
Exploring the Challenges of Hybrid Software with
Quantum Design Patterns

Miriam Fernández-Osuna a and Ricardo Pérez-Castillo b
Faculty of Social Sciences & IT, University of Castilla-La Mancha, Talavera de la Reina, Spain

Keywords: Quantum Computing, Quantum Design Pattern, Quantum Software Architectures, Architecture Smells.

Abstract: Quantum computing has emerged as a new paradigm to solve several complex problems that are intractable
for classical computers. This technology is being applied in areas such as optimization and cybersecurity, but
its integration with classical software presents several challenges. One approach to overcome these obstacles
is the adoption of design patterns, like those used in classical software, which could improve the scalability
and maintainability of quantum systems. However, there is still a need to formalize architectural patterns that
support this integration. Furthermore, quantum-classical software design can lead to problems that affect its
quality, which highlights the importance of detecting and correcting them in time. This study presents an
analysis and discussion of the challenges faced by hybrid software architectures such as problem modelling
as well as dynamic generation of quantum circuits, execution orchestration, problem partitioning and
interpretation of quantum results. The study of these challenges will serve as a starting point for proposing
design patterns for hybrid software architectures.

1 INTRODUCTION

Quantum computing has emerged as a new
computational paradigm that harnesses the principles
of quantum mechanics, such as superposition and
entanglement, to tackle algorithmically intractable
problems in classical computing according to
(Alsalman 2023). (Brookshear 1989) points out that
thanks to its ability to simultaneously manipulate
multiple quantum states, this technology has begun to
be applied in sectors such as optimization,
biomedicine, and cybersecurity, allowing NP-hard
and NP-complete problems to be solved with
unprecedented efficiency. However, the development
of quantum software presents multiple challenges,
especially when seeking its integration with classical
software, giving rise to so-called hybrid software
systems.

As mentioned by the Software Engineering
Institute (SEI) (Carleton, Harper et al. 2021), the
construction of these hybrid systems introduces
significant challenges in architectural design,
interoperability or the reuse of quantum components
in classical architectures, among others.

a https://orcid.org/0009-0006-8697-3816
b https://orcid.org/0000-0002-9271-3184

One of the most promising approaches to improve
hybrid software design and integration is the
application of quantum design patterns (Leymann
2019). In classical software engineering, design
patterns have proven to be an effective strategy for
improving the maintainability and scalability of
systems, and their application in quantum software
could provide similar benefits (Gamma, Helm et al.
1993). The usage of design pattern allows the
application of well-proven solutions for some of the
common problems in hybrid software architectures.
However, (Khan, Ahmad et al. 2023) explain that
most documented patterns have focused on low-
levels, such as quantum circuits and oracles, leaving
a gap in the formalization of high-level architectural
patterns that facilitate the effective integration of
quantum software into existing systems.
In addition to design pattern reuse, another critical
problem in building hybrid software according to
(Khan, Ahmad et al. 2023) is the emergence of
architecture smells, i.e. deficiencies in the
architectural design that can compromise the quality
and sustainability of the system over time. These
problems may arise due to poor decisions in the

146
Fernández-Osuna, M. and Pérez-Castillo, R.
Exploring the Challenges of Hybrid Software with Quantum Design Patterns.
DOI: 10.5220/0013561100004525
In Proceedings of the 1st International Conference on Quantum Software (IQSOFT 2025), pages 146-153
ISBN: 978-989-758-761-0
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

selection of quantum hardware, difficulties in the
orchestration of interactions between classical and
quantum systems, or the lack of reusability and
adaptability of quantum circuits as its mentioned in
(Pérez-Castillo, Serrano et al. 2021). Early detection
and mitigation of these problems is crucial to ensure
the efficiency and maintainability of hybrid software
architectures.

This position paper presents and discusses some
of the most common challenges present in hybrid
software architectures. The main contribution is a
critical analysis of those challenges and how these
could be potentially addressed by the application of
some of the existing classical/quantum design
patterns, as well as motivate the need for further
architectural patterns for hybrid software
architectures. The integration of these systems in
classical architectures is not trivial and requires
solving technical challenges: Problem modelling,
dynamic generation of quantum circuits, execution
orchestration, problem partitioning, and the
interpretation of the quantum results.

The structure of the paper is as follows: Section 2
presents the state of the art and related work; Section
3 describes all the challenges faced by the hybrid
architecture; Section 4 discusses the main
implications for researchers and practitioners and
Section 5, explains the conclusions and future work.

2 STATE-OF-THE-ART

This section presents the state of the art of quantum
computing and quantum software (cf. Section 2.1)
and quantum design patterns (cf. Section 2.2).

2.1 Quantum Computing and
Quantum Software

As discussed in section 1, quantum computing
surpasses classical computing in solving complex
problems. The qubit, its fundamental unit, can be
implemented through various physical systems
(Ezratty 2021). Quantum supremacy has already been
demonstrated (Arute, Arya et al. 2019). The field is
advancing rapidly, IBM introduced a processor in
2021 (Chow, Dial et al. 2021) and announced the
Condor in 2023 (Gambetta 2023). Google predicts a
million-qubit machine by the decade’s end.

Quantum computing tackles NP-hard and NP-
complete problems in optimization, cryptography,
and machine learning, outperforming classical
methods for large instances (Brookshear 1989).

(Ukpabi, Karjaluoto et al. 2023), highlights its
transformative impact across industries.

Despite its potential, the NISQ era faces
challenges like error correction and scalability
(Preskill 2018). However, advantages may emerge
even before full fault tolerance (Kim, Eddins et al.
2023). Beyond hardware, quantum software is
essential to unlock quantum computing’s full power
(Piattini, Peterssen et al. 2020).

The Quantum Software Manifesto, proposed by
(Jiménez-Navajas, Pérez-Castillo et al. 2025),
stresses the importance of advancing in this field,
while the European Quantum Flagship, according to
(Serrano, Cruz-Lemus et al. 2022), proposes its
integration with classical systems. As (Rieffel and
Polak 2011) point out, unlike classical software,
quantum software uses probabilistic functions and
quantum gates to manipulate cubits.

There are several quantum programming
languages, such as OpenQASM, Q#, Qiskit, Cirq and
pyQuil, which have significant differences, such as
the absence of traditional control structures and the
need to define parameterizable programs. In addition,
most quantum development platforms, such as IBM
Q Experience, Amazon Bracket and D-Wave Leap,
operate in the cloud, allowing both simulations and
execution on real hardware.

However, quantum software is not suitable for all
tasks due to its costs and limitations. Therefore,
previous studies such as (Pérez-Castillo, Serrano et al.
2021) have explored hybrid systems, in which
classical software manages quantum execution and
result processing. These systems must address
challenges such as code integration, validation, and
portability, applying software engineering principles
such as abstraction, automation, and quality
assurance.

Hybrid software, which integrates classical and
quantum computing, plays a crucial role in
facilitating the adoption of quantum technologies in
real-world applications according to (Garcia-Alonso,
Rojo et al. 2022). Quantum computers, typically
accessed through cloud-based APIs (e.g., IBM, D-
Wave), perform computations on problems specified
by classical systems and return probabilistic results,
which require classical post-processing. This
interaction introduces challenges in selecting
appropriate quantum components, managing
interoperability, and optimizing execution
performance (Carleton, Harper et al. 2021).

The design of hybrid systems must address
several architectural challenges, including the
selection of classical or quantum solutions based on
functional requirements, orchestration of quantum

Exploring the Challenges of Hybrid Software with Quantum Design Patterns

147

invocations, and efficient error handling and result
interpretation. Additionally, most quantum circuits
are dynamically built during execution, necessitating
adaptive integration mechanisms.

2.2 Quantum Design Pattern

Research on design patterns in quantum software has
evolved from initial approaches focusing on circuit-
level patterns to address architectural questions of
greater complexity. As (Weigold, Barzen et al. 2021)
point out, early studies focused on measurement
patterns within one-way quantum computing, but the
field has progressed considerably.

A significant breakthrough was the proposal of a
pattern language for quantum algorithms in the work
of (Khan, Ahmad et al. 2023), where fundamental
patterns such as initialization and uniform
superposition were established. These were later
extended with techniques for data encoding, error
handling and hybrid quantum-classical integration
(Baczyk, Pérez-Castillo et al. 2024).

Today, (Beisel 2025) has documented catalogues
of software patterns designed to optimize quantum
circuit design. Ten essential patterns are identified,
including entanglement creation, oracle, amplitude
amplification and quantum-classical splitting. These
patterns exploit unique properties of quantum states
to improve efficiency and optimize resource use.

Unfortunately, all these related proposals do not
address specific challenges for defining hybrid
software architectures at a high level of abstraction.

3 CHALLENGES IN HYBRID
SOFTWARE ARQUITECTURES

This section presents five challenges that we consider
to be the most recurrent and impactful in the context
of hybrid software architectures: problem modelling
(cf. Section 3.1), dynamic generation of quantum
circuits (cf. Section 3.2), execution orchestration (cf.
Section 3.3), problem partitioning (cf. Section 3.4)
and interpretation of quantum result (cf. Section 3.5).
These challenges were selected based on their
frequent appearance in the literature on quantum-
classical hybrid systems, their centrality to the
development of effective software pipelines, and their
significant influence on the overall performance and
scalability of hybrid solutions. While other challenges
exist, the selected ones are those that most directly
affect the architectural design of hybrid applications
and their software engineering processes.

3.1 Problem Modelling

First, the certain quantum software algorithm should
be chosen to solve a given problem. Usually, the
algorithm selection is a fix decision at design time.
However, sometimes, this decision could be made,
between some valid algorithms, at runtime, for
example depending on the complexity and size of the
input.

Let us imagine that we try to optimize a logistic
route between some cities, i.e., the Traveling
Salesman Problem (TSP). The hybrid software
architecture could incorporate mechanisms to
determine when the Quantum Approximate
Optimization Algorithm (QAOA) (Blekos, Brand et
al. 2024), commonly used for route optimization, is
unnecessary. This would apply in cases where the
input, which varies overtime, involves only a small
number of cities, allowing for the use of classical
software instead.

Thus, the proper problem modelling and its
associated data preparation entails a relevant
challenge for hybrid software architectures. This task
also affects the dynamic generation of parameterized
quantum algorithms with the input data, usually
managed by classical counterpart. This data can come
from various sources, be heterogeneous and
constantly changing, which requires adequate pre-
processing prior to its use in quantum computing.
Since this pre-processing is managed by classical
software, it has a direct impact on the configuration
and execution of quantum circuits, and its correct
structuring is essential to optimize the performance of
the hybrid system.

Moreover, this issue not only influences the
dynamic generation of circuits, but also the definition
of parameters that guide the execution of quantum
algorithms in a self-adaptive way. For example,
depending on certain characteristics of the quantum
hardware or problem-specific constraints,
optimization parameters can be dynamically adjusted
to improve the efficiency of the execution
(Sepúlveda, Pérez-Castillo et al. 2025).

In this context, problem modelling encompasses
both the transformation and fitness of the input data
as well as the optimal configuration of the quantum
algorithm. All these tasks should be properly
designed in the target hybrid software architecture.

3.2 Dynamic Generation of Quantum
Circuits

Depending on the problem modelling, and
dynamically changing input data, quantum circuits

IQSOFT 2025 - 1st International Conference on Quantum Software

148

for solving the specific problem must be built at
runtime (Quetschlich, Burgholzer et al. 2023). This
poses another interesting challenge for hybrid
software architecture.

This challenge directly affects the transparency
and predictability of the software design,
complicating its maintainability and scalability. In
hybrid architectures, where quantum and classical
computing must be efficiently integrated, the lack of
clear rules in the dynamic generation of circuits
introduces uncertainty in the behavior of the system.

Design patterns should be applied in this context
to establish a well-defined structure for circuit
generation, ensuring that the rules are explicit and
easily traceable from the problem definition. By
providing some architectural solutions for circuit
creation and modification, the traceability of the
execution flow is improved, facilitating debugging
and maintenance.

A more structured system is achieved where each
modification in the circuit responds to well-defined
criteria. This ensures that changes remain within the
same compilation unit (such as a class), facilitating
the software’s evolution over time. It also allows the
design to be understandable and predictable, which
favors the optimization of resources and the
integration with classical algorithms in a more
efficient way. In addition, the reuse of components
within the system is facilitated, improving the
scalability of hybrid software. However, it is
important to note that in this article, we do not apply
or propose design patterns; rather, we discuss the
challenges associated with their use in quantum
software, focusing on the difficulties in designing
structured and scalable systems rather than
advocating for specific pattern implementations.

3.3 Execution Orchestration

A sophisticated hybrid software system can
efficiently manage multiple quantum algorithms to
address a range of related computational problems.
The selection of an appropriate algorithm depends not
only on the nature and scale of the problem, as
previously discussed, but also on the optimal
allocation of quantum computing resources,
considering hardware constraints (Weder, Barzen et
al. 2021). This approach ensures efficient utilization
of available quantum hardware while adapting to the
specific requirements of each problem instance.

This challenge impact the hybrid software
architecture. For example, multiple quantum circuits
that are managed by the same controller is clearly an
inefficient solution. One of the main problems is

excessive coupling. When a single controller is
responsible for coordinating the execution of more
than one quantum circuit, it becomes a critical node.
Any failure in its operation can compromise the
system, affecting the execution of computations and
the correct allocation of resources. In addition, this
structure limits scalability. As more circuits are
added, the controller's overhead increases, reducing
its ability to efficiently distribute tasks.

Another important aspect is the difficulty in
managing quantum resources. Each circuit may
require specific quantum gate configurations, qubit
optimization or error correction strategies. A
centralized controller struggles to manage this
diversity effectively, leading to a decline in overall
performance. Also, managing quantum states can
become complex. If multiple circuits rely on a single
controller to manage result retrieval, interference and
loss of computational consistency can occur.

To mitigate these problems, a design pattern based
on controller distribution can be applied. Instead of a
single controller for multiple circuits, each quantum
circuit has its own independent controller. This
allows for a more accurate allocation of resources and
prevents a failure from affecting the entire system. It
also improves scalability, as the addition of new
circuits does not overload a single central unit.
Flexibility is also enhanced, as circuits can be
configured more precisely without one affecting the
others.

3.4 Problem Partitioning

Problem partitioning is a fundamental challenge that
directly affects the feasibility of the solution
implemented in a hybrid software architecture. This
challenge arises due to differences in computing
paradigms: while classical systems are suitable for
sequential and general-purpose operations, quantum
systems offer significant advantages in specific
problems, such as optimization, simulation of
physical systems and complex data analysis.
However, quantum resources are constrained in terms
of number of qubits, coherence time and logic gate
fidelity, which requires careful structuring of how
tasks are delegated between the two paradigms.
For example, one of the limitations in this regard is
the lack of enough qubits. As a solution, some
proposals (Ariño Sales and Palacios Araos 2023)
have divided the whole problem into smaller ones,
e.g., by classical clustering, that can be then solved
independently on quantum hardware that fulfil some
constraints. This entails two additional challenges.
First, the input data preprocessing (cf. section 3.1),

Exploring the Challenges of Hybrid Software with Quantum Design Patterns

149

which, in many cases, should oversee the problem
partition to fit the capabilities of the quantum system.
Second, the output post-processing for combining
individual outputs and providing a relevant solution
for the whole problem (cf. section 3.5).

Appropriate partitioning seeks to maximize the
utilization of quantum computing without overloading
it with processes that can be solved more efficiently in
the classical part of the system. This involves designing
strategies to divide the problem into manageable
subproblems and distributing them according to the
capabilities of each environment. Incorrect partitioning
can lead to unnecessary redundancies, loss of
information in the communication between the two
parts and, in the worst case, make the execution of a
hybrid algorithm unfeasible.

As a result, there could be the need for some
design pattern that address this challenge by
providing a structured framework for defining how
the problem should be optimally partitioned. It
focuses on criteria such as the computational
complexity of each part, the capacity of available
quantum devices and the costs associated with
transferring data between classical and quantum
components. By applying this pattern, it achieves
greater effectiveness in hybrid software execution,
reducing latency and improving overall system
performance. It also facilitates more effective
scalability by allowing the partitioning to adapt as
quantum resources evolve and capacity increases.

Beyond performance, this approach has
implications for the correctness and stability of hybrid
algorithms, since a correct distribution of tasks avoids
the accumulation of quantum errors and optimizes the
use of noise mitigation techniques. Thus, the design
pattern not only solves the partitioning problem, but
also contributes to the robustness and reliability of
hybrid solutions, ensuring that the interaction between
classical and quantum systems is smooth and effective.

3.5 Interpretation of Quantum Results

The challenge in hybrid software architectures refers
to the need of interpreting quantum results
effectively, provide meaningful solutions for the end
users. This is specifically relevant when problem
partitioning happens (see section 3.4). This implicates
a spare post-processing. In these environments, the
core issue lies in how the problem is modelled, which
directly impacts the clarity and usability of the results.
The execution of various functions and methods to
process a solution generates outputs that, without a
structured interpretation layer, can be difficult to
understand and apply in practice.

This lack of a coherent interpretative structure is
particularly problematic in hybrid systems, where
quantum and classical computations produce data in
different formats or levels of abstraction. Without a
proper framework for interpretation, users may
struggle to assess the reliability of the results and
make informed decisions. Thus, the problem is not
just handling fragmented outputs but ensuring that the
results are presented in a way that makes sense within
the broader context of the modelled problem
(explained in section 3.1).

In classical software architectures, the Model-
View-Controller (MVC) by (Gamma, Helm et al.
1993) design pattern has been successfully applied.
MVC enhances modularity, maintainability, and
scalability by separating an application into three
components: the Model, which encapsulates the core
logic, including quantum algorithms and interactions
with quantum hardware; the View, responsible for
displaying information in a user-friendly manner,
such as visualizing quantum results or circuit
representations; and the Controller, which mediates
user input, orchestrates hybrid quantum-classical
processing, and ensures appropriate data flow. In
hybrid software architecture, MVC plays a crucial
role by abstracting quantum complexity within the
Model, allowing the Controller to select appropriate
quantum resources and oversee post-processing of
probabilistic results, and enabling the View to present
meaningful interpretations to users. However,
applying this pattern becomes more complex due to
the stochastic nature of quantum software, which
requires multiple shots to obtain meaningful
solutions, as measurements are derived from
probability distributions rather than deterministic
outputs. Additionally, quantum jobs are often queued,
meaning the system must efficiently manage job
execution times, track when responses are obtained,
and synchronize results with classical processing.
This introduces challenges in managing
asynchronous quantum requests and ensuring that
users receive timely, interpretable solutions,
reinforcing the need for a robust orchestration layer
within the Controller to handle scheduling, retrieval,
and integration of quantum results.

4 MAIN IMPLICATIONS

Hybrid software architectures pose challenges to
efficiency, maintainability, and scalability, requiring
structured strategies to integrate classical and quantum
computing effectively. Section 4.1 summarizes the key

IQSOFT 2025 - 1st International Conference on Quantum Software

150

challenges while section 4.2 discusses their
implications and the architectural needs.

4.1 Key Challenges in Hybrid Software
Architectures

This section presents a summary of the challenges,
main impacts in hybrid software architectures as well
as main quality characteristics affected.

Sparse Pre-processing and Fragmented Data
Handling

 Challenge Summary: In hybrid software
architectures, classical data must be properly
structured and encoded before being processed
by quantum algorithms. However, current
approaches often distribute pre-processing tasks
across different layers or modules without a
centralized strategy, leading to inconsistencies
in data representation.

 Impact: This fragmented handling of data
makes it difficult to track transformations,
introduces latency, and complicates data
integration with quantum computation. The lack
of standardization also reduces software
maintainability and interoperability with
different quantum backends.

 Quality characteristics affected:
Maintainability, interoperability, performance.

Unstructured Quantum Circuit Generation

 Challenge Summary: Many hybrid software
systems generate quantum circuits dynamically
at runtime based on input data. However,
without predefined rules for structuring these
circuits, the process becomes unpredictable,
making debugging, performance optimization,
and reproducibility difficult.

 Impact: The absence of structured circuit
generation affects software maintainability, as
dynamically generated circuits may differ
between executions, reducing traceability.
Additionally, inefficient circuit structures can
lead to increased execution times and
suboptimal use of quantum hardware.

 Quality characteristics affected:
Maintainability, traceability, scalability.

Fragmented Post-processing and Result
Interpretation

 Challenge Summary: Quantum computations
typically produce probabilistic results that

require post-processing before they can be used
effectively in decision-making processes. When
post-processing is distributed across multiple
software components without a unified
framework, integrating and interpreting results
becomes challenging.

 Impact: Without a structured post-processing
mechanism, quantum results may lack clarity,
reducing their usability. Additionally,
inconsistencies in result aggregation and
interpretation may compromise the reliability of
hybrid systems.

 Quality characteristics affected: Usability,
reliability, interpretability.

Centralized Execution Orchestration

 Challenge Summary: Hybrid software often
relies on a centralized controller to manage
multiple quantum circuits or algorithms. While
this approach simplifies initial development, it
creates bottlenecks that affect the efficiency and
scalability of the system.

 Impact: Centralizing execution orchestration
increases system coupling, making it difficult to
scale as the number of quantum tasks grows. A
single point of failure also reduces system
reliability and flexibility, as every execution
request depends on a single coordination
mechanism.

 Quality characteristics affected: Scalability,
fault tolerance, flexibility.

Problem Partitioning Complexity

 Challenge Summary: Hybrid software requires
partitioning computational tasks between
classical and quantum components. However,
determining which parts of a problem should be
executed on quantum hardware versus classical
processors is complex and depends on hardware
constraints, algorithmic efficiency, and problem
structure.

 Impact: Incorrect problem partitioning can lead
to inefficiencies, excessive communication
overhead, or infeasible hybrid execution. If
quantum resources are not optimally utilized,
classical components may end up handling most
of the workload, reducing the benefits of
quantum acceleration.

 Quality characteristics affected: Performance,
adaptability, feasibility.

Exploring the Challenges of Hybrid Software with Quantum Design Patterns

151

4.2 Architectural Needs for Hybrid
Software Systems

To address these challenges, hybrid software
architectures require structured design principles.
Below, we outline key architectural needs that should
be incorporated into future high-level design patterns:

1. Pre-processing Standardization. Establishing
a centralized transformation mechanism ensures
that input data follows a consistent format,
improving traceability, maintainability, and
interoperability with quantum systems. This
includes defining common encoding schemes
for quantum algorithms and integrating pre-
processing steps into a modular framework to
simplify data preparation.

2. Structured Circuit Generation. Defining clear
rules and templates for dynamic quantum circuit
generation ensures predictability and
reproducibility. This includes using modular
circuit components that follow a standardized
approach to gate arrangement, qubit mapping,
and circuit optimization techniques.

3. Post-processing Interpretation Layer.
Implementing a structured post-processing
framework centralizes result aggregation,
filtering, and error mitigation, improving clarity
and usability. This ensures that quantum results
are transformed into meaningful outputs for
classical decision-making, enhancing system
interpretability and reliability.

4. Distributed Execution Orchestration.
Introducing independent execution controllers
for different quantum circuits reduces
bottlenecks and improves system scalability.
This approach enables parallel execution of
multiple quantum tasks, increases system
flexibility, and enhances fault tolerance by
preventing failures in one component from
affecting the entire execution pipeline.

5. Partitioning Strategies for Hybrid
Workloads. Developing automated workload
distribution strategies that analyze
computational complexity and assign tasks to
classical or quantum processors based on
efficiency criteria. Ensuring that partitioning
strategies dynamically adapt to quantum
hardware capabilities and optimize data flow
between classical and quantum components.

5 CONCLUSION AND FUTURE
WORK

This study analyzes the challenges of hybrid software
architectures, including problem modeling, dynamic
quantum circuit generation, execution orchestration,
problem partitioning, and the interpretation of
quantum results. Addressing these challenges is
essential for improving hybrid software quality,
ensuring properties such as maintainability and
scalability, and facilitating the broader adoption of
quantum computing in industry.

This study has limitations, including potential
subjectivity in the selection of challenges and the lack
of empirical validation, which affects the
generalizability of the results. Future work should
address these issues and consider the evolving nature
of quantum technologies. A key direction for future
research is the identification of design and
architectural patterns to systematically address these
challenges. Defining high-level, reusable design
patterns can support modular quantum software
development, scalable quantum-classical integration,
and efficient problem partitioning. Additionally, it is
crucial to identify and mitigate architectural
antipatterns—common but suboptimal design choices
that may introduce or exacerbate the challenges
discussed. By formalizing both effective design
patterns and potential pitfalls, hybrid quantum
software can become more robust, maintainable, and
scalable, accelerating its practical adoption.

ACKNOWLEDGEMENTS

This work is supported by the projects SMOOTH
(PID2022-137944NB-I00) and QU-ASAP
(PDC2022-133051-I00) funded by MICIU/AEI/
10.13039/501100011033 / PRTR, EU.

REFERENCES

Alsalman, A. I. S. (2023). "Accelerating Quantum
Readiness for Sectors: Risk Management and Strategies
for Sectors." Journal of Quantum Information Science
13(2): 33-44.

Ariño Sales, J. F. and R. A. Palacios Araos (2023).
"Adiabatic quantum computing impact on transport
optimization in the last-mile scenario." Frontiers in
Computer Science 5: 1294564.

Arute, F., K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R.
Barends, R. Biswas, S. Boixo, F. G. Brandao and D. A.
Buell (2019). "Quantum supremacy using a

IQSOFT 2025 - 1st International Conference on Quantum Software

152

programmable superconducting processor." Nature
574(7779): 505-510.

Baczyk, M., R. Pérez-Castillo and M. Piattini (2024).
Towards a Framework of Architectural Patterns for
Quantum Software Engineering. 2024 IEEE
International Conference on Quantum Computing and
Engineering (QCE), IEEE.

Beisel, M. a. B., Johanna and Leymann, Frank and Weder,
Benjamin (2025). "Operations Patterns for Hybrid
Quantum Applications."

Blekos, K., D. Brand, A. Ceschini, C.-H. Chou, R.-H. Li,
K. Pandya and A. Summer (2024). "A review on
quantum approximate optimization algorithm and its
variants." Physics Reports 1068: 1-66.

Brookshear, J. G. (1989). Theory of computation: formal
languages, automata, and complexity, Benjamin-
Cummings Publishing Co., Inc.

Carleton, A., E. Harper, J. E. Robert, M. H. Klein, D. De
Niz, E. Desautels, J. B. Goodenough, C. Holland, I.
Ozkaya and D. Schmidt (2021). "Architecting the future
of software engineering: A national agenda for software
engineering research and development." Softw. Eng.
Inst., Pittsburgh, PA, USA, AD1152714.

Carleton, A. D., E. Harper, J. E. Robert, M. H. Klein, D. De
Niz, E. Desautels, J. B. Goodenough, C. Holland, I.
Ozkaya and D. Schmidt (2021). Architecting the Future
of Software Engineering: A National Agenda for
Software Engineering Research and Development,
Software Engineering Institute, Carnegie Mellon
University.

Chow, J., O. Dial and J. Gambetta (2021). "IBM Quantum
breaks the 100-qubit processor barrier." IBM Research
Blog.

Ezratty, O. (2021). Understanding quantum technologies, le
lab quantique.

Gambetta, J. (2023). The hardware and software for the era
of quantum utility is here, IBM. https://www.ibm.
com/quantum/blog/quantum-roadmap-2033.

Gamma, E., R. Helm, R. Johnson and J. Vlissides (1993).
Design patterns: Abstraction and reuse of object-
oriented design. ECOOP’93—Object-Oriented
Programming: 7th European Conference
Kaiserslautern, Germany, July 26–30, 1993
Proceedings 7, Springer.

Garcia-Alonso, J., J. Rojo, D. Valencia, E. Moguel, J.
Berrocal and J. M. Murillo (2022). "Quantum Software
as a Service Through a Quantum API Gateway." IEEE
Internet Computing 26(1): 34-41.

Jiménez-Navajas, L., R. Pérez-Castillo and M. Piattini
(2025). "Transforming Quantum Programmes in KDM
to Quantum Design Models in UML." Informatica: 1-
42.

Khan, A. A., A. Ahmad, M. Waseem, P. Liang, M.
Fahmideh, T. Mikkonen and P. Abrahamsson (2023).
"Software architecture for quantum computing systems
— A systematic review." Journal of Systems and
Software 201: 111682.

Kim, Y., A. Eddins, S. Anand, K. X. Wei, E. Van Den Berg,
S. Rosenblatt, H. Nayfeh, Y. Wu, M. Zaletel and K.
Temme (2023). "Evidence for the utility of quantum

computing before fault tolerance." Nature 618(7965):
500-505.

Leymann, F. (2019). Towards a pattern language for
quantum algorithms. Quantum Technology and
Optimization Problems: First International Workshop,
QTOP 2019, Munich, Germany, March 18, 2019,
Proceedings 1, Springer.

Piattini, M., G. Peterssen, R. Pérez-Castillo, J. L. Hevia, M.
A. Serrano, G. Hernández, I. G. R. De Guzmán, C. A.
Paradela, M. Polo and E. Murina (2020). The talavera
manifesto for quantum software engineering and
programming. QANSWER.

Preskill, J. (2018). "Quantum Computing in the NISQ era
and beyond." Quantum 2(aug): 79.

Pérez-Castillo, R., M. A. Serrano and M. Piattini (2021).
"Software modernization to embrace quantum
technology." Advances in Engineering Software 151:
102933.

Quetschlich, N., L. Burgholzer and R. Wille (2023).
Reducing the Compilation Time of Quantum Circuits
Using Pre-Compilation on the Gate Level. 2023 IEEE
International Conference on Quantum Computing and
Engineering (QCE), IEEE Computer Society: 757-767.

Rieffel, E. G. and W. H. Polak (2011). Quantum
computing: A gentle introduction, MIT press.

Sepúlveda, S., R. Pérez-Castillo and M. Piattini (2025). "A
software product line approach for developing hybrid
software systems." Information and Software
Technology 178: 107625.

Serrano, M. A., J. A. Cruz-Lemus, R. Perez-Castillo and M.
Piattini (2022). "Quantum software components and
platforms: Overview and quality assessment." ACM
Computing Surveys 55(8): 1-31.

Ukpabi, D., H. Karjaluoto, A. Bötticher, A. Nikiforova, D.
Petrescu, P. Schindler, V. Valtenbergs and L. Lehmann
(2023). "Framework for understanding quantum
computing use cases from a multidisciplinary
perspective and future research directions." Futures
154: 103277.

Weder, B., J. Barzen, F. Leymann and M. Zimmermann
(2021). Hybrid quantum applications need two
orchestrations in superposition: a software architecture
perspective. 2021 IEEE International Conference on
Web Services (ICWS), IEEE.

Weigold, M., J. Barzen, F. Leymann and D. Vietz (2021).
Patterns for hybrid quantum algorithms. Symposium
and Summer School on Service-Oriented Computing,
Springer.

Exploring the Challenges of Hybrid Software with Quantum Design Patterns

153

