Associating a Markov Process with Maude Executable Modules

Lorenzo Capra®?
Dipartimento di Informatica, Universita degli Studi di Milano, Via Celoria 18, Milan, Italy

Keywords:

Abstract:

Maude, Stochastic Petri Nets, Markov Process, Adaptive Distributed Systems.

In this paper, we explore a methodology for generating a Markov chain directly from executable modules in

Maude. Initially, we incorporate stochastic parameters in Maude specifications in a straightforward and flexible
way. Then, we focus on accurately computing state transition rates, a challenging task due to the complexities
introduced by rewriting logic semantics. Our methodology is general and relies on a structured description of
states that includes the exact state transition rates. This capability allows for the complete automation of the

process, a crucial aspect of our ongoing research.

We illustrate this methodology using stochastic rewritable Petri nets, a powerful model for adaptive distributed
systems. Finally, we present some preliminary findings based on application examples.

1 INTRODUCTION

Maude (Clavel et al. (2007)) is a high-performance,
purely declarative language with rewriting logic se-
mantics (Bruni and Meseguer (2003)). It achieves ef-
ficiency and expressiveness through pattern-matching
modulo operator attributes, sub-typing, partiality,
generic types, and reflection. A Maude system mod-
ule is an executable specification for a distributed sys-
tem. The Maude runtime engine provides various fa-
cilities for model checking, verification of LTL for-
mulae, infinite-state analysis, and symbolic reachabil-
ity. Additionally, Maude has been utilized as a logical
framework for other formalisms, such as Petri Nets
(PN), Automata, and Process Algebra. These for-
malisms, though powerful, lack the necessary features
for modeling adaptable systems intuitively.

In this paper, we introduce a new methodology to
generate a Markov process from user-defined Maude
executable modules (including stochastic parameters)
directly and systematically. The process, based on
‘pre-processing” the original modules, is entirely au-
tomatable. Calculating the stochastic matrix exactly
is challenging due to rewriting logic semantics, which
obfuscates multiple state transitions. We will illus-
trate our methodology, which functions for any Maude
executable specification, through a challenging ap-
plication domain: stochastic PN with a dynamically
changing structure. This application example outlines
all the potential issues related to the accurate deriva-

(2 https://orcid.org/0000-0002-1029-1169

106

Capra, L.
Associating a Markov Process with Maude Executable Modules.
DOI: 10.5220/0013567900003970

tion of a Markov process from Maude executable
modules.

Related Works. Several options exist for timed
and probabilistic analysis using Maude. (Meseguer
(2012)) presents a non-up-to-date survey. The frame-
work presented in (Olveczky and Meseguer (2002))
enables deterministic time specifications for analyz-
ing real-time systems. A branching-time analysis
framework for Maude specifications is described in
(Rubio et al. (2021)). The approach detailed in (Agha
et al. (2006)), based on probabilistic rewrite theories
associated with actors, enables probabilistic discrete-
event simulation. Recently, (Rubio et al. (2023)) in-
troduced a comprehensive method for utilizing Maude
in stochastic analysis via a probabilistic extension of
its strategy language. Notably, this strategy language
operates at the “object” level rather than the meta-
level.

Our approach and objectives significantly differ
from other works. Essentially, we aim to equip any
executable specification with time semantics, mark-
ing an important step toward fully automating the pro-
cess. The rewriting logic establishes a labelled transi-
tion system (TS) associated with ground terms of any
type. However, deriving a consistent Markov chain
for this TS presents challenges for three main rea-
sons: TS state transitions correspond to equivalence
classes of rewrites; equivalent rewrites may be logi-
cally indistinguishable and need to be united; and lo-
cal rewrites of subterms within a specific term may

In Proceedings of the 15th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2025), pages 106-116

ISBN: 978-989-758-759-7; ISSN: 2184-2841
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

occur. To our knowledge, none of the mentioned tech-
niques addresses these issues. Our technique, which
defines a kind of meta-operators at the object level,
is simpler to use and much more efficient than the
predefined Maude meta-level modules and more ac-
curate than the Maude strategy language. Unfortu-
nately, for a comprehensive description, we need to
provide some details of the Maude syntax and the pat-
tern matching mechanism used by the Maude rewrit-
ing engine.

In the paper, we focus on continuous-time Markov
chains (the model underneath SPN). It is worth
noting that through straightforward rate normalisa-
tion, we can employ the same approach to derive a
deterministic-time Markov chain.

We begin integrating stochastic parameters into
a Maude specification flexibly and intuitively. Next,
we tackle the challenge of accurately calculating state
transition rates by methodically preprocessing exe-
cutable modules so that they generate an enhanced
description of states associated with terms. Thereby,
we obtain the corresponding CTMC generator ma-
trix through fundamental text processing. We illus-
trate this approach through the stochastic extension
of rewritable Petri Nets (Padberg and Kahloul (2018);
Capra (2022); Capra and Kohler-Buimeier (2024)), a
versatile model for adaptive distributed systems.

2 THE Maude SYSTEM

Maude syntax is based on (conditional) equations and
rules. Each side of a rule or equation is a term of a
certain kind, which may involve variables. Rules and
equations operate through intuitive rewriting, where
instances on the left side are replaced with instances
on the right. A functional module acts as a func-
tional program, defining operations using equations
as simplifications. It outlines a equational theory
(X,EUA) of membership equational logic (Bouhoula
et al. (2000)): X is the signature, encompassing the
declaration of sorts, subsorts, kinds' and operators;
E contains equations and membership axioms; and A
contains the operator’s equational attributes (assoc,
comm, ide, idem). The model of (X, E UA) is the ini-
tial algebra Ty /g4, mathematically corresponding to
the quotient of the ground-term algebra 7Ty, formed
by the equivalence classes of the relation induced by
EUAon Ty.

Under Church-Rosser (confluence), sort-
decreasing and termination conditions —modulo

'Kinds are equivalence classes implicitly formed by
connected components of sorts under the subsort partial or-
der. Terms of a certain kind without a sort denote errors.

Associating a Markov Process with Maude Executable Modules

A- on theory (X,E) (Bouhoula et al. (2000)), any
ground term is rewritten through equations (used as
simplification rules) to a unique canonical form that
has the least sort according to the sub-sort partial
order and is made up of constructors (operators with
the ctor attribute). These canonical forms define an
algebra isomorphic to the initial algebra, ensuring
consistency between mathematical and operational
semantics.

A Maude system module includes (in addition
to equations) rewrite rules representing local tran-
sitions in a concurrent system. It defines a gener-
alised rewrite theory (Bruni and Meseguer (2003))
R = (X,EUA,R). Here, (X,EUA) acts as the un-
derlying equational theory, and R is a set of rewrite
rules. This theory captures the behaviour of a con-
current system, with (X, E UA) defining the algebraic
structure of the states and R describing the concurrent
transitions. The initial model of R provides each kind
k with a labelled transition system (TS) where states
are elements of Ty /g4« and state transitions occur as

[o]

[f] = [¢'], with [a] denoting an equivalence class of
rewrites. The crucial coherence property, discussed
in the next sections, ensures that a system module is
executable using the Maude rewriting engine.

3 (REWRITABLE) STOCHASTIC
PETRI NETS

This section flexibly incorporates stochastic pa-
rameters into rewritable PT nets (RwPT) (Pad-
berg and Kahloul (2018); Padberg and Schulz
(2016); Capra (2022); Capra and Kohler-BuBBmeier
(2024)). This definition integrates and com-
pletes (Capra and Kohler-Bussmeier (2023); Capra
and Kohler-BuBSmeier (2023); Kohler-BuSmeier and
Capra (2024)) using a systematic approach.

All the concepts discussed hereinafter are based
on multisets: For a set D, a multiset (or bag) b in D is
defined as amap b : D — N, where b(d) represents the
multiplicity of the element d in . We denote the set
of all multisets in D by Bag[D]. Common arithmetic
and relational operators can be extended to multisets
element by element.

A PT net (Reisig (1985)) (Figure 1) is a finite,
non-empty bipartite multidigraph. Its nodes are di-
vided into two types: places (represented by circles),
which illustrate state variables, and transitions (repre-
sented by bars), which denote events that trigger local
state changes. A multiset m of places (m € Bag|P]),
referred to as marking, represents a distributed state.
Edges may be classified as: Input edges (from places

107

SIMULTECH 2025 - 15th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

N
(" 2 N\
ta ty []
0.3 0.5
t te
2
0-25 2.0
tq
— =)
3.0
Ds

Figure 1: An example of SPN.

Reachability Graph

Showing all markings.

Total markings: 7

Figure 2: The CTMC generated by the SPN in figure 1.

to transitions), Output edges (the reverse), and in-
Hibitor edges (marked by a small circle endpoint).
The adjacency lists of transitions ¢ € T are also ex-
pressed with multisets in Bag[P]: I(z), O(t), H(t).
The interleaving PT behaviour is based on tran-
sition firing rule: t is enabled in m if and only if:
1(r) <m AVp e P: H(t)(p) =0V H()(p) > m(p).
If ¢ is enabled, it can reach m’ = m+ O(t) — I(¢) (aka

108

m[rym’). A PT system is a pair (N,mo) made up
of a net and a marking whose behaviour is defined
by the reachability graph (RG), a labelled multidi-
graph (V,E) such that: my € V; m € V Am[t)m' =
meVAmsm cE.

In stochastic PT nets (SPN) (Chiola et al. (1993)),
a CTMC is associated with the RG by assigning to
each transition ¢ a negative exponential pdf with (pos-

sibly marking dependent) rate A (¢,m;). The generator
matrix is the following.

Qi.j = Lemfoym; Atsmi), Qi =1=Y;.j2 Qij-

The SPN depicted in Figure 1, along with its cor-
responding CTMC shown in Figure 2 (both illus-
trations generated using the GreatSPN toolset (Am-
parore et al. (2016)), serves as a basic model of a
distributed system with two processes on either side,
sharing resources at places p; and p3. All transitions
are modelled as “infinite servers”, with firing rates
proportional to enabling degree. For example, the fir-
ing rate of tap in my is 0.3 %2 as two instances of za;
are enabled concurrently.

3.1 Stochastic PT Nets in Maude

A rewritable PT (RwPT) (Padberg and Schulz (2016);
Padberg and Kahloul (2018); Capra and Kohler-
BuBmeier (2024)) functions as an algebraic represen-
tation of a mutable PT, uniformly merging the firing
rule with net rewrite rules. We will initially consider
the former and then generalise by including the latter.

We enhance RwPT by associating exponential
rates with rewriting rules using a method that can be
applied to any system module. We retain most of
the concepts of Capra and Kohler-Bumeier (2024)
while introducing ad-hoc changes. The formalisation
of stochastic RwPT includes a hierarchy of modules
available at https://github.com/lgcapra/rewpt. We in-
clude code excerpts for the reader’s convenience.

This formalisation is based on multisets which are
implemented as a rich data type (rather than a sim-
ple commutative monoid) for efficiency reasons. The
assoc, comm operator _+_, which is also marked as
a constructor, offers an intuitive description of multi-
sets as weighted sums. The Pbag sort (from module
BAG{Place}) holds multisets of places. For example,
the term 3. p(1) + 1. p(2) represents a multiset
with three occurrences of p; and one of p;.

The following excerpt from the PT-NET module
outlines the PT signature. It is parametric in the type
of node labels used. Transitions (terms of sort Tran)
are distinctly identified through labels linked to ad-
jacency lists, expressed as Pbag triples enclosed be-
tween [] (sort Tmatrix terms). Nets are defined
in a modular fashion using the assoc,comm oper-
ator _;_ Net Net -> Net, along with the sub-
sort relation Tran < Net (both inherited from the
predefined MAP module). A term of kind [System]
comes from juxtaposing a Net and a Pbag (a mark-
ing). A conditional membership axiom ensures that
the System terms are built of non-empty nets?. Two

2This choice enables the inclusion of the module MAP in

Associating a Markov Process with Maude Executable Modules

operators intuitively map the transition-enabling con-
dition and the firing effect.

Listing 1: PT signature.

fmod PT-NET{L :: TRIV, PL :: TRIV} is
pr MAP{L,Tmatrix{PL}} (sort Map{L,Tmatrix{PL
}} to Net, sort Entry{L,Tmatrix{PL}} to Tran,
op emptyM to emptyNet) . s renaming
sort System .
varL:L$ELt . var N: Net . varsM I O H: Pbag .
op __ : Net Pbag —> [System] [ctor] . s partial fun.
cmb NM: System if N =/= emptyNet .
op enabled : Tran Pbag —> Bool .
eq enabled(L |-> [I,0,H]M) =I <=M and-then H >
M.
op fire: Tran Pbag —> Pbag .
eq fire(L |->[I,0H],M)=M-I)+0.
endfm

The next excerpt is from module SPN, which inte-
grates stochastic parameters into PT-NET. Transition
labels include a String, a Float (the rate), and a Nat
(the firing policy).

Listing 2: SPN signature.

fmod SPN is
pr PT-NET{T1lab, Nat} .
pr CONVERSION .
vars MM’ : Pbag . var B : NePbag . var P : Place .
var L : Tlab . var Q : Tmatrix . vars KK’ D : NzNat .
op firingRate : Tran Pbag —> [Float] .
eq firingRate(L |-> Q, M) = if pol(L) == 1| then
rate(L) else rate(L) * float(if pol(L) == 0 then
ed(I(Q), M) else min(pol(L), ed(I(Q), M)) £i) fi.
op ed : Pbag Pbag —> [NzNat] .
eqed(nilP,M)=1.
eq ed(B, M) = $ed(B, M, MAXNAT) .
op $ed : Pbag Pbag NzNat —> [NzNat] .
eq$ed(K.P+M,K’ .P+M,D)=
$ed(M, M, min(D, K’ quo K)) .
eq $ed(nilP,M,D)=D.
endfm

A Tran term looks like:
t(s, R, P) |-> [I,0,H].

The firingRate operator defines state-
dependent firing rates. This version is based on
the enabling degree (ed) of a transition in a marking,
which refers to the number of instances of a transition
that could be fired simultaneously. Under the infinite
server policy (0), the transition firing rate is directly
proportional to ed. The k-server policy, with k > 0,
uses the smaller value between ed and k as the
multiplicative factor of the rate parameter. The
1-server policy maintains a constant firing rate equal
to the rate parameter.

a protected way, that is, preserving its initial semantics.

109

SIMULTECH 2025 - 15th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

The system module SPN-SYS adds the rewrite rule
firing to the PT signature. This rule includes the
topological aspect of transition firing and the asso-
ciated rate. Notice the use of matching equations
in the rule’s condition: The free variables T, N’
are first matched against the canonical term bound
to the variable N (and consequently bounded), and
then R:Float is bound to the canonical form of
firingRate(T, M).

Listing 3: SPN firing rule

t("c”,0.25,0) |->[2.p(2),2.p(1),nilP];
t(d”,3.0,0) |->[1.p4), 1.p(5),nilP];
t("e”,2.0,0) |->[1.p4), 1.p(5),nilP];
t("£7,0.5,0) |->[1.p(5), 1.p(1) +1.p(3),
nilP].
eqm0=2.p(1)+1.p@3).
endfm

mod SPN-EXE-SYS is
inc SPN-EXE .
inc SPN-SYS .

endm

mod SPN-SYS is
inc SPN .
varM: Pbag . var T : Tran. vars NN’ : Net .
var R : Float
crl [firing] : NM=> N fire(T, M)if T; N :=N/\
enabled(T, M) /\ R := firingRate(T, M) .
endm

This approach may be uniformly extended to any
system module M. We assume that each rewrite rule
r within M adheres to a similar pattern, where ¢” sig-
nifies a Float term (if condition C is missing 1" is a
ground term):

r:t=>t"if C/\R:Float:=t"

This representation facilitates the automated con-
version of rules and the evaluation of different shapes
of state dependency simultaneously with the applica-
tion of rules.

We hereinafter suppose that a stochastic RwPT is
defined by a system module M including SPN-SYS
and two constants (aliases): op net : -> Net and
op mO : -> Pbag. The transition system generated
by the term net mO, denoted T'S(net mO,M), con-
tains the reachability graph (RG).

The module SPN-EXE below contains the SPN sig-
nature in Figure 1, the system module SPN-EXE-SYS
includes the SPN signature and the firing rule. The
transition system 7'S(net mO,SPN-EXE-SYS) resem-
bles the RG described in Figure 2. However, it differs
by having single edges all marked firing. Figure
2 reveals multiple transitions between states (due to
two pairs of SPN transitions having the same effect),
which makes the layout of Maude TS inappropriate
for the derivation of a Markov process.

Listing 4: Signature of SPN in figure 1 and associated sys-
tem module.

fmod SPN-EXE is
pr SPN .
opnet :—> Net .opmO:—-> Pbag.
eqnet =t("a”,0.6,0) |->[1.p(1), 1.p(2), 1.p(3)]

)

t(”a”, 0.3,0) |-> [1.p(1), I . p(2), nilP];
t("b”, 1.0, 0) |=> [1 . p(1) + 1. p(3), 1 . p(4), nilP
1;

110

3.2 Rewritable SPN

The system module in listing 5 includes net transfor-
mations described by rewrite rules. The merge rule
combines two PT transitions sharing the tag when
both are enabled or disabled (e.g., those with tag "a"
in the listing 4). This merge relies on summing their
adjacency lists, resulting in a transition with a rate
parameter equal to the sum of the two. fold unites
two transitions with identical adjacency lists (e.g.,
those with tags "d" and "e"), resulting in a transition
whose rate parameter equals the sum of the originals.
Finally, aggr unites two transitions when the postset
of one aligns with the preset of the other, provided
that this is isolated from the rest of the net and the
second transition is not enabled (this makes the rule’s
formalisation a bit tricky). The resulting rate param-
eter is determined by the sum of the inverses of the
two original rate parameters. Each rule assumes that
the involved transitions share the firing policy. Rules
have a constant rate for simplicity.

Notice that rules merge and aggr are marking-
dependent, while fold is merely structural. These
rules are illustrated in Figure 3, which refers to the
example SPN in Figure 2.

Listing 5: Example of rewritable SPN

mod SPN-EXE—-SYS—REW is
inc SPN—EXE-SYS .
vars LL’ : Tlab.vars TT : Tran. var P : Place.
vars BB°MIO:Pbag.varsrr’ R:Float.varN:
Net .
var W: String . var E: Nat . var Q : Tmatrix.

crl [merge] : (N;T;T')M=>
(N ; merge(T, T’, t(W, rate(T) + rate(T’), E))) M
if W:= tag(T) /\ W= tag(T") /\ E := pol(T) /\ E = pol(T
)

/\ enabled(T, M) = enabled(T’, M) /\ R :=0.01.
crl [fold] : L |->Q; L |->Q=>

t("fold”, rate(L) + rate(L’), E) |-> Q
if E:=pol(L)/\ E=pol(L’)/\ R:=0.02.

crl [aggr] : (N; T; T)M=>

Associating a Markov Process with Maude Executable Modules

P4 tde

fold

Ps

taef
5/11

Figure 3: Net rewrites.

(N ; aggr(T, T’, t(tag(T) + """ + tag(T’),
r+r’ /(r+r’),E)))M
if E:=pol(T) /\ E =pol(T’) /\ enabled(T’, M) = false
A I:=1I(T")/\ 0:=0(T)/\ 0=1I/\ support(I) =
(places(N) U support(I(T) + H(T) + M+ 0(T’) + H(T")
)
=empty /\ r :=rate(T)/\ r’ :=rate(T’)/\R:=
0.05.
endm

4 ASSOCIATING A MC WITH A
SYSTEM MODULE

This section establishes the formal methodology for
associating a CTMC with the ground terms of a
Maude system module. Although rewriting logic the-
oretically supports concurrent application of rewrite
rules, our approach is directed towards a stochastic
interpretation by considering the interleaving seman-
tics adopted by the Maude rewrite engine.

Although we instantiate the methodology to the
formalisation of rewritable SPN provided in the pre-
vious section, we will provide general rigorous guide-
lines that function for any system module.

We first recall some essential aspects of the pattern
matching mechanism (modulo A) used in Maude. Let
X encompass the variables utilised in R: Each x € X is
associated with a particular kind or sort. By incorpo-
rating them into the signature ¥, one obtains a term al-
gebra T3 (X) in which the terms may contain variables
from X and appear in equations and rules. A (well-
sorted) ground substitution is defined as a mapping
0 : X — T such that the minimal sort of o(x) is less

than or equal to that of x. By performing term substi-
tution for variables conventionally, the substitution is
extended to a homomorphic function ¢ : Tx(X) — Tx.

Consider a term 7 € Ty (X), which corresponds to
the left-hand side of an equation or rule, and a subject
term u € Tx. We say that ¢+ matches u if there is a
substitution ¢ such that o () =4 u. In other words,
o (t) and u are equivalent modulo the axioms A.

4.1 Matching and Rewrite: The
Congruence Property

The general structure of the rules is defined by
t=>t if CiA...C,

wherein 7 and ¢’ are terms (subsort decreasing) Ty (X)
of the same kind, and C; may be a membership u; : s,
an equation u; = u}, or a match u; := u. The term ¢’
can encompass “free” variables that do not appear in
t, provided that they are bounded by a match u; := u;
and do not appear in any C;, j < i. In this regard, u;
must constitute a pattern for EUA. That is, if one ap-
plies a substitution of variables in u; using canonical
terms, the result should be a canonical term.

The rules R within the module M must be coherent
with the equations £ modulo A: for any ground term
u, each one-step rewrite (modulo A) u — ' implies
that if 7 is the canonical form of u, there is a one-step
rewrite i — u” such that ¥’ =g_4 v” («' and u” have
the same canonical form). Coherence determines the
—otherwise impossible— decidability of rewriting un-
der theory E UA. First, a term is reduced to its canon-
ical form using E UA, followed by rewriting (modulo
A) this canonical form with R. In other words, any

111

SIMULTECH 2025 - 15th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

Derivation of a CTMC from a system module M

stochastic q ext .
parameters i L CTMC solver
(M) (Q
(M+)

Figure 4: The steps to analyze a module M.

rewrite involving R on a term u can be emulated us-
ing u’s canonical form. This strategy, based on reduc-
ing terms to canonical forms before applying rules, is
sound and complete provided that it is supported by
a matching-modulo-A algorithm like that used by the
Maude engine, which implicitly relies on coherence.

A restrictive sufficient condition for coherence is
that constructors do not appear as right terms in equa-
tions. This does not apply to our multiset definition,
where + is defined through equations. The Maude sys-
tem provides a more general test for unconditional
rule s.

A broadly applicable condition for arule r : t =>
" if cond to be coherent is that 7 is a pattern for
all variable substitutions ¢ that make cond provably
true. All Maude examples we have seen in the lit-
erature meet this criterion, easy to verify. We will
implicitly rely on this in the following discussion.

In this context, we should also ensure stochastic
coherence, which is guaranteed if for each rule r the
top operator in term ¢” in the binding R : Float :=t"
is a total function (its codomain is a sort, not a kind).

4.2 MC Definition and Related Issues

We aim to establish general criteria for obtaining a
Continuous-Time Markov Chain (CTMC) from the
transition system (TS) of a canonical ground term u of
a specified sort § within a system module M. These
criteria allow us to derive the generator matrix Q of
the CTMC, which is a crucial initial step toward au-
tomating the procedure. Our approach involves pre-
processing the module M to obtain an extended TS
that contains the necessary information to define Q.
This entire process is illustrated in Figure 4.

The definition of Q can be quite nonintuitive. In

[o]

the context of rewriting logic, a state transition u; —
u; (where u; and u; are the canonical representatives
of the equivalence classes [i;| and [u;]) represents
a group of equivalent rewrites. These rewrites cor-
respond to the interleaving of rule applications that
yield the same outcome.

In a stochastic setting, where the interleaving
semantics is applied—the approach adopted by the
Maude interpreter—the notation [¢] signifies equiv-
alent single rewrites. Specifically, this means that
two matches (ground substitutions) are considered

112

equivalent, denoted as ¢ =i o’ for a given rule
r:t =t if cond, if and only if the following holds:
1. o(t) = u} and 0’ (r) = u, where ! and u!' are sub-
terms of ;. 2. Both o(cond) and ¢’(cond) are prov-
ably true. 3. The terms obtained by replacing the
subterm u; in u; with o(t’), and the subterm u} with
o'(1"), respectively, are equal (with everything con-
sidered according to AUE).

If u} and u] coincide with u;, we state that rule r
applies to the top operator. We will start our discus-
sion with this common scenario.

To accurately define the transition rate from state
u; to state u ;, we must consider the contributions of all
equivalent matches. Given two ground terms u; and
uj, let [a,] encompass the matches corresponding to
equivalent rewrites u; — u; associated with r € R (we
will omit the indices i and j). Furthermore, let A, 5 de-
note the value assigned to the free variable R:Float
(appearing in the condition of each rule r) by substi-
tution o. A plausible definition of matrix Q is:

0li,jl=Y o (1

reR,0€(ay)

To obtain the Markov chain generator matrix, it is es-
sential to quantify all rewriting instances that corre-
spond to specific state transitions. We must address
three major issues:

1. The transition system (TS) generated by Maude’s
‘search® model checker can be visualised using
the ‘show search graph‘ command. This TS in-
cludes folded equivalent rewrites, with edges rep-
resenting state transitions annotated by the rules
that triggered those transitions. Matches for spe-
cific terms can only be obtained using the ‘match’
command or the analogous metalevel operator.

2. Some matches that lead to equivalent rewrites
should be considered identical. This means that
although equation (1) is often sufficient, it tends
to overestimate the rates of state transitions, as we
will demonstrate.

3. The possibility that a rewrite #; — u; may result
from rewriting a local subterm adds complexity to
the computation of state transition rates.

Definition 1 Two equivalent matches ¢ and ¢’ of a
rule r are indistinguishable (=2,) if one can be ob-
tained from the other through a permutation of vari-
ables of the same kind.

This concept induces the division of [¢,] into sub-
classes. Consequently, we can modify Equation 1 ac-
cordingly (Equation 2 refers to the definition above):

o= Y A 2

reR,[o]~, Cloy] '

S GETTING THE MC
GENERATOR

This section describes how to preprocess a given sys-
tem module M to obtain extended modules that con-
tain all the necessary information to derive the associ-
ated Markov chain. We will illustrate this procedure
using the RwPT with its initial setup depicted in Fig-
ure 1. The fundamental concept involves rephrasing
each rewrite rule into an operator that emphasises the
potential matches of the rule, as formalised in the pre-
vious section. We use pre-defined module templates,
some of which can be found in the listing 6.

Listing 6: Match enconding

fmod ANY-MATCH-CLASS is
sort AnyMatchClass .
endfm

view AnyMatchClass from TRIV to ANY-MATCH-
CLASS is sort E1t to AnyMatchClass .
endv

fmod MATCH-CLASS{X :: TRIV} is
pr ANY-MATCH—-CLASS .
sorts MatchGroup{X} MatchClass{X} .
subsort X$E1t < MatchGroup{X} .
subsort MatchClass{X} < AnyMatchClass .
op _,_ : MatchGroup{X} MatchGroup{X} ->
MatchGroup{X} [ctor assoc comm prec 21] .
op {_} : MatchGroup{X} —> MatchClass{X} [ctor
prec 22] .
endfm

fmod MATCH is
pr LIST{AnyMatchClass} =
(sort List{AnyMatchClass} to Match,
sort NeList{AnyMatchClass} to NeMatches,
op __to _&_,opnil to emptyMatch).
endfm

First, we consider the firing rule. Then we ap-
ply a uniform method for net rewrites. The operator
firing match takes a term s of the sort System and
produces the (System) state transitions obtained by
rewriting s with firing.

A StateTran{D} term, where D can be any sort,
is defined as a triplet: Match --> D : Float. For-
mally, a Match is a list of MatchClass elements sep-
arated by &, representing variable substitutions. Each
MatchClass gathers variables of a specific sort, thus,
the arity of a Match term is inherently linked to the
variables involved in the rule. In our specific context
(as shown in listing 3), we have N:Net, M:Pbag, and
T:Tran (we can disregard free variables like N’ used
in the rule’s condition but not in the rule’s right side).

The auxiliary operator $firing-match parallels
the rule definition: It employs tail recursion to ex-

Associating a Markov Process with Maude Executable Modules

haustively generate, up to a fixed point, all variable
substitutions that align with the rule’s left side and
satisfy the rule condition. Concurrently, it assigns the
target states and their corresponding state transition
rates. Notice that we could restrict the variables that
determine the rule’s matches to just T:Tran. How-
ever, this heuristic is more difficult to automate.

Listing 7: Encoding of firing rule for CTMC definition

fmod SPN-MC is

pr MATCH-CLASS{System} .

pr MATCH-CLASS{Pbag} .

pr MATCH-CLASS{Net} .

pr SPN—STATE-TRAN .

var T : Tran . vars MM’ : Pbag .

vars NN’ : Net . var S : System . varR : Float .

var X : Set{StateTran{System}}. var XM : Match.

op firing-match : System —> Set{StateTran{
System}} .

eq firing-match(S) = $firing-match(s,
noStateTranS) .

op $firing-match : System Set{StateTran{
System}} —> Set{StateTran{System}} .

ceq $firing-match(S, X) =

$firing-match(S, (XM —> S’ :R) UX)
if (T ; N)M:=S/\ enabled(T, M) /\
S’ :=(T;N) firing(T, M) /\ R := firing-rate(T, M)

\
XM= {N} & {T} & {M} /\ (®M——> M’ :R) in X =
false.
eq $firing—match(S, X) = X [owise] .
endfm

In general, for a certain rule r:
r:t=>t if C/\R:Float:=1t"

of type D, we automatically introduce an operator
$r-match defined by the following pair of equations
(we neglect any optimisations and assume that vari-
ables S and S are of type D, while X is of type
Set{StateTran{D}}, with the operator’s arity and the
other variables’ types being appropriately defined):

$r-match(S,X) = $r-match(S, (XM ——> S :R)UX)
if C/\Nt:=S/\S =t /\R:=t"/\ XM :=
VAR(r) /\ (XM ——>S":R) in X = false .
$r-match(S,X) = X [owise] .

where the symbol VAR(r) denotes the term Match
that encompasses the list of significant variables in
rule r.

Using this method, we can systematically and reli-
ably translate any rewrite rule. For example, Listing 8
illustrates the rephrase of the net rewrites merge and
fold, presented in Listing 4, as operators (the one of
aggr is similar).

113

SIMULTECH 2025 - 15th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

Listing 8: Net rewrites of the example; Extended state de-
scription for MC.

fmod SPN-MC—EXE is
pr SPN-EXE .
pr SPN-MC .
pr MATCH-CLASS{T1ab} .
pr MATCH-CLASS{Tmatrix} .
pr SPN—STATE-TRAN .
var P : Place .vars T T’ : Tran.
var M : Pbag . var N : Net.
vars S S’ : System. varR: Float . varE : Nat .
vars LL’ : Tlab . var Q: Tmatrix . var W: String.
var X : Set{StateTran{System}} . var XM : Match .

op merge—match : System —> Set{StateTran{
System}} .
eq merge—match(S) =
$merge—match(S, noStateTrans) .
op $merge-match : System Set{StateTran{System
}} —> Set{StateTran{System}}.
ceq $merge—match(s, X) =
$merge—match(S, (XM —> S’ : R) UX)
if(N;T;T)M:=8/\ W:=tag(T)/\ W=tag(T")/\
E :=pol(T)/\ E=pol(T") /\
enabled(T, M) = enabled(T’, M) /\ S’ :=
(N ; merge(T, T’, t(W, rate(T) + rate(T’), E))) M/\
R:=0.02/\XM:={T, T’} /\ (XM—> 8’ :R) inX =
false.
eq $merge—match(S, X) = X [owise] .

op fold—match : Net —> Set{StateTran{System
eq fold-match(S) = $fold-match(S, noStateTranS

op $fold-match : System Set{StateTran{System
}} —> Set{StateTran{System}}.
ceq $fold-match(s, X) =
$fold-match(S, (XM —> S’ : R) UX)
If(N;L|->Q;L |->Q M:=8/\
E :=pol(L)/\ E=pol(L’)/\
S’ :=(N; t("fold”, rate(L) + rate(L’),E) |-> Q) M
A
R:=0.02/\XM:={L,L'} & {Q} /\ (XM —> S’ : R)
inX=false.
eq $fold-match(S, X) = X [owise] .

op aggr-match : System —> Set{StateTran{
System}} .

op rewriteS : System —> Set{STrate{System}} .
eq rewriteS(S) = cumrate(firing—match(S) U
fold—match(S) Umerge—match(S) U aggr—
match(S)) .
op stateTranlMC : System —> SpnStateTran.
eq stateTranMC(S) = SYS: S REW: rewriteS(S) .
endfm

mod SPN—STATE-TRAN-SYS is
inc SPN-MC-EXE .
vars S 8’ : System. var RS : Set{STrate{System}}

rl [rew] : SYS: SREW: (RSU S’ : R:Float) =>

114

stateTranMC(S’) .
endm

This translation points out indistinguishable vari-
able substitutions - seen as distinct by the commands
match and metaMatch in Maude- that correspond to
variable permutations: T <+T’ in merge and L<L’
in fold.

The Match-Class constructor {_}, which en-
closes a commutative-associative, comma-separated
juxtaposition, is designed to implicitly recognise
potentially indistinguishable matches. This helps
prevent the overestimation of state transition rates.
In the definition of $merge-match, the Match
term is {T, T’}, while in $fold-match, it is
{L, L’} & {Q}. (Both definitions are optimised.)

It is important to note that the term Match, which
is part of $aggr-match (not displayed), also includes
a subterm {T, T’}. In this context, the ground sub-
stitutions associated with the permutation T<>T’ yield
distinct values for the rule condition.

The rule fold operates locally within the Net seg-
ment of a System term. When working with a canon-
ical term of type D, we need to identify all subterms
of type D' that can be rewritten using a corresponding
rule . We then wrap any instances of ¥ with an anal-
ogous rule of type D. The presence of equational at-
tributes for constructors and sub-sorts adds complex-
ity to this process.

(Tan Net

=i

; (assoc, comm) ——— emptyNet (ide)

4

\
) (Tmatrix)
L /

N

\/ Tiab
AN

N/

Figure 5: Digraph showing the structure of a System term.

An approach to effectively detect all possible lo-
cal applications of ¥ is to create an abstract semantic
graph for a generic term of type D, as demonstrated
in Figure 5 for terms of sort System and subterms of
sort Net. By embedding the rule fold (as shown in
the listing 2) into an “equivalent” rule of type System,
we achieve the following result, where N and M are
variables of sorts Net and Pbag, respectively.

crl [fold—top] (N;L |->Q; L |-> Q) M=>

(N; t("fold”,rate(L)+rate(L’),E) |-> Q)M
if E = pol(L) /\ E = pol(L’) /\ R := 0.02 .

The rule, once adorned, can be converted conven-
tionally. Matching modulo-A ensures that the rule
translation incorporates the specific scenario of a net
composed of two transitions, achieved by substituting
N with the term emptyNet, which is regarded as the
“identity” for net juxtaposition (;).

Using the conversion of rules into operators, we
can create a structured representation of states that
includes the CTMC generator matrix (see the final
part of the listing 8). The operator cumrate com-
putes precise state transition rates, represented as
pairs consisting of a target state and a numerical
value. Meanwhile, the operator stateTranMC trans-
forms the standard state representation into an ex-
tended one, emphasising state transitions (we will
skip further details). The rule rew in the module
SPN-STATE-TRAN-SYS, which uses this extended de-
scription, synthesises the original rewrite rules.

5.1 Performance Metrics

Table 1 presents the experimental results related to the
(rewritable) Stochastic Petri Net shown in Figure 1.
These results were derived using the rules outlined in
listing 8. The model produces a CTMC with absorb-
ing states. By varying the initial marking parameter
k, we evaluate the time required to create the stan-
dard transition system (module SPN-EXE-SYS-REW)
using conventional hardware, in contrast to the time
needed to generate the extended transition system
(module SPN-STATE-TRAN-SYS). An online CTMC
solver was used. Although the overhead of the ex-
tended representation is generally acceptable, it be-
comes more pronounced as k increases. Additional
trials indicate that this overhead can be significantly
reduced by considering the local effects of rewrites.
For example, we could exploit the locality of the
firing rule (by far the most frequently occurring)
that acts on the state of a PT System.

Table 1: Ordinary vs extended TS of the example-Mean
Time To Absorption (MTTA).

k-mg | #states | TS (sec) | TS-ext (sec) | MTTA

5 925 0 0 4
10 4685 2 2 123
20 28755 10 17 478
40 199095 58 156 1259
60 | 639035 169 745 3082

The second case study refers to a benchmark of a
distributed production system as discussed in Capra
and Kohler-Bufimeier (2024), which presents mod-
elling challenges associated with structural and state
adaptation issues. The system comprises N Produc-
tion Line (PL) replicas that operate concurrently with

Associating a Markov Process with Maude Executable Modules

regulated degradation. Each PL is divided into K in-
terchangeable components. Following the occurrence
of a fault, each PL adapts itself to continue oper-
ating with diminished performance. The methodol-
ogy elucidated in Capra and Kohler-BuBBmeier (2024)
improves the rewritability of PT nets with process-
algebra operators, thus simplifying the work of mod-
elers and easing the management of large-scale mod-
els with nested components by exploiting their sym-
metries. A quotient transition system is constructed
using structured node labelling. This concise TS
conforms to the strong bisimulation property, which,
when applied to the stochastic extension of rewritable
PTs, aligns with the exact lumpability of the CTMC
associated with the TS (Buchholz (1994)). From a
technical perspective, this is achieved by embedding
the right side of each rewrite rule within a normalize
operator, which transforms a PT system (interpreted
as a coloured graph) into its canonical form. In this
framework, it is critical to accurately compute the
transition rates in the lumped CTMC by addressing
the issues discussed in Section 4. Specifically, a
canonical state is likely to reach several states corre-
sponding to the same canonical representative, which
remains undetectable using the original TS generated
by Maude.

Table 2 presents comparable data for this bench-
mark model® as the number of PL replicas increases,
alongside the system’s reliability at a specific point
in time (the generated CTMC in this instance also in-
cludes absorbing states). The values in the second and
third columns parallel those documented in Capra and
Kohler-Bufimeier (2024). The overhead incurred by
extended TS construction is markedly lower than that
recorded in Table 1, which is attributed to exploiting
the locality inherent in the firing rewrite rule (we
omit further technical details on the Maude encoding).

Table 2: Ordinary vs extended TS of the production system
—R(t):=P(TTA) > 1.

N | #states | TS (s) | TS-ext(s) | R(z =10.000)
1 82 0 0 0.55
2 451 0.3 0.4 0.68
3 1153 1.1 1.9 0.74
4 2123 29 3.8 0.79
5 3357 4.7 7.5 0.83
6 4855 10 14 0.86
7 6617 18 25 0.88
8 8643 29 41 0.89
9 | 10933 48 62 0.90
10 | 13487 66 94 0.90

s

3Notably, the states in this context are “symbolic,”
meaning they represent equivalence classes. The conven-
tional state spaces, by contrast, are greater by several orders
of magnitude.

115

SIMULTECH 2025 - 15th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

6 CONCLUSIONS

An organised methodology has been devised for con-
structing a coherent Markov process from executable
Maude modules that integrate stochastic parameters.
This approach tackles the difficulties related to the
accurate computation of state transition rates. The ef-
fectiveness of our method has been validated through
the specification of rewritable stochastic Petri nets.
Present endeavours concentrate on fully automating
this procedure and reducing the overhead imposed by
the extended Transition System employed to generate
the Markov process. In particular, ongoing research
aims to minimize the redundancy introduced by pre-
processing in the state representation used to calculate
the Markov chain generator matrix exactly.

ACKNOWLEDGEMENTS

This work was partially funded by the MUR project
“T-LADIES” (PRIN 2020TL3X8X).

REFERENCES

Agha, G., Meseguer, J., and Sen, K. (2006). Pmaude:
Rewrite-based specification language for probabilistic
object systems. Electronic Notes in Theoretical Com-
puter Science, 153(2):213-239. Proceedings of the
Third Workshop on Quantitative Aspects of Program-
ming Languages (QAPL 2005).

Amparore, E. G., Balbo, G., Beccuti, M., Donatelli, S., and
Franceschinis, G. (2016). 30 years of GreatSPN. In
Principles of Performance and Reliability Modeling
and Evaluation, pages 227-254. Springer.

Bouhoula, A., Jouannaud, J.-P., and Meseguer, J. (2000).
Specification and proof in membership equational
logic. Theoretical Computer Science, 236(1):35-132.

Bruni, R. and Meseguer, J. (2003). Generalized rewrite the-
ories. In Baeten, J. C. M., Lenstra, J. K., Parrow, J.,
and Woeginger, G. J., editors, Automata, Languages
and Programming, pages 252-266, Berlin, Heidel-
berg. Springer-Verlag.

Buchholz, P. (1994). Exact and ordinary lumpability in fi-
nite markov chains. Journal of Applied Probability,
31(1):59-75.

Capra, L. (2022). Rewriting logic and Petri nets: A natu-
ral model for reconfigurable distributed systems. In
Bapi, R., Kulkarni, S., Mohalik, S., and Peri, S.,
editors, Distributed Computing and Intelligent Tech-
nology, pages 140-156, Cham. Springer International
Pub.

Capra, L. and Kohler-BuBmeier, M. (2023). Maude speci-
fication of nets-within-nets: A formal model of adapt-
able distributed systems. In Proceedings of the

116

38th ACM/SIGAPP Symposium on Applied Comput-
ing, SAC 23, page 188-191, New York, NY, USA.
Association for Computing Machinery.

Capra, L. and Kohler-Bussmeier, M. (2023). Modelling
adaptive systems with nets-within-nets in maude. In
Proceedings of the 18th International Conference on
Evaluation of Novel Approaches to Software Engi-
neering - Volume 1: ENASE,, pages 487-496. IN-
STICC, SciTePress.

Capra, L. and Kohler-BuBmeier, M. (2024). Modular
rewritable petri nets: An efficient model for dynamic

distributed systems. Theoretical Computer Science,
990:114397.

Chiola, G., Marsan, M. A., Balbo, G., and Conte, G. (1993).
Generalized stochastic Petri nets: A definition at the
net level and its implications. [EEE Trans. Software
Eng., 19:89-107.

Clavel, M., Duran, F., Eker, S., Lincoln, P., Oliet, N. M.,
Meseguer, J., and Talcott, C. (2007). All About Maude
- A High-Performance Logical Framework: How to
Specify, Program, and Verify Systems in Rewriting
Logic. Lecture Notes in Computer Science. Springer.

Kohler-Buimeier, M. and Capra, L. (2024). Modelling
and simulation of adaptive multi-agent systems with
stochastic nets-within-nets. In Proceedings of the 16th
International Joint Conference on Computational In-
telligence - Volume 1: ECTA, pages 313-320. IN-
STICC, SciTePress.

Meseguer, J. (2012). Twenty years of rewriting logic.
The Journal of Logic and Algebraic Programming,
81(7):721-781. Rewriting Logic and its Applications.

Padberg, J. and Kahloul, L. (2018). Overview of recon-
figurable petri nets. In Heckel, R. and Taentzer, G.,
editors, Graph Transformation, Specifications, and
Nets: In Memory of Hartmut Ehrig, pages 201-222.
Springer, Cham.

Padberg, J. and Schulz, A. (2016). Model checking recon-
figurable petri nets with maude. In Echahed, R. and
Minas, M., editors, Graph Transformation, pages 54—
70. Springer.

Reisig, W. (1985). Petri Nets: An Introduction. Springer-
Verlag New York, Inc., New York, NY, USA.

Rubio, R., Marti-Oliet, N., Pita, I., and Verdejo, A. (2023).
Qmaude: Quantitative specification and verification in
rewriting logic. In Chechik, M., Katoen, J.-P., and
Leucker, M., editors, Formal Methods, pages 240—
259, Cham. Springer International Publishing.

Rubio, R., Marti-Oliet, N., Pita, I., and Verdejo, A. (2021).
Strategies, model checking and branching-time prop-
erties in maude. Journal of Logical and Algebraic
Methods in Programming, 123:100700.

Olveczky, P. C. and Meseguer, J. (2002). Specification of
real-time and hybrid systems in rewriting logic. Theo-
retical Computer Science, 285(2):359—405. Rewriting
Logic and its Applications.

