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Abstract: Image search based on descriptor similarities is a fundamental task in computer vision. These descriptors
are often highly quantised (e.g. binarised or ternarised). Quantum Computing (QC) has shown to have great
potential for a number of tasks including search. Especially Google’s new Quantum Processing Unit called
Willow reaches new milestones in error correction and durability and presents a benchmark that runs about
five minutes in the quantum domain while it would take more than 1025 years on a state-of-the-art classical
supercomputer. The supposed reason that this achievement is not immediately claimed for quantum supremacy
is that Google also states that the benchmark — the so called Random Circuit Sampling (RCS) benchmark has
”not yet known real-world applications”. We therefore transform these benchmark results into the real world
by exploring the question: what hardware specifications are needed to execute a quantum implementation of
an image descriptor search algorithm more quickly than the fastest supercomputer available today? Hence,
two distinct implementations of the Compact Descriptor for Video Applications (CDVA) search, which uses
512-bit descriptors are compared to classical code running on a MI300A unit available in El Capitan, the
currently fastest supercomputer with AVX512-bit comands. The results indicate that the current key hardware
factors, including gate runtime, coherence time, error rate, and the number of qubits, are still considerably (by
orders of magnitude) below the performance levels necessary to compete with the El Capitan supercomputer,
but with the recent progress in error correction, we can expect the development of larger quantum systems in
the near future that reduces the performance gap between classical and quantum computers. Our source code
for simulation is available online at GitHub.

1 INTRODUCTION

Determining the similarity of images is a key aspect
of image search applications. A common requirement
is to compute a set of similarity scores between one or
a few query images and a much larger image database.
Depending on the specific application, it may be nec-
essary to identify the best match, the k-nearest neigh-
bor matches, or the similarity scores of all images in
the database (see Figure 1). In this process, images
are typically represented by descriptors — tradition-
ally hand-crafted, but increasingly learned — that are
optimised for efficient indexing and matching, often
through techniques such as quantisation (e.g. binari-
sation or ternarisation).
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Quantum computing has been shown to have great
potential for solving a number of challenging comput-
ing problems effectively, and search tasks are among
them (Portugal, 2018) (Rieffel and Polak, 2000). We
focus on the problem of matching a single binary im-
age descriptor (with size 512 bits) against a database
of 100 descriptors in order to obtain a complete list
of similarity scores. We assess implementations on
two different quantum computing frameworks. Qiskit
(IBM) (Research, 2024), which also provides the un-
derlying QASM circuit simulation, and Qrisp (Fraun-
hofer) (FOKUS, 2024a) as an important framework
of the German Qompiler project managed by Fraun-
hofer FOCUS. It represents Germany’s initiative to
create a European quantum software development
stack. While Qrisp provides higher levels of abstrac-
tion (Fürntratt et al., 2024) compared to Qiskit, it
still depends on the quantum simulation capabilities
of Qiskit.

Quantum algorithms are implemented as circuits,
where qubits serve as fundamental information units
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Figure 1: Example: get k-best keyframe matches depending on their (CDVA) similarity score.

and gates manipulate the state of these qubits. In our
exploration, we present two distinct implementation
approaches to illustrate different circuit designs. The
first approach uses Qiskit, featuring a small number of
qubits arranged in a configuration with a large number
of gate layers. This setting results in a small but deep
circuit (SbD). The second approach uses Qrisp, which
allows for a large number of qubits but limits the cir-
cuit to a smaller number of gate layers. That set-
ting creates a wide but shallow configuration (WbS).
The contrasting implementations allow us to evalu-
ate the performance and efficiency of quantum algo-
rithms under different circuit architectures and pro-
vide insights how qubit count and gate depth influence
computational capabilities.

In particular, we study under which conditions an
algorithm provides the same similarity ranking as ex-
act similarity computation in the classical domain,
and the complexity of the quantum implementation
depending on the descriptor size.
The main contributions of this paper are:

• We show that it is possible to reproduce exact
similarity matching results on quantum comput-
ers, given a sufficiently high number of shots (i.e.,
runs of the quantum computing algorithms in or-
der to obtain more stable results).

• We demonstrate two fundamental development
strategies for quantum computing algorithms,
which relate to the number of qubits used on the
one hand and the depth of the quantum circuit on
the other (small but deep (SbD) vs. wide but shal-
low (WbS)).

• We calculate the expected performance values
based on the Willow quantum hardware specifi-
cation (AI, 2024b), the qubit count and the gate
layer depth and compare them with the expected
classical results on El Capitan’s AMD CI300A
unit (Laboratory, 2025).

The rest of this paper is organised as follows.
Section 2 introduces related work on compact de-
scriptors, quantum computing (QC) and frameworks,
along with similarity search using QC. Section 3 de-
scribes the proposed methods, and Section 4 the setup

for the performed experiments. The results are dis-
cussed in Section 5, and finally Section 6 concludes
the paper.

2 BACKGROUND

2.1 Highly Quantised Multimedia
Descriptors

Binarisation or ternarisation of descriptors, in or-
der to perform more efficient indexing and match-
ing, has already been proposed in the era of hand-
crafted descriptors. While ternarisation makes han-
dling of descriptors more complex, it has the advan-
tage of discriminating cases where a value of the
descriptor vector is (almost) zero and where it has
a clear positive or negative value. Well-known ex-
amples include BRIEF (Calonder et al., 2011) and
BRISK (Leutenegger et al., 2011). A ternary variant
of BRIEF, named LTD, has also been proposed (Gao
et al., 2013), as well as ternary descriptors for au-
dio tasks (Adnan et al., 2018). Compact descrip-
tors for visual search (Duan et al., 2014) is a stan-
dard (ISO/IEC15938, 2019) for image and video de-
scription. It includes binary global descriptor com-
ponents based on hand-crafted and learned feature
descriptors. The hand-crafted components contain
interest-point based descriptors which are ternarised.
A learned descriptor is extracted using the last feature
layer of VGG16 (Simonyan and Zisserman, 2015).
In order to improve rotation invariance, the descrip-
tor is obtained by applying nested invariance pooling
(NIP) (Morere et al., 2017) to rotated versions of the
image. This descriptor is then normalised w.r.t. an av-
erage descriptor and then binarised. Binarising a net-
work trained for floating point output is suboptimal,
thus newer works propose to learn the binarisation
as part of the training process. One example is CD-
bin (Ye et al., 2019), which learns a descriptor using a
specific binarisation loss combined with triplet loss
for improved discriminability. DBLD (Xiao et al.,
2023) is a more recent approach, which proposes a bi-
nary transformation layer (BLT) that can be plugged

Exploring Image Search on Quantum Computing Systems

71



x0 • •
gates

x1 •

measurementx2 •
gates

x3 •

(a) Small but deep circuit with large number of gates.

x0

gates

...

measurement

...

...

...
xn

(b) Wide but shallow circuit with
large number of qubits.

Figure 2: Distinct algorithm design pattern.

into any descriptor extraction backbone.

2.2 Quantum Computing Basics

2.2.1 The Qubit

Quantum computers use quantum mechanical entities
such as ions, photons, or atoms as their fundamental
information units, known as quantum bits or qubits
rather than classical bits. While qubits represent the
binary states of 0 and 1, similar to classical bits, they
can also enter a temporary state of superposition. In
this superposition phase, a qubit’s state becomes non-
deterministic and is described by a state vector com-
posed of complex probability amplitudes.

When a system contains m qubits in superposition,
the corresponding state vector includes 2m probability
amplitudes, representing all possible combinations of
the binary states of the qubits. Each amplitude in-
dicates the likelihood of measuring a specific basis
state. For instance, if m = 3, the state vector ψ in
bra-ket notation (Greenberger et al., 2009) can be ex-
pressed as a weighted sum of 23 = 8 basis states:

|ψ⟩= α000 · |000⟩+α001 · |001⟩+ . . .+α111 · |111⟩
(1)

The term |α000|2 represents the probability of mea-
suring the basis state |000⟩. Quantum operations
performed on qubits during superposition manipu-
late this state vector in parallel, affecting all 2m en-
tries simultaneously. This ability to operate concur-
rently highlights the remarkable computational power
of quantum computing.

2.2.2 Quantum Gates

The state vector of a qubit system can be altered using
quantum gates, which are outlined below. For a more
comprehensive explanation, please refer to (Barenco
et al., 1995).

Rotation Gates. Rotation gates, (such as the RY or
RZ gate), adjust the amplitudes of a qubit by rotat-
ing the associated complex coefficient by an angle θ

around the specified axis in the complex plane. This
allows us to encode classical probabilities P(Vi) of a
binary random variable Vi into the angle θ of a qubit
by

θ = 2 · tan−1

√
P(Vi = 1)
P(Vi = 0)

. (2)

Conditional Gates. At times it is necessary to con-
dition an operation of one qubit on the values of an-
other qubit(s). The Controlled-NOT (CNOT or CX)
gate is a two-qubit quantum gate that toggles the state
of the second qubit (target qubit) when the first qubit
(control qubit) is in state |1⟩. If the control qubit is in
state |0⟩, the target qubit remains unchanged.

Multi-Qubit Gates. Multi-qubit gates implement
conditioning the operation on one target qubit on
several control qubits. For example, an RY rotation
gate which is controlled by n qubits is denoted as
CnRY gate. Similarly, a CNOT gate conditioned on
n qubits is denoted as CnNOT gate. Although many
quantum computing frameworks such as Qiskit (Re-
search, 2024) already have implemented such gates,
they have to be decomposed (transpiled) internally
into elementary gates in order to be executed on a
quantum device.

Quantum Algorithms. Quantum algorithms are
sequences of quantum gates arranged in circuits and
applied to qubits to perform state changes. Because
of the probabilistic nature of quantum mechanics, the
results of a quantum algorithm are non-deterministic.
When measuring the qubits at the end of a quan-
tum circuit, the results will inherently vary each time,
even when ran with identical inputs. To solve this is-
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sue, quantum computing requires the use of multiple
shots.

A shot refers to a single execution of a quantum
algorithm. After executing the algorithm, the qubit
states are measured, and the results are documented.
To achieve reliable and statistically significant out-
comes from a quantum algorithm, the circuit is usu-
ally run multiple times. The results from these shots
are then combined to identify the most probable out-
come and to estimate the probabilities of various re-
sults. Generally, a higher number of shots can lead to
longer training times for models and increased costs;
however, there are methods available to determine
the optimal number of shots with minimal impact on
model performance (Phalak and Ghosh, 2023) (Gu
et al., 2021).

2.3 Quantum Computing Frameworks

2.3.1 Qiskit

Qiskit is an open-source software development frame-
work for quantum computing created by IBM. The
currently available software version v2.0.0 enables
users to develop, execute and analyse quantum algo-
rithms on quantum computers and simulators. Qiskit
has been designed for a modular structure with differ-
ent components focusing on various aspects of quan-
tum computing. A foundational layer of Qiskit, pro-
viding the tools for the creation of quantum circuits
at a low level. It is capable of undertaking tasks such
as circuit generation, compilation and optimisation.
Users can create quantum circuits, run simulations,
and manage the compilation of these circuits for ex-
ecution on various quantum devices. An additional
layer is implemented for simulation of quantum cir-
cuits. The software enables users to execute and de-
bug their quantum algorithms on classical comput-
ers by simulating quantum operations. It offers high-
performance simulators that can replicate the behav-
ior of quantum hardware, allowing users to test and
optimise their quantum algorithms before executing
them on real quantum devices. Quantum error cor-
rection and mitigation is a significant challenge that
is also addressed in Qiskit. The framework provides
necessary tools to characterise the noise present in
quantum devices and to implement the requisite error-
correction techniques. The user can perform experi-
ments aimed at understanding and minimising the ef-
fects of noise, which is crucial for the reliable compu-
tation of quantum data. Qiskit provides tutorials, doc-
umentation, and online courses and access to tangible
quantum hardware via the IBM Quantum platform1.

1Formerly known as Quantum Experience platform

2.3.2 Qrisp

Qrisp v0.5.10, developed by Fraunhofer
FOKUS (FOKUS, 2024b), is a framework de-
signed to bridge the gap between the high-level
programming paradigms that characterise modern
software engineering and the physical realities of
current quantum hardware. The goal of the frame-
work is to provide a unified high-level programming
interface as an abstraction to a low-level backend for
different hardware platforms. Qrisp is lightweight.
The Python framework has user-friendly program-
ming in focus and continues the evolution from pure
gate-based quantum programming towards functional
programming. With the abstraction of classical data
types, e.g. float, bool, string, . . . , and programming
features such as array-handling and encapsulation,
this framework offers a common high-level program-
ming environment with a well-known Python syntax.
Qrisp contributes to a more human-readable code
with efficient implementations while gate-based code
will be hidden underneath.

2.4 Similarity Search Using Quantum
Computing

A quantum similarity matching approach for images
is proposed in (Liu et al., 2019). It requires a quantum
representation of images that cannot be applied to ex-
isting descriptors. In another work, a quantum vari-
ational autoencoder is used as a feature embedding
for satellite imagery in order to perform approximate
k-NN search using Hamming distance (Gao et al.,
2020), demonstrating significant speedup that can be
traded-off against accuracy. A similarity matching ap-
proach for proteins models the 20 amino acids de-
scribed in 5 qubits (Chagneau et al., 2024), and the
applied quantum versions of the Needleman–Wunsch
and Smith–Waterman algorithms.

An approach for matching a string against a set
of sets using the probabilistic quantum memory data
structure has been proposed in (Khan and Miranskyy,
2021). For the related problem of edit distance (in
particular, edit distance bounded by a maximum value
k) a quantum version with complexity Õ(

√
nk + k2)

has been proposed2, and the authors show that this is
optimal.

2We follow the convention of denoting computational
complexity on quantum systems with Õ in order to discrim-
inate it from the complexity O on conventional computers.
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Figure 3: Quantum building block in Qiskit for the Ham-
ming distance estimation with QKE.

2.5 Supercomputing Hardware

As of the latest Top 500 list, the fastest supercomputer
is El Capitan, located at the Lawrence Livermore Na-
tional Laboratory in California, United States. The
hardware uses combined 11,039,616 CPU and GPU
cores consisting of 43,808 AMD 4th Gen EPYC 24C
”Genoa” 24 core @1.8 GHz CPUs (1,051,392 cores)
and 43,808 AMD Instinct MI300A GPUs (9,988,224
cores). A single MI300A unit consists of 24 Zen4
based CPU cores, and a CDNA3 based GPU, along
with 128 GB of HBM3 memory (Smith, 2025).

The CPUs are capable of processing 512-bit code
via the AMD AVX512 command extension, which
enhances its performance for data-intensive appli-
cations. With a peak performance of more than
2 Exaflops, at a power consumption rate of about
30MW, El Capitan has set new records in various
benchmarks, including the High-Performance Lin-
pack (HPL) test (Top500, 2025).

3 METHODS

Under the precondition to work only with real-world
data, our quantum algorithm implementations are not
yet runnable on real quantum hardware, due to the
lack of resources – either the number of available
qubits or the limited circuit depth. Therefore we ver-
ify our implementations via Qiskit QASM simulation
(suitable for less than 32 qubits, i.e. algorithm 1) and
– with restricted functionality, as to the best of our
knowledge the simulation of 10k+ qubits is only pos-
sible with constraints – with the Qrisp default backend
simulation (for algorithm 2). We do this on a classical
workstation with a 2.1GHz CPU, offering 20 logical
cores and 64GB of RAM.

3.1 Algorithm 1: Similarity Search
Based on Quantum Kernel
Estimation in Qiskit

Based on (Liu et al., 2021), we map a binary n-bit
descriptor xi onto a quantum feature map φ

xi 7→ |φ(xi)⟩ (3)

xi0 •
xi1 •
xi2 •
xi3 •
x j0

Hal f adder

Adder
x j1

x j2
Hal f adder

x j3 x j3

Figure 4: Quantum building block in Qrisp for the Ham-
ming distance with CX gates and adders. The result is avail-
able at qubit x j3.

by encoding the n bits of the descriptor into m qubits
via

|φ(xi)⟩=U(xi) |0m⟩ (4)

with m = ⌈ld(xi)⌉. Then, the similarity between 2 de-
scriptors xi and x j can be estimated by applying an in-
verted version of x j, U†(x j) and estimate the similar-
ity probability | ⟨0m|U†(x j)U(xi) |0m⟩ |2 by measuring
the frequency of the 0m output. A general circuit lay-
out is depicted at Fig. 3.

3.2 Algorithm 2: Calculate Similarity as
Sum of Differences in Qrisp

Based on (Orts et al., 2024), we calculate the simi-
larity between 2 n-bit descriptors as the sum of dif-
ferences. Furthermore, in contrast to algorithm 1, we
assume that hardware scaling issues have been solved
and the number of available qubits is by several or-
ders of magnitude higher than at present. Hence, we
can map a descriptor bit onto a qubit and use the
type system of Qrisp (QuantumBool, QuantumArray,)
along with the Quantum adder modules – especially
the Gidney quantum adder to calculate the Hamming
distance (sum of differences) between two binary de-
scriptors, xi and x j. We build a quantum circuit like
in Fig. 4 but with a ’function-centred’ approach rather
than a ’circuit-centred’ approach.

Support for pythonic programming paradigms like
in the following code snippet facilitates development.
# Example for initialising an array
# of QuantumBool from bitstring
a = QuantumArray(QuantumBool(),shape=8)
a[:] = np.fromiter(
[int(bit) for bit in ’01010011’], bool)

4 EXPERIMENTAL SETUP

We use CDVA (ISO/IEC15938, 2019) descriptors for
our experiment, which are extracted from images of
the WAVL dataset (Neuschmied and Bailer, 2024)
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proposed for landmark retrieval (see Fig. 1). The de-
scriptors consist only of a binary-learned descriptor
component, forming a 512-bit vector per image. Real-
world data of this size is currently not yet applicable
on real quantum hardware. It even poses a remark-
able challenge to quantum simulators. Therefore, for
experiments with larger descriptors, we briefly outline
a way to create these descriptor sizes by concatenat-
ing multiple image descriptors. We can think of this
as forming a descriptor for a video segment from con-
catenating subsequent key frame descriptors.

The default similarity metric between a pair of de-
scriptors is the Hamming distance, which can be effi-
ciently implemented on AVX512-capable CPUs like
the 4tth gen AMD EPYC 24C by counting the set bits
(using ASM OpCode VPOPCNTQ) in the result of an
VXOR operation between the inputs.

We obtain a set of similarity scores from matching
a single binary image descriptor against a database
containing 100 descriptors. In order to obtain more
reliable results, we repeat each experiment for 100
randomly sampled descriptors and report the mean of
the results (see Tab. 2). We evaluate the implemen-
tations by comparing the similarities of a set of de-
scriptors returned by the quantum algorithms to those
of the CPU implementation. We do not require the
similarity scores to be exactly the same (in particu-
lar, in experiments simulating noisy quantum com-
puting operations), but we require the ranking to be
the same. Thus we use Spearman’s rank correlation ρ

as the metric for comparing the outputs of two algo-
rithms. We ignore differences in similarity values, if
the absolute difference is smaller than ±0.5, as in the
exact implementation any descriptor difference below
1 would be exactly 0.

We run experiments varying the following condi-
tions:

• Implementation of two fundamentally different
similarity search algorithms: algorithm 1, small
but deep, and algorithm 2, wide but shallow

• Varying the number of shots. Currently, with an
amount of qubits m ≥ 32 the simulation imple-
mentation does not allow to adjust the number of
shots (for algorithm 2)

• Varying descriptor length, down to 64-bit in order
to get the transpiled CX depth, i.e. the number of
layers hosting CX gates (not to be confused with
the number of CX gates)

As a consequence of current simulation restrictions,
varying the descriptor length beyond 512 bit is
planned for future tests, with updated quantum sim-
ulators.

5 RESULTS AND DISCUSSION

From (AI, 2024b) we obtain the most important key
specs of the Willow Quantum Processing Unit, which
consists of two chip units: the first unit is responsible
for error correction, while the second unit performs
the random circuit sampling benchmark. Since the
characteristic values for both chips are distinct, we
choose the average of both chip-characteristic values.

These are for the decoherence time t1 83µs. We
calculate the gate runtimes as an average value from
the cycle times of the ISWAP gates with 1.1µs and the
gate runtimes of 63kHz for a circuit depth of 40, re-
sulting in an average value of 0.75µs, and for the qubit
error rates, we also calculate the average of single-
and 2-qubit error rates to be 0.14%

For the runtime calculation on the El Capitan
CPU, we calculate 1 clock cycle each for the XOR
operation of the two descriptors to be compared and
also 1 clock cycle for counting the different bit values
(VPOPCNTQ) based on the use of the AVX512 unit,
which results in a computing time of 1.1×10−10s for
determining the Hamming distance of two 512-bit de-
scriptors at a CPU clock frequency of 1.8GHz.

The results related to number of qubits and CX
depth show the trade-off between both implementa-
tions. Since the CX depth is mainly responsible for
execution speed3, the 1321 extra CX layer for algo-
rithm 1 might slow it down by more than 280% com-
pared to algorithm 2 (see Figure 5). Note that cur-
rently, we were not able to evaluate the Qrisp based
algorithm on the Qiskit QASM simulator backend (as
we did in the Qiskit algorithm case), because the sim-
ulator has its maximum qubit number limited to 31
qubits. Therefore, the Qrisp numbers are the results
achieved on the Qrisp default backend – which does
not apply a noise model and hence retrieves the ex-
pected optimal ranking score of 1.0 regardless of the
number of shots. In any case, shallow circuit depths
promise shorter computing times and thus enable a
high number of shots, so that good ranking scores can
be expected. Looking at the numbers of shot counts,
the value of 5000 shots seems to be a good compro-
mise between speed and ranking quality.

With all assumptions, we calculate that in or-
der to meet the classical calculation requirement of
1.1× 10−10s per 512-bit descriptor pair, we need for
algorithm 1 using a CX depth of 2042 an average gate
runtime lower than 5.39× 10−14s and for algorithm
2 with 721 CX gate depth an average gate runtime
lower than 1.52× 10−13s to become faster than the
fastest classical supercomputer.

3Credits to R. Seidel from Fraunhofer FOKUS for
pointing this out.
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Figure 5: Qiskit algorithm 1: CX circuit depth depending on the number of qubits.

Figure 6: Qrisp algorithm 2: CX circuit depth depending on the number of qubits.

Figure 7: Qiskit algorithm 1: increasing Spearman rank correlation depending on the number of shots.

According to Google’s quantum road map (AI,
2024a), the next development goal is to reach 1000
physical qubits. Also in IBM’s quantum road map
(IBM, 2024), a modular quantum processing unit is
expected around 2025, capable to control 7500 gates,
which is promising, but the general request for more
circuit depth still remains (Chia et al., 2023).

6 CONCLUSION

In conclusion, this paper has explored the potential of
similarity searching via descriptor matching on quan-
tum computing systems. We developed two distinct
quantum algorithms: one characterised by a limited
number of qubits but a deep circuit depth, and the
other featuring a larger number of qubits with a shal-
low circuit depth. Given that the requirements of
these algorithms surpass the current capabilities of
quantum hardware, we conducted simulations to eval-
uate matching results on a database of 100 descrip-

tors. These evaluations showed that depending on the
number of shots, the baseline results created on clas-
sical CPUs are identical.

By making our source code available to the pub-
lic, we encourage researchers to take this as a starting
point for further exploration in this exciting field.
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Table 1: Comparison of the implemented similarity search algorithms.

Qiskit Qrisp
Descriptor #Qubits CX Depth #Qubits CX Depth
64 7 250 961 319
128 8 506 2241 435
256 9 1018 5121 569
512 10 2042 11521 721

Table 2: Comparison: Spearman rank correlation over 100 512-bit descriptors depending on number of shots.

Qiskit Qrisp
#Shots Avg Min Max Avg Min Max
10 0.21 -0.07 0.51 1.0 1.0 1.0
100 0.51 0.28 0.69 1.0 1.0 1.0
500 0.80 0.66 0.90 1.0 1.0 1.0
1000 0.88 0.77 0.94 1.0 1.0 1.0
5000 0.97 0.93 0.99 1.0 1.0 1.0
10000 0.98 0.96 0.99 1.0 1.0 1.0
100000 1.00 0.99 1.00 1.0 1.0 1.0

REFERENCES

Adnan, S. M., Irtaza, A., Aziz, S., Ullah, M. O., Javed, A.,
and Mahmood, M. T. (2018). Fall detection through
acoustic local ternary patterns. Applied Acoustics,
140:296–300.

AI, Q. (2024a). Our quantum computing journey. https:
//quantumai.google/learn/map.

AI, Q. (2024b). Willow Spec Sheet. https://quantumai.go
ogle/static/site-assets/downloads/willow-spec-sheet
.pdf.

Barenco, A., Bennett, C. H., Cleve, R., DiVincenzo, D. P.,
Margolus, N., Shor, P., Sleator, T., Smolin, J. A., and
Weinfurter, H. (1995). Elementary gates for quantum
computation. Physical Review A, 52(5):3457–3467.
Publisher: American Physical Society.

Calonder, M., Lepetit, V., Ozuysal, M., Trzcinski, T.,
Strecha, C., and Fua, P. (2011). Brief: Computing
a local binary descriptor very fast. IEEE transac-
tions on pattern analysis and machine intelligence,
34(7):1281–1298.

Chagneau, A., Massaoudi, Y., Derbali, I., and Yahiaoui,
L. (2024). Quantum algorithm for bioinformatics to
compute the similarity between proteins. IET Quan-
tum Communication.

Chia, N.-H., Chung, K.-M., and Lai, C.-Y. (2023). On the
Need for Large Quantum Depth. J. ACM, 70(1):6:1–
6:38.

Duan, L.-Y., Lin, J., Chen, J., Huang, T., and Gao, W.
(2014). Compact descriptors for visual search. IEEE
MultiMedia, 21(3):30–40.

FOKUS, F. (2024a). Eclipse Qrisp. https://www.qrisp.eu/.
FOKUS, F. (2024b). Fraunhofer FOKUS | WIR VERNET-

ZEN ALLES. https://www.fokus.fraunhofer.de/.
Fürntratt, H., Schnabl, P., Krebs, F., Unterberger, R., and

Zeiner, H. (2024). Towards Higher Abstraction Levels

in Quantum Computing. In Service-Oriented Comput-
ing – ICSOC 2023 Workshops, pages 162–173, Singa-
pore. Springer Nature.

Gao, N., Wilson, M., Vandal, T., Vinci, W., Nemani, R.,
and Rieffel, E. (2020). High-dimensional similar-
ity search with quantum-assisted variational autoen-
coder. In Proceedings of the 26th ACM SIGKDD inter-
national conference on knowledge discovery & data
mining, pages 956–964.

Gao, Y., Qiao, Y., Li, Z., and Xu, C. (2013). Ltd: lo-
cal ternary descriptor for image matching. In 2013
IEEE International Conference on Information and
Automation (ICIA), pages 1375–1380. IEEE.

Greenberger, D., Hentschel, K., and Weinert, F., editors
(2009). Compendium of Quantum Physics. Springer,
Berlin, Heidelberg.

Gu, A., Lowe, A., Dub, P. A., Coles, P. J., and Arrasmith, A.
(2021). Adaptive shot allocation for fast convergence
in variational quantum algorithms. arXiv preprint
arXiv:2108.10434.

IBM (2024). Quantum roadmap. https://www.ibm.com/ro
admaps/quantum/www.ibm.com/roadmaps/quantum.

ISO/IEC15938 (2019). ISO/IEC 15938-15:2019 Informa-
tion technology-—-Multimedia content description
interface—Part 15: Compact descriptors for video
analysis.

Khan, M. and Miranskyy, A. (2021). String comparison on
a quantum computer using hamming distance. arXiv
preprint arXiv:2106.16173.

Laboratory, L. L. N. (2025). Using El Capitan Systems:
Hardware Overview | HPC @ LLNL. https://hpc.llnl
.gov/documentation/user-guides/using-el-capitan-sys
tems/hardware-overview.

Leutenegger, S., Chli, M., and Siegwart, R. Y. (2011).
Brisk: Binary robust invariant scalable keypoints. In

Exploring Image Search on Quantum Computing Systems

77



2011 International conference on computer vision,
pages 2548–2555. Ieee.

Liu, X., Zhou, R.-G., El-Rafei, A., Li, F.-X., and Xu, R.-
Q. (2019). Similarity assessment of quantum images.
Quantum Information Processing, 18:1–19.

Liu, Y., Arunachalam, S., and Temme, K. (2021). A rigor-
ous and robust quantum speed-up in supervised ma-
chine learning. Nature Physics, 17(9):1013–1017.
Publisher: Nature Publishing Group.

Morere, O., Lin, J., Veillard, A., Duan, L.-Y., Chan-
drasekhar, V., and Poggio, T. (2017). Nested invari-
ance pooling and rbm hashing for image instance re-
trieval. In Proceedings of the 2017 ACM on Inter-
national Conference on Multimedia Retrieval, pages
260–268.

Neuschmied, H. and Bailer, W. (2024). Mining landmark
images for scene reconstruction from weakly anno-
tated video collections. In International Conference
on Multimedia Modeling, pages 161–174. Springer.

Orts, F., Ortega, G., Combarro, E. F., Rúa, I. F., and Garzón,
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