically, due to the use of multilinear functions. To handle the combinatorial complexity associated with
the binary variables during mode switching, the paper proposes using sparsity pattern analysis to identify and
solve sub-problems more efficiently. The presented method is applied to a two-point temperature-controlled
three-tank system, and simulations are performed using the MTI-Toolbox for MathWorks MATLAB.

1 INTRODUCTION

In recent researches implicit multilinear time invari-
ant (iMTI) models are of special interest since they
can describe fundamental dynamic relations in HVAC
and power systems, (Samaniego et al., 2024), (En-
gels et al., 2024), (Kaufmann et al., 2023), (Luxa
et al., 2022), (Pangalos et al., 2014). The multilinear
model class is a hyperclass of linear and binary mod-
els, while being a subclass of polynomial and general
nonlinear models, illustrated in figure 1 (Lichtenberg
et al., 2022).

The mode switching problem in piecewise smooth
implicit multilinear initial value problems (IVPs) is
important to simulate hybrid iMTI models reliably,
which gained attention due to the ability to model sat-
uration, switches and logical functions (Warnecke and
Lichtenberg, 2024a), (Lichtenberg et al., 2022). The
mode switching can be understood as the transver-
sal motion between the boundary surfaces of hy-
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brid/switched iMTI models.
Usual switched systems have an explicit descrip-

tion of modes, switching conditions and transition
functions. They introduce multiple sets of equations
and constraints (Benzaouia, 2012) alongside multiple
sets of switching conditions either by equations, in-
equalities (Calvo et al., 2016) or subsets S ⊂ Rn of
the signal space Rn (Dieci and Lopez, 2011), as well
as transitions functions in between modes (Mehrmann
and Wunderlich, 2009).

Here a type of continuous-time hybrid iMTI mod-
els is of interest, described by implicit multilinear
DAEs, which only implicitly encode their mode in-
formation in binary-valued variables, while switching
conditions and transition functions are encoded in ad-
ditional inequality constraints. They include contin-
uous states x ∈ Rn, input signals u ∈ Rm, as well
as continuous- and binary-valued algebraic variables
y ∈ Rp and z ∈ Bq, with B= {true, false}.

The hybrid iMTI model framework shares struc-
tural similarities to the hybrid DAE model formula-
tion described in Appendix B of the Modelica Lan-
guage Specification (Fritzson and Engelson, 1998).
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Figure 1: Illustration of system classes.

Both approaches represent fully implicit formulations
of hybrid systems, lacking an explicit partitioning of
system dynamics for individual modes. However,
they differ in two key aspects: the iMTI framework
imposes a restriction to multilinear functions, and it
employs implicit inequality constraints in place of the
discrete equations used in Modelica.

Hybrid iMTI models offer two principal advan-
tages: First, they can reduce storage requirements
compared to general nonlinear switched systems.
This is due to the fact that the parameters and the
structure of both the equations and the inequality
constraints can be compactly represented through the
structure and parameter matrices S and φ, respec-
tively—eliminating the need for additional semantic
information, similar to the use of system matrices A,
B, C, and D in linear state-space models. Second,
unlike general nonlinear DAE formulations (such as
those described in the Modelica Language Specifica-
tion), the constrained class of iMTI models allows for
algebraic derivation of Jacobian matrices with the di-
rect use of the structure and parameter matrices. This,
in turn, enables direct computation of total derivatives
of the model functions, as detailed in Chapter 2.1.

The publications solely focuses on the transver-
sal motion discontinuities of such IVPs and is limited
to index-1 DAEs without structural changes, e.g. a
change in the number of variables or variable-index
systems. Also sliding motions and their Filippov so-
lutions are not considered so far.

In (Calvo et al., 2016) an algorithm to determine
the discontinuous motion and solving the IVP for ex-
plicit piecewise smooth (switched) ODEs based of the
total derivative of the mode constraints is described.
Here, this idea is used to determine the implicitly de-
scribed discontinuity and solving the transversal mo-
tion problem of the piecewise smooth implicit multi-
linear IVPs. The method is described in chapter 3.

A block lower triangular (BLT) partitioning of the
incidence matrix is used to reduce complexity of the

mode switching problem, similar as in other tools, e.g.
Modelica (Sanz et al., 2014). The BLT partitioning
approach is described in chapter 4.

2 MODELLING FRAMEWORK

2.1 Hybrid Implicit Multilinear Models

The signal space

v(t) =


ẋ(t)
x(t)
u(t)
y(t)
z(t)

 ∈ Rn ×Rn ×Rm ×Rp ×Bq (1)

of a hybrid implicit multilinear state-space model
consists of a continuous-valued state vector
x(t) ∈ Rn, a continuous-valued input vector
u(t) ∈ Rm, a continuous-valued algebraic signal
vector y(t) ∈ Rp and a binary-valued algebraic
signal vector z(t) ∈ Bq at continuous time t ∈ R.

Definition 2.1 (multilinear function). A multilinear
function is a function fc : Rn → R which is linear in
each individual variable separately, i.e. if all except
one arbitrary variable is held constant, it is a linear
function of this variable (Lang, 2002).

Definition 2.2 (hybrid multilinear function). A hybrid
multilinear function is a function f : Hn → R from a
hybrid space to a real number which gives the same
result as the corresponding multilinear function fc :
Rn →R if the binary variables are converted with the
standard injector

ṽl =


1 ∈ R if vl = true ∈ B
0 ∈ R if vl = f alse ∈ B
vl if vl ∈ R.

(2)
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Definition 2.3 (hybrid multilinear vector function).
A hybrid multilinear vector function is a function
f : Hn → Rq which maps a hybrid space to a real
vector space where each element is given by a hybrid
multilinear function.

A continuous time hybrid implicit multilinear
time-invariant (hybrid iMTI) model is characterized
by a set of equations and inequality constraints that
represent an implicit system of inequality constrained
differential algebraic equations (DAEs)

f(v(t)) = 0, (3)
g(v(t))≤ 0, (4)

where f : Rn
x ×Rn

x ×Rm
y ×Rp

u ×Bq
z → Rn+p and

g : Rn
x ×Rn

x ×Rm
y ×Rp

u ×Bq
z → Rq are hybrid multi-

linear vector functions.
Definition 2.4 (Discontinuity surface of a hybrid
iMTI system). For the continuous-time hybrid dy-
namical system described by the equations (3) and
inequality constraints (4), the zeros of the element of
g(v(t)) span the discontinuity surfaces S. When a dis-
continuity surface Si is met at the event time ts, mean-
ing the function value of gi(v(t = ts)) = 0 is equal to
zero, the system can exhibit a discontinuous motion
and change its operation mode.

Definition 2.5 (Operation mode of a hybrid iMTI sys-
tem). Different from classical switched system ap-
proaches the operation mode of the system is not
explicitly stated nor governed by individual sets of
equations and constraints. Instead, the operation
mode is implicitly described by the combination of
the binary-algebraic variables z. The Domain of each
mode is constrained by the inequality constraints (4).
Moreover, not all combinations of z must be accessi-
ble and therefore the number nmode of possible opera-
tion modes is less or equal to the number of possible
combinations of z ∈ Bq:

nmode ≤ 2q. (5)

The multilinear functions of a hybrid iMTI model
can be written in a normalized canonical polyadic de-
composition (Jöres et al., 2022):

f j(v(t)) =
R

∑
k=1

ΦFjk

2n+m+p+q

∏
i=1

(1− | Sik |+Sikvi(t)) ,

(6)

g j(v(t)) =
R

∑
k=1

ΦG jk

2n+m+p+q

∏
i=1

(1− | Sik |+Sikvi(t)) ,

(7)

where all model information is stored in the structure
matrix S ∈ R(2n+m+p+q)×R and parameter matrices
Φ f ∈ R(n+p)×R and Φg ∈ Rq×R.

Definition 2.6 (Jacobian matrix of a hybrid multilin-
ear vector function). The Jacobian matrix Jf(v(t))
is a matrix arrangement of the first derivatives of
a vector function f(v(t)) ∈ R(n+p) with the vari-
ables v(t) ∈ Hn, where an element J fab(v(t)) rep-
resents the first derivative ∂ fa(v(t))

∂vb
of the element fa

with respect to the variable vb. The Jacobian ma-
trix Jf ∈ R(n+p)×(2n+m+p+q) of the hybrid multilinear
vector function f can be directly computed using the
normalized CP decomposed representation, as shown
in (Kaufmann et al., 2023). Each element

J fab(v(t)) =
R

∑
k=1

ΦakSbk ∏
i ∈ N

(1− | Sik |+Sikvi(t))

(8)

can be computed at time t with the signal vector
v(t), the structure matrix S and the parameter matrix
Φ f ∈ R(n+p)×R, where N = {1...(2n+m+ p+q)}\b
is the set of indices of the variables excluding the in-
dex b of the variable vb(t). Similar for g(v(t)) ∈ Rq.

Definition 2.7 (Total derivative of a hybrid multilin-
ear vector function). The total derivative

Df(v(t)) = Jf(v(t))
dṽ(t)

dt
∈ Rn+p (9)

of a hybrid multilinear vector function
f(v(t)) ∈ R(n+p) with v(t) ∈ H(2n+m+p+q) at
time t can be computed from its Jacobian matrix
Jf ∈ R(n+p)×(2n+m+p+q) at time t and the time-
derivative dṽ(t)

dt ∈ H(2n+m+p+q) of the signal vector
v(t) (using the standard injector). The total deriva-
tive describes the evolution of the function values
over time.

Remark 2.1. The time derivative of the binary vari-
ables is assumed to be zero, since a switch in its value
can be understood as switching the systems equations.
So they are treated as constant parameters of the dif-
ferent functions. Or differently one could state, that
the time derivatives of z directly before and after the
switch is zero.

2.2 Example: 2-Point
Temperature-Controlled Three
Tank System

The system is illustrated in figure 2. It consists of 3
water tanks sharing one inlet flow of temperature u2.
The water tanks transfer heat between each other, as
well as losing heat to the environment with the am-
bient temperature u1. If multiple valves (z1, z3 and
z5) are opened at the same time the inlet flow will be
shared uniformly between those. The three 2-Point
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controllers are designed to maintain the temperatures
of the tanks (x1, x2 and x3) between lower (u3, u5 and
u7) and upper bounds (u4, u6 and u8).

Figure 2: Schematic of the hybrid temperature-controlled
three tank system.

The system can be modelled by the following set
of implicit inequality-constrained multilinear DAEs:

(cmẋ1 + γx1 −α1(x2 + x3)−α2u1)y1 + c fv(x1 −u2)z1 = 0,
(10)

(cmẋ2 + γx2 −α1(x1 + x3)−α2u1)y1 + c fv(x2 −u2)z3 = 0,
(11)

(cmẋ3 + γx3 −α1(x1 + x2)−α2u1)y1 + c fv(x3 −u2)z5 = 0,
(12)

y1 − z1z3 − z1z5 − z3z5 + z1z3z5 −1 = 0, (13)
(u3 − x1)(1− z1 + z2)≤ 0, (14)
(u5 − x2)(1− z3 + z4)≤ 0, (15)
(u7 − x3)(1− z5 + z6)≤ 0, (16)
(x1 −u4)(1− z2 + z1)≤ 0, (17)
(x2 −u6)(1− z4 + z3)≤ 0, (18)
(x3 −u8)(1− z6 + z5)≤ 0, (19)

where γ = (α1 + 2α2), and the parameters are
the heat capacity c = 4200kJ/kgK and mass m =
5kg of water in each tank, the ambient heat
transfer α1 = k0A0 = 125W/K and heat transfer
α2 = kinAin = 125W/K in between the tanks, and
valve coefficient fv = 0.09kg/s. The model is
feasible for

[
u4(t) u6(t) u8(t)

]⊺ ≤ x(t) and
x(t) ≤

[
u4(t) u6(t) u8(t)

]⊺.

3 METHOD

When one or more discontinuity surfaces S are met,
meaning the function values of one or more inequality
constraints gs(v(t = ts)) = 0 are equal to zero, where
ts is the event time and gs are the according elements
of the vector function g, one needs to determine how
the system will behave.

Usually a hybrid implicit multilinear system is ca-
pable of different motions:

• staying in the previous mode, so the elements of
gs will continuously go back to negative values
and the binary algebraic variables won’t change

• sliding along a boundary, where some elements of
gs will stay at zero (Filippov solutions, (Piiroinen
and Kuznetsov, 2008))

• change its mode (transversal motion), where the
binary variables will change, so that either the
function values gs discontinuously switch to neg-
ative values or continuously go back to negative
values after the switch

• a combination of transition and sliding.

When a boundary is met, which can be nu-
merically detected by event detection algorithms
implemented in ODE solvers, one needs to solve the
inequality constrained system of DAEs at the event
time ts, with testing possible combinations of z until
a solution for the discontinuous motion problem of
the dynamical system is found.

Solution of the Inequality Constrained System of
Equations at the Event Time ts.
The unknown state derivatives ẋ(t = ts) and
continuous-valued algebraic variables y(t = ts) can be
computed by solving the inequality constrained sys-
tem of equations (3) at the event time ts for differ-
ent combinations of z, where the solution must sat-
isfy (4). A solution can be efficiently obtained by
the method described in (Warnecke and Lichtenberg,
2024b) where the problem is decomposed in sub-
problems and explicit solutions.

It is important to mention, that the solution to
the inequality constrained system of equations at the
event time ts must not be a solution for the dynamical
problem of the inequality constraint system of DAEs.
Usually at the time ts there is more than one solution
to the inequality constrained system of equations,
since the current system state is already one of them.

Solution of the Discontinuous Motion Problem.
Similar to the solutions of the inequality constrained
system of equations, the solutions for the dynami-
cal problem of the inequality constrained system of
DAEs must satisfy (3) and (4). If all elements of the
vector function

g(v(t = ts))< 0 (20)

are negative the solution is also a solution for the
dynamical system, and it will undergo a transver-
sal motion, where the according variables z repre-
sent the future mode of the system. If some values
of g(v(t = ts)) are equal to zero:

gl(v(t = ts)) = 0 (21)

SIMULTECH 2025 - 15th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

352



with l as the indices for the according elements of
g(v(t = ts)), the according elements Dgl(v(t = ts)) of
the total derivative Dg(v(t = ts)) of g(v(t = ts)) must
be equal to or smaller than zero:

Dgl(v(t = ts))≤ 0, (22)
so that the solution is also a solution for the dynami-
cal system. If Dgl(v(t = ts)) = 0 the system will slide
along the boundary. If the combination of the future
and current binary variables z are not similar the sys-
tem undergoes a transversal motion.
Remark 3.1. If for all possible combinations of z the
function values g(v(t = ts)) ≤ 0 are smaller or equal
to zero and the total derivatives Dgl(v(t = ts)) > 0
of boundaries gl(v(t = ts)) = 0 is bigger than zero,
the behavior can be described as zeno behavior, since
even when the mode changes, the system will immedi-
ately be pushed towards the boundary.

To compute Dg(v(t = ts)) the missing time-
derivatives dẋ

dt and dy
dt of the signal vector v(t) can be

computed with the total derivative Df(v(t)) of the vec-
tor function f(v(t)) of the equations (3), with the as-
sumption that the time-derivative of the binary-valued
algebraic signals is equal to zero right after the switch.
Since the value of the vector function is constant and
equal to zero at every time t, the total derivative

Df(v(t)) = Jf(v(t))
d
dt


ẋ(t)
x(t)
u(t)
y(t)
z(t)

= Jf(v(t))


ẍ(t)
ẋ(t)
u̇(t)
ẏ(t)

0

= 0

(23)
is also equal to zero at every time t as well.

(23) can be rearranged for calculating ẍ(t) and
ẏ(t) as the solution of the linear system of equations

Jfẋ,y(v(t))
[

ẍ(t)
ẏ(t)

]
=−Jfx,u(v(t))

[
ẋ(t)
u̇(t)

]
, (24)

if Jfẋ,y(v(t)) is invertible, where Jfx,u(v(t)) repre-
sents the columns of the Jacobian matrix according
to the states x(t) and inputs u(t) and Jfẋ,y(v(t)) rep-
resents the columns of the Jacobian matrix according
to the state derivatives ẋ(t) and continuous-valued al-
gebraic signals y(t) at time t. The derivatives u̇(t)
can be computed from the given input signal u(t), e.g.
when using linear interpolation for a given set of input
points as the slopes of the linear piece-wise function.

With ẍ(t), ẋ(t), ẏ(t) and u̇(t) the total derivative

Dg(v(t)) = Jg(v(t))


ẍ(t)
ẋ(t)
u̇(t)
ẏ(t)

0

 (25)

of the inequality constraints g(v(t)) can be computed.

Remark 3.2. If one is only interested in one solution,
and it can be any of the possible solution, it would be
easy to iterate through all possible combinations until
an appropriate solution is found.

Remark 3.3. Numerical precision can be crucial for
solving the discontinuous motion problem, because
the possible solutions differ drastically around the
function values of zero and slight inaccuracy can
change the result, especially regarding the inequality
constraints and binary variables. To solve such nu-
merical issues normalization techniques for the func-
tion values could be used, e.g. by normalizing both,
the signal and parameter space. Also, one could think
about unilateral tolerances of the numerical proce-
dure.

Still the problem remains of high combinatorial
complexity with 2q possible combinations of z. For
most systems it would be reasonable to first try the
solutions with the smallest hamming distance. Also,
in most IVPs the problem can be reduced by sparsity
pattern analysis, as described in the following chapter.

4 PROBLEM REDUCTION BY
SPARSITY PATTERN ANALYSIS

The sparsity pattern of a system of equations and
constraints can be represented by the incidence
matrix P of the IVP. By exploiting sparsity, e.g. by
reordering of the sparsity pattern, one can reduce the
complexity of the discontinuous motion problem. A
sparsity pattern P of a (hybrid) iMTI model can be
calculated as described in (Warnecke and Lichten-
berg, 2024b). By ordering the sparsity pattern of the
unknown variables in a block lower triangular matrix
P̂ distinct sub-sets and sub-problems of the system
of inequality constrained DAEs can be identified
(Baharev et al., 2019). Different heuristics can be
used for the NP-complete problem (Vassilevska
and Pinar, 2004), e.g. by using algorithms like the
Dulmage–Mendelsohn decomposition (Dulmage and
Mendelsohn, 1958), as in (Pothen and Fan, 1990), or
simple heuristics as in (Pinar and Heath, 1999).

Definition 4.1 (sub-set). Sub-sets are sets of equa-
tions and constraints of a system of implicit equa-
tions and constraints, which do not have any simi-
lar unknown variables (unknown regarding the IVP)
and therefore can be solved independent of each other
(Warnecke and Lichtenberg, 2024b).

The index set A denotes the set of indexes ac-
cording to the equations and constraints of the sub-set
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(rows of the sparsity pattern P̂). The index set B de-
notes the set of indexes according to the variables of
the sub-set (columns of the sparsity pattern P̂). In a
block lower triangular sorted sparsity pattern P̂, sub-
sets are diagonal blocks which do not have any over-
lapping blocks to other diagonal blocks. The elements
p̂ik of the rows and columns adjacent to such a block
must only consist of zeros:

p̂ik = 0, (26)

for i /∈ A and k ∈ B, as well as i ∈ A and k /∈ B.

Definition 4.2 (sub-problem). A sub-problem is a set
of equations and constraints, which is part of a sub-
set of a system of implicit equations and constraints
(Warnecke and Lichtenberg, 2024b).

The index-set C denotes the set of indexes ac-
cording to the equations and constraints of the sub-
problem (corresponding to rows in the sparsity pat-
tern P̂). The index-set D denotes the set of indexes
according to the variables of the sub-problem (corre-
sponding to columns of the sparsity pattern P̂). Un-
like sub-sets, different sub-problems can have similar
(unknown) variables.

In a block lower triangular sparsity pattern P̂, sub-
problems are diagonal blocks which can have (lower
and left) overlapping blocks to other diagonal blocks,
but the elements p̂ik of the right and upper parts of the
rows and columns adjacent to the sub-problem must
only consist of zeros:

p̂ik = 0, (27)

for i < c, where c ∈ C and ∀x ∈ Cc ≤ x, and k ∈ D, as
well as i ∈ C and k >D, where d ∈ D and ∀x∈Dd ≥ x.

A sub-problem determines the unknown variables
according to its columns of the sparsity pattern, by
solving the set of implicit equations and constraints
according to its rows, but can be dependent on previ-
ously solved variables of other sub-problems.

For the example model the sorted sparsity pattern

P̂ =



1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 1 0 1 0 1 1 0 0 0
0 1 0 0 0 0 1 1 0 0
0 0 0 1 0 0 1 0 1 0
0 0 0 0 0 1 1 0 0 1


, (28)

regarding the unknown variables of the IVP (ẋ, y and
z) reveals one overall sub-set with 7 sub-problems.
The sub-problems can be computed in series, where

instead of 26 = 64 overall combinations of binary
variables, the number of possible combinations that
need to be tested reduces to 3× 22 = 12, since they
are independent of each other.

With the use of the sub-problems and sub-sets, the
combinatorial complexity of the discontinuous mo-
tion problem can be reduced. In figure 3 the reduced
brute force method is shown.

zi denote a combination of the binary variables z,
where zi+1 denote the next possible combination (e.g.
with the smallest hamming distance to zi). The values
of the binary variables zk which belong to a previous
sub-problem in each sub-set of the events gs are fixed,
since they cannot be influenced by the events, thus
reducing the possible combinations of z.

5 SIMULATION OF THE
EXAMPLE

The three tank system is modelled and simulated
using the MTI-Toolbox (Lichtenberg et al., 2024)
for MATLAB, where the method is incorparated.
The smooth sections of the IVP are calculated us-
ing the ode15i-solver with a BDF integration scheme
(Shampine, 2002). If a boundary surface is met, lo-
cated by the event detection algorithm of the solver,
integration stops and the procedure from figure 3 is
executed. When a solution for the transversal motion
has been found, integration continues with the new
values of z.

The example is simulated for 1000 sec-
onds, with the intial states x(t = 0) =[
37 30 40

]⊺ and constant input signals
u(t) =

[
0 80 30 40 25 35 35 45

]⊺∀t. In
figure 4 the trends of the states x, valve positions z1,
z3 and z5 and algebraic signal y1 can be seen. The
simulation has taken 1.19 seconds. It can be seen
that the system has state-continuity, which means
that the states cannot jump in mode transitions and
are smooth in between, while the algebraic variables
y can be discontinuous (jump) in between mode
transitions. Even if the continuous-valued algebraic
variables y ⊆ R are in general restricted to a subset
Y of the real number space R, in this example the
variable y1 is restricted to a subset of the natural
number space {1,2,3} ⊂ N, since the signal y1 is
exclusively dependent on z1, z3 and z5.

In the phase diagram in figure 5 it can be seen, that
the trend of the states has corners at the discontinuity
surfaces marked by the black squares. More over the
diagram reveals a period-2 limit cycle.
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Figure 3: Brute force procedure for solving the discontinuous motion problem when sub-sets and sub-problems are known.

Figure 4: Time signals of the simulations results of the three
tank model.

6 CONCLUSION

The publication focuses on the transversal motion dis-
continuities of piecewise smooth implicit multilinear
initial value problems. Unlike usual switched systems
with explicit descriptions of modes, switching condi-
tions, and transition functions, the hybrid iMTI mod-
els implicitly encode mode information in binary-
valued variables, with switching conditions and tran-

Figure 5: Phase diagram of the simulations results of the
three tank model.

sitions defined by inequality constraints.
A method has been introduced to determine

the implicitly described discontinuity and solve the
transversal motion problem by adapting an idea from
explicit piecewise smooth ODEs based on the total
derivative of mode constraints.

A 2-point temperature-controlled three-tank sys-
tem is used to illustrate the application of the hybrid
iMTI modeling framework, as well as the method to
solve the piecewise smooth IVP. The method for han-
dling mode switching when discontinuity surfaces are
met involves solving an inequality-constrained sys-
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tem of equations at the event time for different com-
binations of binary variables and checking conditions
based on the function values and their total derivatives
to determine the system’s behavior.

To address the combinatorial complexity arising
from the binary variables, it is proposed to use spar-
sity pattern analysis to identify sub-sets and sub-
problems within the system, which can be solved
more efficiently. The simulation results of the exam-
ple show the applicability of the method. The sys-
tem’s behavior at discontinuity surfaces can be seen
and reveal a limit cycle.
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los, G., and Yáñez, C. C. (2023). Efficient lin-
earization of explicit multilinear systems using nor-
malized decomposed tensors. IFAC-PapersOnLine,
56(2):7312–7317.

Lang, S. (2002). Algebra. Graduate Texts in Mathematics,
volume 211, chapter Matrices and Linear Maps §4.
Determinants, page 511. Springer New York.

Lichtenberg, G. et al. (2022). Implicit multilinear modeling.
at - Automatisierungstechnik, 70(1):13–30.

Lichtenberg, G., Uhlenberg, E., Warnecke, T., Cateriano,
C., Engels, M., Samaniego, L., Schnelle, L., and
Kaufmann, C. (2024). MTI-Toolbox. http://mti.
systems.

Luxa, A. et al. (2022). Multilinear modeling and simula-
tion of a multi-stack PEM electrolyzer with degrada-
tion for control concept comparison. Proceedings of
the 12th International Conference on Simulation and
Modeling Methodologies, Technologies and Applica-
tions.

Mehrmann, V. and Wunderlich, L. (2009). Hybrid sys-
tems of differential-algebraic equations - analysis and
numerical solution. Journal of Process Control,
19(8):1218–1228. Special Section on Hybrid Sys-
tems: Modeling, Simulation and Optimization.

Pangalos, G., Eichler, A., and Lichtenberg, G. (2014). Hy-
brid multilinear modeling and applications. Advances
in Intelligent Systems and Computing, page 71–85.

Piiroinen, P. and Kuznetsov, Y. (2008). An event-driven
method to simulate filippov systems with accurate
computing of sliding motions. ACM Transactions on
Mathematical Software, 34.

Pinar, A. and Heath, M. T. (1999). Improving performance
of sparse matrix-vector multiplication. Proceedings of
the 1999 ACM/IEEE conference on Supercomputing.

Pothen, A. and Fan, C.-J. (1990). Computing the block tri-
angular form of a sparse matrix. ACM Trans. Math.
Softw., 16(4):303–324.

Samaniego, L., Uhlenberg, E., Kaufmann, C., Engels, M.,
Pangalos, G., Cateriano Yáñez, C., and Lichtenberg,
G. (2024). An approach to multi-energy network mod-
eling by multilinear models. pages 1522–1527.

Sanz, V., Urquia, A., and Casella, F. (2014). Improving
efficiency of hybrid system simulation in Modelica.
volume 2014.

Shampine, L. (2002). Solving 0=f(t,y(t),y ’ (t)) in matlab.
Journal of Numerical Mathematics, 10.

Vassilevska, V. and Pinar, A. (2004). Finding nonoverlap-
ping dense blocks of a sparse matrix. Lawrence Berke-
ley National Laboratory.

Warnecke, T. and Lichtenberg, G. (2024a). Hybrid implicit
multilinear modeling of complex hvac systems. In
Wagner, G., Werner, F., and De Rango, F., editors,
Simulation and Modeling Methodologies, Technolo-
gies and Applications, pages 79–104, Cham. Springer
Nature Switzerland.

Warnecke, T. and Lichtenberg, G. (2024b). Hybrid im-
plicit multilinear simulation using difference algebraic
equations reordering by sparsity patterns*. In Interna-
tional Conference on Control, Decision and Informa-
tion Technologies 2024, 2024 10th International Con-
ference on Control, Decision and Information Tech-
nologies (CoDIT), pages 2578–2583.

SIMULTECH 2025 - 15th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

356


