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Abstract: This work presents the modeling steps to build a tool for policymakers to orient policies toward more sustain-
able wheat production. Starting from a sample survey of Italian farms, we identify, with the help of clustering
techniques, the farm types present in the sample. The clustering phase reveals a significant heterogeneity
among farms that we handle building an agent-based model. Sampling from the clusters allows for including
a number of farms comparable to those operating in Italy in the agent-based model. Moreover, we build a
mathematical programming model with which farms (i.e., agents) decide the target production level and the
mix of inputs needed to obtain such production. Considered inputs are 1) the use of fertilizers, 2) the use of
herbicides, and 3) the use of pesticides. Policies are introduced as incentives or deterrents, driving production
decisions and the input mix choice towards more sustainable production.

1 INTRODUCTION

The increasing global demand for food, particularly
wheat, highlights its critical role as a staple crop feed-
ing billions of people worldwide. Wheat is central
to human diets and a key ingredient in various pro-
cessed foods (Asseng et al., 2018; Ketema et al.,
2023). Driven by population growth and evolving
dietary preferences, global demand for wheat is ex-
pected to rise significantly, necessitating a substan-
tial increase in production to maintain food security
(Sheikh et al., 2014; Tilman et al., 2011; Lethin et al.,
2020; Hannah Ritchie, 2020). However, achieving
this growth is complicated by multiple constraints,
chief among them the limited availability of arable
land due to urbanization, climate change, and envi-
ronmental degradation (Tilman et al., 2011; Costanzo
and Bàrberi, 2013).

Decreasing land availability presents a dual chal-
lenge: meeting rising food demand while ensur-
ing environmental sustainability (Fischer and Connor,
2018). Intensified agricultural practices, if unman-
aged, can lead to soil degradation, biodiversity loss,
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and increased greenhouse gas emissions (Liu et al.,
2013; Costanzo and Bàrberi, 2013; Poore and Neme-
cek, 2018). Projections indicate that wheat produc-
tion must increase by approximately 70% by 2050 to
meet global demand (Allen et al., 2016; Lethin et al.,
2020). Yet, current agricultural systems are experi-
encing yield plateaus, further intensifying the need
for innovative and sustainable farming strategies (Ray
et al., 2012; Ibrahim and Baqutayan, 2023).

Many wheat-producing countries have introduced
environmental policies promoting sustainable agricul-
tural practices in response to these challenges. The
European Union introduced significant changes in the
Common Agricultural Policy (CAP), which became
effective in January 2023. The CAP focuses on ten
specific objectives, linked to common EU goals for
social, environmental, and economic sustainability in
agriculture and rural areas (EU CAP Network, 2022).
Egypt has adopted strategies to achieve wheat self-
sufficiency while addressing climate adaptation and
resource limitations (Asseng et al., 2018). Policy
frameworks increasingly emphasize soil health, eco-
friendly farming techniques, and efficient irrigation
methods to reduce water consumption and enhance
resilience to environmental stressors (Liu et al., 2013;
McMillan et al., 2018). By embedding sustainabil-
ity into agricultural policy, these countries aim to rec-
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oncile productivity with ecological preservation, en-
suring the wheat supply can meet future demands
without compromising environmental health (Tilman
et al., 2011; Ray et al., 2012).

The effect of a policy introduction depends on
how farmers respond to the measure. Because of the
complexity of the decision process, these responses
are usually heterogeneous. This work uses the agent-
based approach to handle such complexity and hetero-
geneity. Agent-based simulation (ABS) has emerged
as a powerful tool for evaluating policy design due
to its ability to realistically model complex interac-
tions among autonomous agents. The flexibility of
ABS also supports the modeling of diverse agents
with unique decision-making processes, enabling the
exploration of unforeseen consequences of proposed
policies. Beheshti et al. discuss how agent-based
modeling facilitates this exploration, suggesting that
simulations can reveal important insights into the im-
pacts of policy initiatives, particularly in sustainable
decision-making scenarios (Beheshti et al., 2015). By
allowing changes in agent decision rules, researchers
can also simulate various governance models, eluci-
dating behavioral determinants that may significantly
affect environmental management efforts (Jager and
Mosler, 2007).

Several studies use agent-based models to tackle
the issue of environmental impacts and for agricul-
tural policy evaluation (see (Kremmydas et al., 2018),
for a survey). According to the authors, the agent-
based approach has the advantage of accounting for
the different effects of policies due to farm hetero-
geneity. Similarly, to investigate sustainable paths of
wheat production, (Khan et al., 2020) uses a compu-
tational approach to predict the economic impact of
climate change-induced loss of agricultural produc-
tivity in Pakistan. In contrast, using an agent-based
model, (Siad et al., 2017) focuses on price formation
in South Italy. This work presents the framework of
an agent-based model built to assess the economic and
environmental sustainability of the wheat production
system in Italy. To this end, we first build a model
for individual farmer decision-making based on eco-
nomic principles (Section 2).

In Section 3, we perform a cluster analysis on data
from an Italian sample survey database. This phase
aims to detect the diverse environmental profiles of
firms producing wheat in Italy. It allows the intro-
duction of heterogeneity in our agent-based model by
estimating the parameters of the individual model for
each cluster.

Section 4 details the agent-based model architec-
ture. In particular, aiming to provide a valuable tool to
policymakers, we intend to provide a model similar to

the Italian wheat production system, including a num-
ber of farms comparable to those observed in reality.
Data from the agriculture census is used to initialize
simulations.

Section 5 concludes and describes future direc-
tions for our research.

2 MODELING FARM INPUTS
DECISION

2.1 Farm Crop Management

Modeling a farm’s input decision belongs to the
broader farm management field. Farm management
has several aspects: financial management, crop and
livestock management, equipment management, la-
bor management, and risk management (see (Kay
et al., 2020) or (Kunz, 2022)). Because we deal
with wheat production, we will build on tools used
in the crop management field. In particular, we are
interested in modeling a situation in which a product
(wheat) is produced using several inputs. This choice
is usually analyzed by applying economic principles
((Kay et al., 2020) chapter 8 page 144). Indeed,
the problem of choosing an input combination is a
mathematical minimization, i.e., the farmer selects
the cost that minimizes the input combination. The
dual problem of cost minimization is profit maximiza-
tion (see (Carpentier et al., 2015) for a review of eco-
nomic modeling of agriculture production). We ana-
lyze the problem of maximizing profit for one hectare
of wheat, which is generally posed as follows:

π = pwy(x1,x2, ...)−∑
i

pxixi (1)

where y is yield per hectare, xi are inputs per hectare,
pw is the price of wheat and pxi are the inputs prices.

Because this work focuses on environmental sus-
tainability, we consider fertilizer, herbicide, and in-
secticide relevant inputs for wheat production. A key
role in the economic modeling of input combination
choice is input substitution ((Kay et al., 2020) chapter
8). The input substitution degree has been studied for
several decades (see, for example, chapter 5 in (Heady
and Tweeten, 1963)). When inputs can be considered
substitutes, the Cobb-Douglas or the CES (constant
elasticity of substitution) are used as functional forms
for y(xi).

In the model developed below, we will provide a
new modelization of the yield function based on the
yield gap concept. Because we are analyzing profit
per hectare, it is reasonable to work under the zero
degree of input substitution. Substitution normally
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occurs between acreage and other production inputs,
i.e., it is possible to obtain the same production, for
example, by increasing acreage and reducing fertil-
ization. In cultivating a single hectare, each input is
specialized in improving a specific condition that fa-
vors the plant’s health. Therefore, the Leontief-type
production function models the zero substitution in-
put case.

2.2 Yield-Gap

This approach starts by identifying the potential yield,
the maximum yield obtainable depending on solar ra-
diation, temperature, atmospheric CO2, and genetic
traits. These features govern the length of the growing
period. Thus, the potential yield is location-specific
because of the climate (see (Fischer, 2015) and (Cli-
maTalk, 2024) for more detailed definitions and ex-
planations). The yield realized by the farm is lower
than the potential yield, and the difference between
the potential and the actual yield is the yield gap. The
yield gap is caused by limiting factors such as wa-
ter and nutrient availability and reducing factors such
as weeds, pests, diseases, and pollutants. Usually, a
farm’s yield does not exceed 80% Farm management
practices are important to reduce the yield gap. In
Table 2, (Devkota et al., 2024) identifies the manage-
ment factors that primarily affect the yield.

2.3 A Model

We set up a model based on the yield-gap concept as a
tool for management decisions. The model envisages
stress factors and actions to relieve the stress. Each
production input can relieve one specific stress fac-
tor. Therefore, the farmer’s action consists of weigh-
ing out the input quantity. Let us index stress factors
by i. We denote the conditional yield with yi, i.e., the
yield obtained when only the stress factor i is binding.
Our first step is to set up a functional form for yi. Let
us denote the potential yield with ȳ. In addition, we
define si ∈ (0,1) to identify the share of the potential
yield lost due to the stress and xi as the strength of
the measure taken to counteract the stress. We also
define gi(xi) ∈ (0,1) as a function of xi that gives
the effectiveness of the undertaken measure. Further-
more, we assume that gi is increasing in xi according
to the functional form gi(xi) = 1− e−λixi . We further
introduce the maximum share of yield that can be re-
covered at the maximum effectiveness of the measure.
Let us identify it with s̄i.

Under these definitions, the conditional yield can
be written as

yi(xi) = ȳ[(1− si)+ s̄i(1− e−λixi)] (2)

When several stress factors are binding, the real-
ized yield corresponds to the most binding stress fac-
tor: y = min(yi).

As mentioned above, the economic theory of pro-
duction uses the Leontief type function. Its main fea-
ture is that relieving one stress factor can be ineffec-
tive because of the constraints of the other stress fac-
tors. The optimal strategy in this case is to level out
the conditional yields: yi = ŷ.

Using equation (2), the yi = ŷ condition can be
written as

ȳ[(1− si)+ s̄i(1− e−λixi)] = ŷ (3)

Solving xi, we get:

x̂i =− 1
λi

ln
(
(1+ s̄i − si)ȳ− ŷ

s̄iȳ

)
(4)

With this result, we can go to the profit function
(equation 1), which in our case is

π = pw min(ŷi)−∑
i

pxi x̂i (5)

Because all the x̂i deliver a yield equal to ŷ, we have
min(ŷi) = ŷ and equation (5) simplifies to:

π = pwŷ−∑
i

pxi x̂i (6)

Remembering that x̂i depends on ŷ, the whole profit
function depends on ŷ. Therefore, the farmer’s prob-
lem is to maximize profit with respect to ŷ:

max
ŷ

π = pwŷ−∑
i

pxi

[
− 1

λi
ln
(
(1+ s̄i − si)ȳ− ŷ

s̄iȳ

)]
The first order condition (FOC) for a maximum is:

pw −∑
i

pxi

1
λi(1+ s̄i − si)ȳ−λiŷ

= 0

Numerical methods can solve the FOC. Let us denote
the solution with ŷ∗. Plugging ŷ∗ in equation (4), we
obtain the optimal level of each input x̂∗i .

The one stress factor case can help understand-
ing because of its analytic solution. In the one stress
factor case, we can drop the i subscript from equa-
tions, and the sum symbol is unnecessary. Solv-
ing the farmer’s maximization problem in this case,
we obtain: ŷ∗ = (1 + s̄ − s)ȳ − px/(pwλ) and plug-
ging into equation (4) we get the optimal input level:
x̂∗ =− 1

λ
ln(px/(pwλs̄ȳ)).

3 MODELING THE WHEAT
SYSTEM

The model presented in the previous section will be
used to to shape the behavior of agents in the agent-
based model. As is known, one of the advantages

Modeling and Simulating the Italian Wheat Production System: A Parallel Agent-Based Model to Evaluate the Sustainability of Policies

339



of agent-based models is the possibility they offer to
handle heterogeneity. Even though there are other
ways to allow for heterogeneity in our context (we
will talk about them in the conclusions and future re-
search directions section below), our first device is to
identify types of farms in the Italian system. We let
all the farms decide according to the functional forms
displayed in the previous section. Still, the parame-
ters involved in the equations (ȳ, λ, s, s̄) are estimated
conditioning on the type. The different types of farms
are identified by implementing a cluster analysis on
real farm data.

This study utilizes the RICA (Rete
d’Informazione Contabile Agricola) database, a
comprehensive dataset representing 9048 Italian
farms that have cultivated durum wheat for 16
years. The RICA database is essential for evaluating
agricultural production systems, offering detailed
information on farm characteristics, inputs, and
outputs. For the following analysis, the dataset was
filtered to focus exclusively on wheat-producing
farms for 2016, resulting in a dataset encompassing
2140 distinct farms. The choice of 2016 relies on
the fact that seasonal weather conditions strongly
influence wheat production, input use, costs, and rev-
enues. Favourable agro-climatic conditions in Italy
characterized the year 2016. Thus, we assume—at
least in a first approximation—to be working under
stable and favourable climatic conditions, effectively
disregarding the impact of adverse weather. Key
variables extracted from the dataset include: 1)
Produced Quantity (the total quantity of wheat
produced), 2) Crop Acreage (the area dedicated to
wheat cultivation), 3) Herbicide Use (quantities of
various herbicides applied), 4) Nutrient Applications
(quantity per hectare of nitrogen, phosphorus, and
potassium, and 5) Machinery Use (hours of machine
operation per hectare).

A clustering analysis was performed to group
farms into distinct categories based on their input-
use efficiency and productivity. Firstly, input-to-yield
ratios were calculated to normalize farm differences
and enable comparison. Then, three key performance
indicators (herbicide ratio over yield, elements ra-
tio over yield, and machinery hours per hectare over
yield) were selected as input variables for clustering.
We refer to the mentioned ratios as inefficiency be-
cause they increase as the inputs increase and the
yield decreases, i.e., the farmer obtains less product
with more inputs. A range of cluster numbers (k)
from 2 to 15 was tested using the k-means algorithm.
The elbow method was applied to identify the opti-
mal number of clusters, leveraging the inertia met-
ric, which reflects cluster compactness. In particular,

the chosen k maximizes the second difference of the
inertia. Figure 1 displays a visual representation of
the method. In our case, the process suggests k = 5.
The final clustering analysis let us classify the Ital-
ian wheat farms into five distinct clusters, with clus-
ter sizes ranging from 155 to 813 farms. Figure 2
provides boxplots of each cluster’s distribution of the
key inefficiency ratios.

Figure 1: Inertia as a function of the number of clusters.

In the figure, clusters are sorted for increasing in-
efficiency levels of fertilizers. The inefficiency rank-
ing is confirmed for herbicides and machine use in
the other clusters, except for clusters 1 and 2. Clus-
ters 1 and 2 have a higher dispersion of fertilizer in-
efficiency and less regular behavior of the other inef-
ficiencies. Prominent is the high level of tractor use
in cluster 1. The interpretation of these odd clusters’
behavior deserves further investigation.

4 DISTRIBUTED AGENT-BASED
SIMULATIONS

The research presented in this paper aims to simulate
the reaction of the Italian wheat production system to
events such as changes in policies or shocks. To have
reliable results, we require the simulation to meet the
features of the Italian system, especially the number
of farms. To this aim, we classify wheat farms in clus-
ters and magnify each cluster so that the total num-
ber of farms in the simulation is comparable to the
number of farms producing wheat in Italy. Accord-
ing to the latest Italian agriculture census holding data
for 2020, the number of grain producers in Italy is
325313 ((Gismondi, 2022) p. 11). Filtering the cen-
sus data by grain type, we count 195735 observations
for durum wheat. The magnification is implemented
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Figure 2: The clustering of Italian wheat farms according to
their fertilizer, herbicide, and machinery use.

by estimating the statistical distribution of relevant
clusters’ variables and sampling from these distribu-
tions, keeping the relative cluster size unchanged until
the scale of the Italian system is reached. The magni-
fication using artificially generated agents is a practice
needing some care (Roxburgh et al., 2025); however,
in our view, it brings benefit because we could provide

more significant simulation results even at a regional
or provincial scale.

The considerable size of the system prompted us
to consider the possibility of running our simulation
in parallel using high-performance computing tech-
nologies. From this point of view, the Repast Suite
(https://repast.github.io) offers interesting opportuni-
ties. Repast provides facilities to run agent-based sim-
ulations. It comes in three different toolkits. The clas-
sic one is “Repast Simphony,” a Java-based toolkit de-
signed for use by personal computers and small clus-
ters. The increase in computer availability led the
development team to release the “Repast for High-
Performance Computing” toolkit, a “C++-based dis-
tributed agent-based modeling toolkit designed for
use on large computing clusters and supercomput-
ers.” The most recent toolkit is Repast for Python.
It is a Python-based distributed agent-based model-
ing toolkit for applying large-scale distributed ABM
methods.

The simulator is currently under development us-
ing “Repast for Python”, which, in addition to other
facilities, builds some of its functions on mpi4py
to ease the management of parallel computation.
Presently, the simulator implements the Farm and
the PolicyMaker classes. The Farm class has the
decide_production_inputs function that performs
the calculations presented in section 2.3. The code
is executed with parameters sampled using the esti-
mated cluster distribution. In other words, the sta-
tistical analysis of the clusters found in section 3 al-
lows the calibration of the model. This preserves
the relevant farm heterogeneity seen in reality. The
PolicyMaker class affects farm decisions by manag-
ing input prices, i.e., by charging taxes on detrimental
inputs. It will be enriched by International, National,
or local policies in the future. To simulate in parallel,
the policy maker is created in the master rank, and
a copy of the original agent is sent to all the other
ranks. In Repast jargon, we say that the original agent
is ghosted to all other ranks. A second important issue
is load balancing among ranks at initialization. To this
aim, we partition clusters between two ranks where
needed to keep proportionality with the n displayed
in Figure 2 among clusters and an equal number of
agents across ranks.

5 CONCLUSION AND FUTURE
RESEARCH

The present work describes the plan to build a model
representing the Italian wheat production system. We
first built a model for the single-farm production and
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input decision. We then identified the heterogeneity
of farms with a clustering analysis performed using a
sample survey database. Finally, we used the detected
heterogeneity to populate an agent-based model to
evaluate the effects of policy introduction or the oc-
currence of significant exogenous shocks. To al-
low the possibility to simulate with as many agents
(farms) as needed, we decided to implement the sim-
ulator using parallel simulation techniques. This will
allows to scale to the Italian system size (which is in
the order of a few hundred thousands), or more in case
the model would be used to analyze wider areas.

The choice to implement in a parallel
computation-enabled environment is convenient
because the model is part of a wider project that
aims to include modules that require additional
computational power.

One of these modules aims to introduce the en-
dogenous computation of the wheat price. As one ex-
pects, this price is heavily affected by international
trade conditions. The module we intend to add rep-
resents the international wheat markets, where agents
are large subcontinental geographic areas. The inter-
national prices are then computed by balancing the
international demand of excess demand areas and the
excess supply of areas with production higher than
domestic demand. We plan to develop this mod-
ule following our previous research (Giulioni, 2019;
Giulioni et al., 2019). This task will allow accounting
for the double-sided interaction between wheat price
and individual farmers’ production decisions. In Sec-
tion 2, the wheat price is a variable affecting wheat
production decisions. In turn, wheat production af-
fects demand and supply in international markets, and
therefore international prices.

A second module allows the computation of the
environmental impact of the wheat production ac-
tivity. We apply the Life Cycle Assessment (LCA)
methodology to the wheat production process. The
methodology can be applied both at the farm and ag-
gregate levels. Performing the LCA individually, we
can endow agents with environmental awareness. As
an example, the ReCiPe LCA methodology outputs
endpoint indicators measuring the damages to human
health in terms of the shortening of healthy life, i.e.,
the “Disability Adjusted Life Years” (DALY), or the
damages to ecosystem quality measured by the num-
ber of local species lost per year. Integrating this
information in the farmers’ decision process could
nudge agents to adopt more sustainable production
strategies. The model presented in section 2 has to
be revised to account for this effect. The LCA at the
aggregate level will mainly inform policymakers of
the potential environmental effects of the policies they

plan to introduce.
As a technical note, we developed the LCA mod-

ule in Python using the Brightway LCA Software
Framework. This fully complies with our choice of
the Repast for Python toolkit and will allow us to de-
liver the whole software bundle in Python.
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