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Abstract: Fuzzing involves generating a large number of inputs and running them through a target application to detect
unusual behavior. Modern general-purpose guided fuzzers are effective at testing various programs, but their
lack of structure awareness makes it difficult for them to induce unexpected behavior beyond the parser. Con-
versely, structure-aware fuzzers can generate well-formed inputs but are often unguided, preventing them from
leveraging feedback mechanisms. In this paper, we introduce a guided structure-aware fuzzer that integrates
Grammarinator, a structure-aware but unguided fuzzer, with LibFuzzer, a guided but structure-unaware fuzzer.
Our approach enables effective testing of applications with minimal setup, requiring only an input format de-
scription in the form of a grammar. Our evaluation on a JavaScript engine demonstrates that the proposed
fuzzer achieves higher code coverage and discovers more unique bugs compared to its two predecessors.

1 INTRODUCTION

In our increasingly fast-paced world, software sup-
ports every aspect of our lives, from our cars to
our TVs, medical instruments, and even smart tooth-
brushes. This means writing a lot of new code and
even more tests. At least, that would be the case in an
ideal world. However, keeping up with this volume
of code with high-quality test suites is very challeng-
ing. It is common practice to write tests that check the
expected behavior of programs, but tests for handling
unexpected behavior are much rarer. Yet, or precisely
because of this, improper handling of unexpected in-
puts can be a perfect attack vector for a malicious
user. Writing negative tests, however, is not an easy
task, as it is much simpler to list the cases where the
program should work than to enumerate all the faulty
possibilities it should handle correctly. Therefore, it
is not surprising that an automatic approach to nega-
tive testing, known as random testing or fuzzing, has
emerged (Miller et al., 1990; Miller, 2008).

The essence of fuzzing is to generate a large num-
ber of inputs that are run through the tested appli-
cation while monitoring its execution. If something
unusual is detected, it is saved as a potential bug
to be validated by a human tester. Unusual behav-
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ior could be a crash, an unusually long runtime, or
an output deemed incorrect (if an oracle is avail-
able during monitoring). Nowadays, there are many
types of fuzzers available, but among them, general-
purpose guided fuzzers are particularly popular (e.g.,
AFL (Zalewski, nd) and its variants (Böhme et al.,
2016; Lemieux and Sen, 2018; Lemieux et al., 2018;
Atlidakis et al., 2020; Pham et al., 2021; Fioraldi
et al., 2020), or LibFuzzer (LLVM Project, nd)) be-
cause a single well-written fuzzer can test hundreds
of programs effectively, finding many bugs. These
fuzzers are based on simplicity and speed: starting
from a seed corpus (in the extreme case, perhaps even
from an empty one), they generate new tests by mak-
ing minimal byte-level changes to the elements of the
corpus, while prioritizing those elements that have al-
ready proven useful based on certain metrics. While
these fuzzers do find many bugs, most of those bugs
are parser-related because such simple mutators of-
ten corrupt the structure of the input, rarely driving
deeper code sections beyond the parser.

Targeted fuzzers offer a solution to this prob-
lem by providing automated testing for specific
input formats (e.g., CSmith (Yang et al., 2011),
GrayC (Even-Mendoza et al., 2023), Domato (Fratric,
nd), Echidna (Grieco et al., 2020), jsfunfuzz (Mozilla
Corporation, nd), or IFuzzer (Veggalam et al.,
2016)). These are effective for one given format,
but not for other targets. To mitigate this prob-
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lem, there are fuzzers that, with the help of an in-
put format description—which can be a grammar, an
IDL definition, an XML schema, or a completely
custom format—can generate structure-aware tests
through generation or mutation (e.g., Grammarina-
tor (Hodován et al., 2018), LangFuzz (Holler et al.,
2012), Dharma (Diehl, 2015), Peach (GitLab B.V.,
nd), or Skyfire (Wang et al., 2017)), making them us-
able for multiple input formats with relatively little
effort. However, most of these are not guided, thus
missing out on very useful feedback information.

The solution may lie in guided, structure-aware
fuzzers, which enable a single fuzzer to generate or
mutate tests for any application in a guided man-
ner, requiring only a format description. Examples
of such fuzzers include Nautilus (Aschermann et al.,
2019), Superion (Wang et al., 2019), and libprotobuf-
mutator (Google Inc., nd); and the tool presented in
this work.

In this paper, we present a new tool result-
ing from the integration of Grammarinator and Lib-
Fuzzer, which combines their strengths while mitigat-
ing their weaknesses. During the design of the inte-
gration, we ensured that existing functionalities were
preserved, and we also introduced new features in-
spired by the two components. The new tool can work
with and mutate a seed corpus like its predecessors,
but it can also generate completely new tests or parts
thereof based on a grammar. Thanks to the popular-
ity of ANTLR4, hundreds of grammars are available
online (Parr, 2013), removing or reducing the effort
needed for writing grammars. The new tool can ap-
ply structure-aware mutations to the input but also has
access to the tried and tested mutators of LibFuzzer.
Moreover, since Grammarinator offers numerous cus-
tomization points, those can be utilized to define logic
that is beyond the expressive power of grammars.

The rest of this paper is organized as follows: In
Section 2, we give an overview of the two tools our
work is based on, i.e., Grammarinator and LibFuzzer.
In Section 3, we list the challenges we have faced dur-
ing their integration and present our solution. In Sec-
tion 4, we present the scope and results of the evalu-
ation of the new tool. In Section 5, we overview the
related works from the literature, and finally, in Sec-
tion 6, we conclude our paper.

2 BACKGROUND

2.1 LibFuzzer

LibFuzzer (LLVM Project, nd) is an efficient
coverage-guided in-process fuzzing engine integrated

with LLVM. It is a general-purpose fuzzer, which is
applicable to any input format. It is based on a genetic
algorithm that, in each iteration, selects a test from
its corpus, mutates it, and then runs the resulting test
with the fuzz target. Thanks to its integration with the
compiler, the fuzz target is instrumented during com-
pilation so it can monitor the parts of the code covered
by the test during execution. If this indicates the dis-
covery of new code sections, the test is deemed useful
and added to the corpus for further testing. Although
fuzzing can start with an empty corpus, the quality
of the corpus significantly affects the efficiency of the
fuzzing process. A high-quality initial corpus is nec-
essary because LibFuzzer generates new tests using
very simple mutations, making it challenging to cre-
ate tests that match a complex input format starting
from an empty corpus. However, these simple muta-
tions make LibFuzzer applicable to any input format
and allow for the rapid generation of new tests, which
is a critical requirement for effective fuzzing.

Currently, LibFuzzer has 13 built-in mutators and
2 extension points that allow for user-defined custom
mutators, which are summarized in Table 1. With one
exception, all mutators operate on a single corpus el-
ement, making changes to it. These mutations are
typically applied at randomly chosen positions in the
input: they delete, insert, repeat, or rearrange bytes.
They move randomly selected chunks of the test case
to different locations. They insert strings from a man-
ually specified or automatically collected dictionary.
Or, they alter numeric values. The only mutation that
works with two corpus elements simultaneously is the
cross-over mutation, which randomly selects one or
more chunks from the donor element and inserts them
into random positions in the host element or replaces
random parts of it.

As can be seen, these mutations can gener-
ate new tests very quickly because—with minimal
exceptions—they do not attempt to interpret the in-
put; they just work at random positions. The sole ex-
ception is the mutation of numbers, where the input
is scanned once, and positions containing digits are
recorded.

This simplicity, generality, and speed are both the
strengths and weaknesses of LibFuzzer. It can test ap-
plications with any input format out-of-the-box, but
since most of the generated tests are syntactically in-
correct, they primarily drive and test only the parsers
of the applications being tested. In the case of more
complex programs, however, this only scratches the
surface of the codebase, leading to a demand for
structure-aware mutators years ago.
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Table 1: LibFuzzer Mutators and Their Descriptions.

Mutator Description

Erase Bytes Delete bytes at randomly chosen positions from the input.
Insert Byte Insert a single byte at a randomly chosen position in the input.
Insert Repeated Bytes Insert a sequence of repeated bytes at a randomly chosen position in the input.
Change Byte Change a byte at a randomly chosen position in the input.
Change Bit Change a bit at a randomly chosen position in the input.
Shuffle Bytes Shuffle bytes in a randomly chosen segment of the input.
Change ASCII Int Change an ASCII integer at a randomly chosen position in the input.
Change Bin Int Change a binary integer at a randomly chosen position in the input.
Copy Part Copy a randomly chosen chunk of the input to another position within the same input.
Cross-Over Copy a randomly chosen chunk from the donor element and insert it into a random position or

replace a randomly chosen chunk in the host element.
Manual Dict Insert strings from a manually specified dictionary.
Persistent Auto Dict Insert strings from an automatically collected dictionary.
CMP Insert strings from recent compares.

Custom Mutator Apply custom user-defined mutations on the input.
Custom Cross-Over Apply custom user-defined cross-over mutations on the input.

2.2 Grammarinator

Grammarinator (Hodován et al., 2018) is a structure-
aware test generation tool that produces tests in
a black-box manner without any feedback, using
ANTLR4-format grammar descriptions. This format
was designed for the popular ANTLR parser genera-
tor tool (Parr, 2013), which has developed a signifi-
cant ecosystem over the years. The grammar format
essentially describes extended context-free grammars
but includes many additional features, such as actions
embedded in the grammar, predicates, special wild-
cards, etc. Due to its popularity, there are currently
more than 300 publicly available grammars in the of-
ficial grammar repository1.

To avoid the labor-intensive task of writing gram-
mars for a proprietary format, Grammarinator chose
the ANTLR4 grammar format as the model for its
test generator. In the first step, it processes the cho-
sen grammar and then creates a Python test genera-
tion code from it. This generator can later be used
to produce any number of tests. The generated code
traverses the grammar and through a series of ran-
dom decisions, selects between alternatives and de-
cides how many times to repeat quantified subexpres-
sions. The result of the generation is a tree much
like parse trees, where each internal node represents
a grammar rule and each leaf node represents a to-
ken. This resulting tree is then processed by a serial-
izer, which combines the leaf nodes—while possibly
applying further formatting, at least inserting spaces
between the leaves—to produce the final test.

In addition to generating grammar-conforming

1https://github.com/antlr/grammars-v4

tests, Grammarinator can create mutants from exist-
ing tests. It supports two types of mutation opera-
tors: it can either regenerate a randomly chosen sub-
tree according to the grammar rule corresponding to
the subtree’s root, or it can swap nodes of the same
type (i.e., belonging to the same grammar rule) be-
tween two tests. Mutations are typically performed
on elements of a tree corpus (called a population in
Grammarinator’s terminology). Such populations can
either be generated by Grammarinator itself or created
from existing tests using a test-to-tree conversion util-
ity that is part of the Grammarinator toolchain (utiliz-
ing ANTLR4, parsing the tests with the same gram-
mar that is used for generation, and converting the
parse trees to the tree representation of Grammarina-
tor). It is important to note that the selection of trees
to mutate is entirely random, without any guidance.
The reason for this is that Grammarinator is purely a
test generator; it does not have an integrated fuzzing
harness, so it cannot run tests or collect feedback on
its own.

Beyond the core functionality described above,
Grammarinator supports several customization fea-
tures, such as subclassing generator classes, defin-
ing model classes to control alternative selection and
quantification, defining listeners, inserting inline code
and predicates into the grammar, post-processing the
generated trees with transformers, supporting custom
serializers, and more. These features are discussed in
detail in the original paper and the online documenta-
tion of the project (Hodován et al., 2018).
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3 INTEGRATING
GRAMMARINATOR AND
LIBFUZZER

3.1 Challenges and Solutions

Recognizing the strengths and weaknesses of Gram-
marinator (good for structured inputs, but lacks guid-
ance) and LibFuzzer (good at guidance, but struggles
with heavily structured input formats), the need arose
to combine the two tools to create a more efficient
fuzzer that keeps the best of both. In the follow-
ing, we will cover the necessary steps for integration,
the challenges encountered, and the resulting devel-
opments2.

Technically, the integration is made possible by
the two extension points of LibFuzzer: the custom
mutator and cross-over operations. If these two are
defined, then they override the built-in mutators of
LibFuzzer. Thus, we had a way to let LibFuzzer man-
age the corpus, guide the fuzzing, and channel the se-
lected test cases to Grammarinator for structure-aware
mutation.

The first challenge to overcome was that Gram-
marinator generated fuzzers in Python, while Lib-
Fuzzer primarily expects the custom operators to be
implemented in compiled languages, e.g., C/C++.
(Although we are aware that LibFuzzer is not lim-
ited to testing applications written in C or C++, and
can be applied to targets in languages such as Python,
Java, Rust, or Go through various wrappers, C and
C++ are the most common. Therefore, we focus on
these as the target languages.) As executing the fuzzer
in a Python interpreter within the custom operators
did not seem to be optimal performance-wise, we ex-
tended Grammarinator to generate C++ fuzzers. This
not only involved generating code from the grammar
in the statically typed C++ instead of the dynamically
typed Python language but also porting the runtime
library necessary for the execution of the generated
fuzzers.

With the C++ port in place, we could call Gram-
marinator’s subtree-regenerating or -replacing func-
tionalities from the custom mutator and cross-over
implementations. However, Grammarintor works
with trees, while LibFuzzer, being of general pur-
pose, treats all test cases as simple arrays of bytes.
In a naı̈ve integration, this would require the test-to-
tree conversion (i.e., parsing) of inputs every time the
generation of a new test case is requested. (And,
once Grammarinator mutated the tree, the serializa-

2All source code is available at https://github.com/
renatahodovan/grammarinator.

tion of the tree to the original format will also be nec-
essary: both because the fuzz target expects it that
way, and because LibFuzzer needs to store the test
cases it deems interesting.) Unfortunately, continu-
ously parsing the test cases over and over again would
slow down fuzzing unacceptably, making such a naı̈ve
approach useless in practice.

As an answer to this second challenge, we have
moved parsing from fuzzing-time to preprocessing-
time. I.e., we required the test corpus to be in tree
form by the time fuzzing starts. Fortunately, the
tree-to-test conversion utility of the Grammarinator
toolchain covered this requirement. However, this
change moves the task of tree serialization from the
mutator to the fuzz target. This means that there is a
small development/maintenance price to pay for bet-
ter performance as the fuzz target needs to be ex-
tended with the tree-to-test conversion logic. How-
ever, in the best case, this can be as simple as adding
an extra compile flag to the fuzz target’s compilation
command to inject (include) the necessary code.

It must be noted that the trees that Grammarinator
works with are data structures in memory, while the
trees stored in files in the corpus and handled by Lib-
Fuzzer are some encoded forms of those data struc-
tures. Thus, there is a need for some decoding and
encoding of trees when working with a tree corpus,
but—if an appropriate codec is used—its overhead
is by orders of magnitude smaller than that of com-
plete parsing. The Python runtime library of Gram-
marinator already had a pickle-based tree codec, but
that approach was not portable to C++. Therefore,
we have implemented a FlatBuffers3-based codec for
C++ (and also for Python, which had the fortunate
side effect that the same tree corpus could be used by
both the Python and C++-based Grammarinator).

Although tree decoding is much faster than pars-
ing, the construction of the data structures in mem-
ory still costs time and should be avoided if possible,
which posed our third challenge. To address this, we
have introduced a single-element cache where the en-
coded tree representation is the key and its in-memory
data structure is the associated value. Whenever a
mutation or a cross-over generates a new test case—
i.e., a tree—its encoded form along with the tree itself
is put into the cache. Then, if LibFuzzer passes the
encoded tree to the fuzz target for testing, the corre-
sponding tree is retrieved from the cache. Moreover,
since LibFuzzer typically applies multiple mutations
to the same test case in a sequence, querying the cache
as the first step of mutation is also beneficial.

An overview of the above-described approach is
shown in Figure 1. The diagram displays some com-

3https://github.com/google/flatbuffers
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Figure 1: An overview of the integration of Grammarinator into LibFuzzer.

ponents using the API function names as defined
by LibFuzzer. I.e., LLVMFuzzerCustomMutator and
LLVMFuzzerCustomCrossOver are the functions that
implement the custom mutator and cross-over ex-
tension points, respectively, while LLVMFuzzerTe-
stOneInput is the mandatory fuzz target that calls the
code being tested.

3.2 Structure-aware (and
Structure-unaware) Mutators

The main motivation for the integration of Gram-
marinator and LibFuzzer was to create a technique
that has the best features of both tools. We have
realized that although the built-in mutators of Lib-
Fuzzer cannot comply with input format restrictions,
the ideas behind them can be useful for structure-
aware mutations as well. It turned out that the two
existing mutation operators of Grammarinator (i.e.,
the regeneration of a subtree and the swapping of
two compatible subtrees between trees) covered only
a subset of these ideas. For example, while Lib-
Fuzzer’s Erase Bytes mutator deletes a randomly se-
lected byte sequence from a random position of the
input, there could be a structure-aware mutator that
deletes subtrees—but only if the grammar defined
them as optional. Similarly, while the Insert Byte
and Copy Part mutators insert and replace randomly

selected input segments at random positions, respec-
tively, their structure-aware counterparts could per-
form those operations on subtrees—again, according
to the rules of the grammar. Therefore, we have ex-
tended Grammarinator with several new mutators in-
spired by the operators of LibFuzzer.

To know which subtree can be deleted or where
can a further subtree be inserted, it is necessary to
have information about which parts of the tree orig-
inate from quantified expressions (?, *, or +) of the
grammar and what the lower and upper bounds of
the quantifiers are. Similarly, to change a decision
made at an alternation (|), it is necessary to have in-
formation about which parts of the tree originate from
which alternative of which alternation. When gener-
ating a completely new test case with Grammarina-
tor, this information can be added to the tree relatively
easily. However, when building the trees from exist-
ing test cases using ANTLR4, the parse trees lack this
information. Thus, in addition to extending the inter-
nal representation of Grammarinator to store and im-
proving the fuzzer to generate this information, we
have also enhanced the test-to-tree conversion util-
ity to recreate this information when parsing is per-
formed. This way, all structure-aware mutators could
be applied both to trees newly generated and to those
converted from existing tests.

The implemented structure-aware mutators are
listed in Table 2 along with the LibFuzzer mutators
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Table 2: Structure-aware Grammarinator Mutators and Their LibFuzzer Counterparts.

Grammarinator Mutator Description LibFuzzer Counterpart(s)

Regenerate Rule Regenerate a subtree based on the grammar rule associ-
ated with the root of the subtree.

Change ASCII Int, Change
Bin Int, Manual Dict

Replace Node (Cross-Over) Replace a subtree with another subtree that has a root of
the same type and is from a different tree.

Cross-Over

Delete Quantified Subtree Delete a subtree that corresponds to a quantified expres-
sion (?, *, or +) in the grammar.

Erase Bytes

Replicate Quantified Sub-
tree

Duplicate a subtree that corresponds to a quantified ex-
pression (* or +) in the grammar.

Insert Repeated Bytes

Shuffle Quantified Subtrees Randomly shuffle the subtrees that correspond to a quan-
tified expression (* or +) in the grammar.

Shuffle Bytes

Swap Nodes Swap two subtrees that have roots of the same type. no direct counterpart
Insert Quantified Subtree Insert a copy of a subtree that corresponds to a quantified

expression (?, *, or +) between other subtrees that corre-
spond to the same quantified expression.

Insert Byte, Copy Part

Hoist Rule Lift a subtree up in the tree hierarchy to replace an ances-
tor that corresponds to the same grammar rule.

no direct counterpart

Insert Quantified Subtree
(Cross-Over)

Insert a subtree that corresponds to a quantified expres-
sion (?, *, or +) between other subtrees of another tree
that correspond to the same quantified expression.

Cross-Over

Table 3: Structure-unaware Grammarinator Mutators and Their Structure-aware Counterparts.

Structure-unaware
Mutator

Description Structure-aware
Counterpart

Delete Random Subtree Delete a random subtree. Delete Quantified Subtree
Hoist Random Rule Lift a subtree up in the tree hierarchy to replace any of its

ancestors.
Hoist Rule

LLVMFuzzer Mutate Call the original mutator implemention of LibFuzzer on
a token node.

no direct counterpart

that are most similar to their logic. The first two rows
in the table are the original two mutators of Grammar-
inator, while the rest are those inspired by LibFuzzer.

While we expect the new structure-aware muta-
tors to reach beyond the parser logic of the tested
code more easily, we do not want to lose the ability
to test the parser either. Therefore, we have created
additional tree-based but structure-unaware mutators.
These operators are similar to some structure-aware
mutators with the important difference that when se-
lecting which part of the tree to apply them on, fewer
or no constraints are adhered to. (Moreover, since the
built-in mutators of LibFuzzer are also accessible, one
of the structure-unaware mutators is to invoke them
on leaf nodes, i.e., tokens.) The list of implemented
structure-unaware mutators is given in Table 3.

4 EVALUATION

4.1 Setup

In our evaluation, we wanted to compare the inte-
gration of Grammarinator and LibFuzzer to its two
main building blocks, i.e., to the unguided Gram-
marinator and the structure-unaware LibFuzzer. For
LibFuzzer, we used a custom build of LLVM (and
clang) version c4a00be08aa1, extended with a PC
dump functionality at exit. This extension enabled
the comparison of the coverage metrics reported by
LibFuzzer across different fuzzers. For Grammarina-
tor, our work was based on version 23.7.post140 (git
revision 68b0350). To get comparable statistics, we
have invoked even the unguided Grammarinator from
the LibFuzzer framework by implementing the cus-
tom mutator extension point of LibFuzzer in such a
way that no matter what input was selected by Lib-
Fuzzer for mutation, it was discarded and Grammar-
inator always generated a completely new test case.
(The initial corpus was still loaded, though, to ensure
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that all fuzzing sessions start with the same baseline
statistics.)

In the evaluation, we used two common statistics
as the basis of the comparison: coverage and feature
count metrics as reported by LibFuzzer. In this con-
text, coverage refers to edge coverage, while feature
count is a combined metric computed by LibFuzzer,
which includes edge counters, value profiles, indirect
caller/callee pairs, and more (LLVM Project, nd). In
addition, we disclose the number and type of bugs
found. Finally, we also report the speed of fuzzing,
more precisely, the number of inputs generated dur-
ing a fuzzing session.

For the evaluation, we looked for a JavaScript en-
gine as our target because the language makes for a
complex and structured-enough input format, and a
full execution engine ensures that there are deeper
parts for the fuzzer to reach than the parser logic. We
expect such targets to be best fit for a Grammarinator-
LibFuzzer integration. (For non-structured input for-
mats or targets consisting of a parser only, Lib-
Fuzzer’s simple and fast mutators are likely to be
more effective. Moreover, the time invested in so-
phisticated computationally intensive tree mutations
is more likely to pay off on a computationally inten-
sive target.) Thus, we have selected JerryScript (JS
Foundation et al., nd) as the target (at v3.0.0 release,
git revision 50200152), a JavaScript engine written in
C of cca. 166k LOC. The project already includes a
LibFuzzer target (i.e., LLVMFuzzerTestOneInput im-
plementation for JavaScript execution) and has been
fuzz-tested for several years.

Since Grammarinator needs a grammar for
fuzzing, we have downloaded the JavaScript grammar
available from the ANTLRv4 grammar repository4.
To enhance its usefulness for fuzzing, we have made
three small modifications to the grammar. First, since
every test case should yield consistent results even if
the corpus changes, there should be no dependencies
between the elements of the corpus. The import state-
ments of the JavaScript language go against this direc-
tive, therefore we have disabled their generation. Sec-
ond, we have also disabled the generation of hashtag
lines as they are but unstructured comment lines from
the perspective of the grammar (and useless for the
target, too). Third, we have also extended the gram-
mar, namely by explicitly listing the names of built-in
classes and functions supported by JerryScript as al-
ternatives to the identifier tokens. (To ensure a fair
comparison, we also created a so-called dictionary of
these identifiers and the literals of the lexer for Lib-
Fuzzer to use during fuzzing (LLVM Project, nd).)

4https://github.com/antlr/grammars-v4/tree/master/
javascript/javascript

A grammar is mandatory for Grammarinator to
work, but it can take optional parameters as well to
influence its behavior (Hodován et al., 2018). The
JavaScript grammar is highly recursive, therefore we
have limited the depth of the trees to 25 to avoid gen-
erating overly deep trees or running into infinite recur-
sion. We have also limited the maximum number of
generated tokens to 500 to restrict not only the depth
but also the width of the generated trees.

When using Grammarinator-based approaches,
we observed that some generated JavaScript inputs
contained infinite loops. Since these constructs are
syntactically and semantically valid, their execution
correctly continues indefinitely. While this behav-
ior is expected, it causes the fuzzing process to stall
whenever such inputs are executed. In contrast, Lib-
Fuzzer’s native byte-level mutations rarely resulted
in infinite loops, as a mutation would need to mod-
ify loop-related bytes in a way that remains syntacti-
cally valid while also causing unbounded execution—
an unlikely combination. To address this, we run Lib-
Fuzzer with the fork mode enabled (-fork=1) and limit
the test execution time to one second (-timeout=1).
Moreover, we also instruct LibFuzzer to not halt
fuzzing if any issue is found (-ignore timeouts=1 -
ignore crashes=1 -ignore ooms=1). This configura-
tion ensures that the fuzzing target runs in a separate
child process, allowing it to crash, timeout, or exhaust
memory without affecting the main LibFuzzer pro-
cess. By preventing repeated restarts and redundant
corpus reloading, fork mode enables a more stable
and efficient fuzzing session.

4.2 Results

In the evaluation, we ran all three fuzzers (the un-
guided Grammarinator, the structure-unaware Lib-
Fuzzer, and the Grammarinator-LibFuzzer integra-
tion) for one day, five runs each, all using fork mode 1.
The fork mode 1 simulates a single process envi-
ronment since the tests run in a single child process
without parallelization, but it helps avoid the problem
with timeout-inducing inputs discussed in the previ-
ous subsection. We used the same initial corpus for
all three fuzzers, the only difference being the format
of the elements in the corpus: the Grammarinator-
LibFuzzer integration used a corpus of trees converted
from the original tests in a preprocessing step as dis-
cussed in Section 3. During fuzzing, we recorded
the change in the coverage and feature count met-
rics for each run of each fuzzer and plotted them,
as shown in Figure 2. As visible from the charts,
the unguided Grammarinator performed the worst and
showed close to no improvement in the second half
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Figure 2: Change of coverage and features over time while fuzzing JerryScript for 24 hours. (Dashed lines show minimum
and maximum values, while solid lines show the median of five runs.)

Figure 3: Number of executed tests and change of corpus size over time while fuzzing JerryScript for 24 hours. (Dashed lines
show minimum and maximum values, while solid lines show the median of five runs.)

Figure 4: Number of all triggered and unique crashes over time while fuzzing JerryScript for 24 hours. (Dashed lines show
minimum and maximum values, while solid lines show the median of five runs.)

of the evaluation, failing to discover new edges or
features. In contrast, both LibFuzzer and Grammar-
inator guided by LibFuzzer continued to show steady
increases in both coverage and feature count, with
the guided Grammarinator achieving a faster increase
than the structure-unaware LibFuzzer.

Figure 3 shows that LibFuzzer tested the most in-

puts in 24 hours, up to 11 times more than the guided
Grammarinator and almost 2 times more than the un-
guided Grammarinator. The speed of LibFuzzer is not
surprising, as it does not interpret the input byte ar-
ray, and its mutations are very simple and fast oper-
ations. Additionally, it is further accelerated by the
fact that most of the test cases it generates are quickly
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Figure 5: Number of covered edges and unique crashes after fuzzing JerryScript for 24 hours. (Results combined from five
runs.).

Table 4: Statistics of Fuzzing JerryScript for 24 Hours (Minimum and Maximum Values of Five Runs).

Metric Grammarinator LibFuzzer LibFuzzer & Grammarinator

Input Corpus 1,142 1,142 1,142
Output Corpus 3,269–3,312 9,067–9,853 11,065–12,085
Executed Tests 23.4M–23.5M 28.5M–45.1M 4.1M–6.0M

Crashes 2,578–2,703 78–588 336–2,108
Unique Crashes 5–9 9–12 9–11

all runs combined 10 16 20
Timeouts 1,680–1,781 44–179 5,805–9,574

Coverage 7,441–7,484 8,516–8,658 8,901–9,166
Features 30,250–30,343 51,486–52,083 57,102–58,763

discarded due to parser syntax errors, meaning that
actual JavaScript execution occurs only rarely. The
slowness of the Grammarinator-based fuzzers, espe-
cially that of the guided Grammarinator, might seem
surprising but is explained by both the more so-
phisticated mutation strategies and the higher num-
ber of timeout-inducing inputs. The Grammarinator-
LibFuzzer integration generated 32–217 times more
test cases containing infinite loops than LibFuzzer,
causing significantly more executions to be termi-
nated due to timeouts. While non-timeout test cases
can be executed at a rate of hundreds or thousands per
second, a single timeout consumed an entire second,
significantly reducing the overall fuzzing throughput.
On the other hand, Figure 3 also shows that, although
slower, the guided Grammarinator generated the most
useful or interesting tests, both in absolute and rela-
tive terms, since the size of the corpus (containing the
generated tests considered worthwhile keeping) sur-
passes the other two fuzzers during the entire evalua-
tion period.

When evaluating fuzzers, the number of found
bugs is an important aspect. Figure 4 shows the num-
ber of crashes triggered during the 24-hour measure-
ment period. The figure shows that the unguided
Grammarinator crashed JerryScript more than 2,500
times, but it is also visible that a large number of
the crashes were duplicates. The guided fuzzers,
although triggering crashes less often, found more
unique bugs.

Figure 5 presents the results from a slightly dif-
ferent perspective. We have combined and visualized
both the edges covered and unique bugs found during
all five runs for each fuzzer. The diagrams show that
all fuzzers could cover edges and find bugs that none
of the others could, but it was the Grammarinator-
LibFuzzer integration that found the highest number
of edges and unique bugs exclusively. It was also
the Grammarinator-LibFuzzer integration that cov-
ered the most edges and found the most unique bugs
in total during the five runs.

In Table 4, we summarize the results shown in the
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aforementioned figures. In the most important met-
rics, Grammarinator guided by LibFuzzer performed
very well: it generated the most of the useful test
cases, achieved the highest coverage, and found most
of the unique bugs (when combining all five runs of
the evaluation).

5 RELATED WORK

The field of fuzzing has undergone tremendous de-
velopment in its over 30-year history, and this pace of
progress is accelerating. Its literature became huge.
While we mentioned some of the relevant papers in
Section 1, due to page limits, we will now focus
specifically on the three approaches most closely re-
lated to our work: Superion (Wang et al., 2019),
Nautilus (Aschermann et al., 2019) and libprotobuf-
mutator (Google Inc., nd). All approaches select el-
ements from a corpus, run them through an instru-
mented target to collect coverage feedback, and then
either add the test to the corpus or discard it based on
the result. However, upon closer inspection, despite
the similarities, they differ in several key points. In
the following, these differences will be enumerated.

Superion is a self-contained, ANTLR grammar-
based coverage-guided fuzzer framework built on
AFL, which replaces AFL’s mutators with its own
solutions. It defines three new mutators: two of
them are grammar-based, and one operates on byte
sequences. The byte sequence-based mutator uses a
simple heuristic to find token boundaries in the test,
then creates new tests by replacing these with ele-
ments from the dictionary. The grammar-based mu-
tators start by parsing, then randomly delete or swap
parts of the inputs that belong to contiguos parts of the
parse trees. These swaps and deletions, however, oc-
cur at random tree nodes without checking whether
the grammar allows these operations. Grammar-
based input generation is also not an option.

Nautilus is also a self-contained grammar-based
coverage-guided fuzzer framework that is based on
AFL and uses its own grammar format. Although
the original publication had a transformer to convert
any ANTLR grammar into the expected format, this
support was discontinued shortly thereafter5. This
forces users to manually write the necessary gram-
mars, in contrast to Grammarinator, which utilizes
the ANTLR4 grammar format and thus has out-of-
the-box access to hundreds of grammars. Because
of its own grammar format, Nautilus cannot build a
seed corpus from existing tests, relying solely on tests

5https://github.com/nautilus-fuzz/nautilus/issues/1

generated by itself, which loses valuable inputs. In
contrast, our approach can both start with an empty
corpus and convert existing tests to a seed tree cor-
pus. Regarding mutators, there is some overlap be-
tween Nautilus and our tool. Both can regenerate
subtrees according to the grammar, swap subtrees of
the same type between corpus elements, and include
a transformation similar to hosting. Both approaches
also call back to the base system’s structure-unaware
mutations: Nautilus applies AFL mutations to se-
rialized subtrees, while Grammarinator applies Lib-
Fuzzer mutations to leaf nodes. But, in addition to the
common mutations, Nautilus has three unique muta-
tors, while Grammarinator has nine more.

The third related solution is the structure-
aware fuzzing approach based on libprotobuf-
mutator (Google Inc., nd). Libprotobuf-mutator was
originally developed for targets that expect input in
the Protocol Buffer format. Protocol Buffers is a
language- and platform-neutral mechanism for seri-
alizing structured data, primarily used as a commu-
nication protocol. It has an interface definition lan-
guage (IDL) that defines the expected input structure,
which the target application can use for encoding or
decoding data. Libprotobuf-mutator performs muta-
tions on structured data described by such interfaces
and also has integration with LibFuzzer. The main
similarity with our work is its ability to fuzz even
such structured data formats that do not directly use
Protocol Buffers. This can be achieved by defining
the logical structure of the input format using Proto-
col Buffers’ IDL. Based on this, libprotobuf-mutator
can perform the generation or mutation of inputs in
Protocol Buffer format, and then a hand-written con-
verter can convert those inputs to the target format.
While both Grammarinator and libprotobuf-mutator
work with their respective internal representations en-
coded in trees and require a decoding step (the serial-
izer for Grammarinator, the converter for libprotobuf-
mutator) before testing the input, the main differ-
ence is that Grammarinator works with a widely used
grammar format that has descriptions for numerous
input formats, but libprotobuf-mutator often requires
the writing of an IDL. Additionally, writing the
converter needs further manual work. Furthermore,
libprotobuf-mutator has the same drawback as Nau-
tilus, i.e., it cannot parse existing tests to build a seed
corpus.

6 CONCLUSIONS

In this paper, we introduced the integration of
the originally unguided Grammarinator with the
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structure-unaware LibFuzzer, resulting in a guided,
structure-aware in-process fuzzer. We outlined the
key challenges encountered during this integration
and detailed the most effective solutions we devel-
oped. Beyond the integration, we proposed and
implemented a set of structure-aware and structure-
unaware mutators to enhance the new fuzzer’s capa-
bilities.

To evaluate the effectiveness of our approach,
we conducted experiments using the JerryScript
JavaScript engine as the target. Our results show that
the Grammarinator-LibFuzzer integration achieved
higher coverage and feature count than either of
its predecessors. During the experiments, 29 bugs
were discovered in total, with 20 detected by the
Grammarinator-LibFuzzer integration and 8 exclu-
sively found by this new fuzzer.

Encouraged by these promising results, we plan to
continue this line of research by seeking answers to
several open questions: How does input format com-
plexity impact fuzzing efficiency? Which mutators
contribute most to new coverage and feature discov-
eries, and how does their effectiveness change over
time? How does the guided Grammarinator compare
to other guided structure-aware fuzzers in terms of
performance and capabilities? How would integrat-
ing Grammarinator with other guided fuzzing frame-
works impact its efficiency? To explore these ques-
tions, we aim to conduct a larger-scale evaluation
across a wider range of input formats, fuzz targets,
baseline fuzzers, and guided fuzzing harnesses.
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