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Abstract: Quantum computing has emerged as a new paradigm to solve several complex problems that are intractable 
for classical computers. This technology is being applied in areas such as optimization and cybersecurity, but 
its integration with classical software presents several challenges. One approach to overcome these obstacles 
is the adoption of design patterns, like those used in classical software, which could improve the scalability 
and maintainability of quantum systems. However, there is still a need to formalize architectural patterns that 
support this integration. Furthermore, quantum-classical software design can lead to problems that affect its 
quality, which highlights the importance of detecting and correcting them in time. This study presents an 
analysis and discussion of the challenges faced by hybrid software architectures such as problem modelling 
as well as dynamic generation of quantum circuits, execution orchestration, problem partitioning and 
interpretation of quantum results. The study of these challenges will serve as a starting point for proposing 
design patterns for hybrid software architectures. 

1 INTRODUCTION 

Quantum computing has emerged as a new 
computational paradigm that harnesses the principles 
of quantum mechanics, such as superposition and 
entanglement, to tackle algorithmically intractable 
problems in classical computing according to 
(Alsalman 2023). (Brookshear 1989) points out that 
thanks to its ability to simultaneously manipulate 
multiple quantum states, this technology has begun to 
be applied in sectors such as optimization, 
biomedicine, and cybersecurity, allowing NP-hard 
and NP-complete problems to be solved with 
unprecedented efficiency. However, the development 
of quantum software presents multiple challenges, 
especially when seeking its integration with classical 
software, giving rise to so-called hybrid software 
systems.  

As mentioned by the Software Engineering 
Institute (SEI)  (Carleton, Harper et al. 2021), the 
construction of these hybrid systems introduces 
significant challenges in architectural design, 
interoperability or the reuse of quantum components 
in classical architectures, among others. 

 
a  https://orcid.org/0009-0006-8697-3816 
b  https://orcid.org/0000-0002-9271-3184 

One of the most promising approaches to improve 
hybrid software design and integration is the 
application of quantum design patterns (Leymann 
2019). In classical software engineering, design 
patterns have proven to be an effective strategy for 
improving the maintainability and scalability of 
systems, and their application in quantum software 
could provide similar benefits (Gamma, Helm et al. 
1993). The usage of design pattern allows the 
application of well-proven solutions for some of the 
common problems in hybrid software architectures. 
However, (Khan, Ahmad et al. 2023) explain that 
most documented patterns have focused on low-
levels, such as quantum circuits and oracles, leaving 
a gap in the formalization of high-level architectural 
patterns that facilitate the effective integration of 
quantum software into existing systems. 
In addition to design pattern reuse, another critical 
problem in building hybrid software according to 
(Khan, Ahmad et al. 2023) is the emergence of 
architecture smells, i.e. deficiencies in the 
architectural design that can compromise the quality 
and sustainability of the system over time. These 
problems may arise due to poor decisions in the 
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selection of quantum hardware, difficulties in the 
orchestration of interactions between classical and 
quantum systems, or the lack of reusability and 
adaptability of quantum circuits as its mentioned in 
(Pérez-Castillo, Serrano et al. 2021). Early detection 
and mitigation of these problems is crucial to ensure 
the efficiency and maintainability of hybrid software 
architectures.    

This position paper presents and discusses some 
of the most common challenges present in hybrid 
software architectures. The main contribution is a 
critical analysis of those challenges and how these 
could be potentially addressed by the application of 
some of the existing classical/quantum design 
patterns, as well as motivate the need for further 
architectural patterns for hybrid software 
architectures. The integration of these systems in 
classical architectures is not trivial and requires 
solving technical challenges: Problem modelling, 
dynamic generation of quantum circuits, execution 
orchestration, problem partitioning, and the 
interpretation of the quantum results. 

The structure of the paper is as follows: Section 2 
presents the state of the art and related work; Section 
3 describes all the challenges faced by the hybrid 
architecture; Section 4 discusses the main 
implications for researchers and practitioners and 
Section 5, explains the conclusions and future work. 

2 STATE-OF-THE-ART 

This section presents the state of the art of quantum 
computing and quantum software (cf. Section 2.1) 
and quantum design patterns (cf. Section 2.2). 

2.1 Quantum Computing and 
Quantum Software 

As discussed in section 1, quantum computing 
surpasses classical computing in solving complex 
problems. The qubit, its fundamental unit, can be 
implemented through various physical systems 
(Ezratty 2021). Quantum supremacy has already been 
demonstrated (Arute, Arya et al. 2019). The field is 
advancing rapidly, IBM introduced a processor in 
2021 (Chow, Dial et al. 2021) and announced the 
Condor in 2023 (Gambetta 2023). Google predicts a 
million-qubit machine by the decade’s end. 

Quantum computing tackles NP-hard and NP-
complete problems in optimization, cryptography, 
and machine learning, outperforming classical 
methods for large instances (Brookshear 1989). 

(Ukpabi, Karjaluoto et al. 2023), highlights its 
transformative impact across industries. 

Despite its potential, the NISQ era faces 
challenges like error correction and scalability 
(Preskill 2018). However, advantages may emerge 
even before full fault tolerance (Kim, Eddins et al. 
2023). Beyond hardware, quantum software is 
essential to unlock quantum computing’s full power 
(Piattini, Peterssen et al. 2020). 

The Quantum Software Manifesto, proposed by 
(Jiménez-Navajas, Pérez-Castillo et al. 2025), 
stresses the importance of advancing in this field, 
while the European Quantum Flagship, according to 
(Serrano, Cruz-Lemus et al. 2022), proposes its 
integration with classical systems. As (Rieffel and 
Polak 2011) point out, unlike classical software, 
quantum software uses probabilistic functions and 
quantum gates to manipulate cubits.   

There are several quantum programming 
languages, such as OpenQASM, Q#, Qiskit, Cirq and 
pyQuil, which have significant differences, such as 
the absence of traditional control structures and the 
need to define parameterizable programs. In addition, 
most quantum development platforms, such as IBM 
Q Experience, Amazon Bracket and D-Wave Leap, 
operate in the cloud, allowing both simulations and 
execution on real hardware.   

However, quantum software is not suitable for all 
tasks due to its costs and limitations. Therefore, 
previous studies such as (Pérez-Castillo, Serrano et al. 
2021) have explored hybrid systems, in which 
classical software manages quantum execution and 
result processing. These systems must address 
challenges such as code integration, validation, and 
portability, applying software engineering principles 
such as abstraction, automation, and quality 
assurance. 

Hybrid software, which integrates classical and 
quantum computing, plays a crucial role in 
facilitating the adoption of quantum technologies in 
real-world applications according to (Garcia-Alonso, 
Rojo et al. 2022). Quantum computers, typically 
accessed through cloud-based APIs (e.g., IBM, D-
Wave), perform computations on problems specified 
by classical systems and return probabilistic results, 
which require classical post-processing. This 
interaction introduces challenges in selecting 
appropriate quantum components, managing 
interoperability, and optimizing execution 
performance (Carleton, Harper et al. 2021). 

The design of hybrid systems must address 
several architectural challenges, including the 
selection of classical or quantum solutions based on 
functional requirements, orchestration of quantum 
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invocations, and efficient error handling and result 
interpretation. Additionally, most quantum circuits 
are dynamically built during execution, necessitating 
adaptive integration mechanisms. 

2.2 Quantum Design Pattern 

Research on design patterns in quantum software has 
evolved from initial approaches focusing on circuit-
level patterns to address architectural questions of 
greater complexity. As (Weigold, Barzen et al. 2021) 
point out, early studies focused on measurement 
patterns within one-way quantum computing, but the 
field has progressed considerably. 

A significant breakthrough was the proposal of a 
pattern language for quantum algorithms in the work 
of (Khan, Ahmad et al. 2023), where fundamental 
patterns such as initialization and uniform 
superposition were established. These were later 
extended with techniques for data encoding, error 
handling and hybrid quantum-classical integration 
(Baczyk, Pérez-Castillo et al. 2024). 

Today, (Beisel 2025) has documented catalogues 
of software patterns designed to optimize quantum 
circuit design. Ten essential patterns are identified, 
including entanglement creation, oracle, amplitude 
amplification and quantum-classical splitting. These 
patterns exploit unique properties of quantum states 
to improve efficiency and optimize resource use. 

Unfortunately, all these related proposals do not 
address specific challenges for defining hybrid 
software architectures at a high level of abstraction. 

3 CHALLENGES IN HYBRID 
SOFTWARE ARQUITECTURES 

This section presents five challenges that we consider 
to be the most recurrent and impactful in the context 
of hybrid software architectures: problem modelling 
(cf. Section 3.1), dynamic generation of quantum 
circuits (cf. Section 3.2), execution orchestration (cf. 
Section 3.3), problem partitioning (cf. Section 3.4) 
and interpretation of quantum result (cf. Section 3.5). 
These challenges were selected based on their 
frequent appearance in the literature on quantum-
classical hybrid systems, their centrality to the 
development of effective software pipelines, and their 
significant influence on the overall performance and 
scalability of hybrid solutions. While other challenges 
exist, the selected ones are those that most directly 
affect the architectural design of hybrid applications 
and their software engineering processes. 

3.1 Problem Modelling 

First, the certain quantum software algorithm should 
be chosen to solve a given problem. Usually, the 
algorithm selection is a fix decision at design time. 
However, sometimes, this decision could be made, 
between some valid algorithms, at runtime, for 
example depending on the complexity and size of the 
input.  

Let us imagine that we try to optimize a logistic 
route between some cities, i.e., the Traveling 
Salesman Problem (TSP). The hybrid software 
architecture could incorporate mechanisms to 
determine when the Quantum Approximate 
Optimization Algorithm (QAOA) (Blekos, Brand et 
al. 2024), commonly used for route optimization, is 
unnecessary. This would apply in cases where the 
input, which varies overtime, involves only a small 
number of cities, allowing for the use of classical 
software instead. 

Thus, the proper problem modelling and its 
associated data preparation entails a relevant 
challenge for hybrid software architectures. This task 
also affects the dynamic generation of parameterized 
quantum algorithms with the input data, usually 
managed by classical counterpart. This data can come 
from various sources, be heterogeneous and 
constantly changing, which requires adequate pre-
processing prior to its use in quantum computing. 
Since this pre-processing is managed by classical 
software, it has a direct impact on the configuration 
and execution of quantum circuits, and its correct 
structuring is essential to optimize the performance of 
the hybrid system. 

Moreover, this issue not only influences the 
dynamic generation of circuits, but also the definition 
of parameters that guide the execution of quantum 
algorithms in a self-adaptive way. For example, 
depending on certain characteristics of the quantum 
hardware or problem-specific constraints, 
optimization parameters can be dynamically adjusted 
to improve the efficiency of the execution 
(Sepúlveda, Pérez-Castillo et al. 2025). 

In this context, problem modelling encompasses 
both the transformation and fitness of the input data 
as well as the optimal configuration of the quantum 
algorithm. All these tasks should be properly 
designed in the target hybrid software architecture.  

3.2 Dynamic Generation of Quantum 
Circuits 

Depending on the problem modelling, and 
dynamically changing input data, quantum circuits 

IQSOFT 2025 - 1st International Conference on Quantum Software

148



for solving the specific problem must be built at 
runtime (Quetschlich, Burgholzer et al. 2023). This 
poses another interesting challenge for hybrid 
software architecture. 

This challenge directly affects the transparency 
and predictability of the software design, 
complicating its maintainability and scalability. In 
hybrid architectures, where quantum and classical 
computing must be efficiently integrated, the lack of 
clear rules in the dynamic generation of circuits 
introduces uncertainty in the behavior of the system.   

Design patterns should be applied in this context 
to establish a well-defined structure for circuit 
generation, ensuring that the rules are explicit and 
easily traceable from the problem definition. By 
providing some architectural solutions for circuit 
creation and modification, the traceability of the 
execution flow is improved, facilitating debugging 
and maintenance.  

A more structured system is achieved where each 
modification in the circuit responds to well-defined 
criteria. This ensures that changes remain within the 
same compilation unit (such as a class), facilitating 
the software’s evolution over time. It also allows the 
design to be understandable and predictable, which 
favors the optimization of resources and the 
integration with classical algorithms in a more 
efficient way. In addition, the reuse of components 
within the system is facilitated, improving the 
scalability of hybrid software. However, it is 
important to note that in this article, we do not apply 
or propose design patterns; rather, we discuss the 
challenges associated with their use in quantum 
software, focusing on the difficulties in designing 
structured and scalable systems rather than 
advocating for specific pattern implementations. 

3.3 Execution Orchestration 

A sophisticated hybrid software system can 
efficiently manage multiple quantum algorithms to 
address a range of related computational problems. 
The selection of an appropriate algorithm depends not 
only on the nature and scale of the problem, as 
previously discussed, but also on the optimal 
allocation of quantum computing resources, 
considering hardware constraints (Weder, Barzen et 
al. 2021). This approach ensures efficient utilization 
of available quantum hardware while adapting to the 
specific requirements of each problem instance.  

This challenge impact the hybrid software 
architecture. For example, multiple quantum circuits 
that are managed by the same controller is clearly an 
inefficient solution. One of the main problems is 

excessive coupling. When a single controller is 
responsible for coordinating the execution of more 
than one quantum circuit, it becomes a critical node. 
Any failure in its operation can compromise the 
system, affecting the execution of computations and 
the correct allocation of resources. In addition, this 
structure limits scalability. As more circuits are 
added, the controller's overhead increases, reducing 
its ability to efficiently distribute tasks.     

Another important aspect is the difficulty in 
managing quantum resources. Each circuit may 
require specific quantum gate configurations, qubit 
optimization or error correction strategies. A 
centralized controller struggles to manage this 
diversity effectively, leading to a decline in overall 
performance. Also, managing quantum states can 
become complex. If multiple circuits rely on a single 
controller to manage result retrieval, interference and 
loss of computational consistency can occur. 

To mitigate these problems, a design pattern based 
on controller distribution can be applied. Instead of a 
single controller for multiple circuits, each quantum 
circuit has its own independent controller. This 
allows for a more accurate allocation of resources and 
prevents a failure from affecting the entire system. It 
also improves scalability, as the addition of new 
circuits does not overload a single central unit. 
Flexibility is also enhanced, as circuits can be 
configured more precisely without one affecting the 
others. 

3.4 Problem Partitioning 

Problem partitioning is a fundamental challenge that 
directly affects the feasibility of the solution 
implemented in a hybrid software architecture. This 
challenge arises due to differences in computing 
paradigms: while classical systems are suitable for 
sequential and general-purpose operations, quantum 
systems offer significant advantages in specific 
problems, such as optimization, simulation of 
physical systems and complex data analysis. 
However, quantum resources are constrained in terms 
of number of qubits, coherence time and logic gate 
fidelity, which requires careful structuring of how 
tasks are delegated between the two paradigms. 
For example, one of the limitations in this regard is 
the lack of enough qubits. As a solution, some 
proposals (Ariño Sales and Palacios Araos 2023) 
have divided the whole problem into smaller ones, 
e.g., by classical clustering, that can be then solved 
independently on quantum hardware that fulfil some 
constraints. This entails two additional challenges. 
First, the input data preprocessing (cf. section 3.1), 
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which, in many cases, should oversee the problem 
partition to fit the capabilities of the quantum system. 
Second, the output post-processing for combining 
individual outputs and providing a relevant solution 
for the whole problem (cf. section 3.5). 

Appropriate partitioning seeks to maximize the 
utilization of quantum computing without overloading 
it with processes that can be solved more efficiently in 
the classical part of the system. This involves designing 
strategies to divide the problem into manageable 
subproblems and distributing them according to the 
capabilities of each environment. Incorrect partitioning 
can lead to unnecessary redundancies, loss of 
information in the communication between the two 
parts and, in the worst case, make the execution of a 
hybrid algorithm unfeasible. 

As a result, there could be the need for some 
design pattern that address this challenge by 
providing a structured framework for defining how 
the problem should be optimally partitioned. It 
focuses on criteria such as the computational 
complexity of each part, the capacity of available 
quantum devices and the costs associated with 
transferring data between classical and quantum 
components. By applying this pattern, it achieves 
greater effectiveness in hybrid software execution, 
reducing latency and improving overall system 
performance. It also facilitates more effective 
scalability by allowing the partitioning to adapt as 
quantum resources evolve and capacity increases. 

Beyond performance, this approach has 
implications for the correctness and stability of hybrid 
algorithms, since a correct distribution of tasks avoids 
the accumulation of quantum errors and optimizes the 
use of noise mitigation techniques. Thus, the design 
pattern not only solves the partitioning problem, but 
also contributes to the robustness and reliability of 
hybrid solutions, ensuring that the interaction between 
classical and quantum systems is smooth and effective. 

3.5 Interpretation of Quantum Results 

The challenge in hybrid software architectures refers 
to the need of interpreting quantum results 
effectively, provide meaningful solutions for the end 
users. This is specifically relevant when problem 
partitioning happens (see section 3.4). This implicates 
a spare post-processing. In these environments, the 
core issue lies in how the problem is modelled, which 
directly impacts the clarity and usability of the results. 
The execution of various functions and methods to 
process a solution generates outputs that, without a 
structured interpretation layer, can be difficult to 
understand and apply in practice. 

This lack of a coherent interpretative structure is 
particularly problematic in hybrid systems, where 
quantum and classical computations produce data in 
different formats or levels of abstraction. Without a 
proper framework for interpretation, users may 
struggle to assess the reliability of the results and 
make informed decisions. Thus, the problem is not 
just handling fragmented outputs but ensuring that the 
results are presented in a way that makes sense within 
the broader context of the modelled problem 
(explained in section 3.1). 

In classical software architectures, the Model-
View-Controller (MVC) by (Gamma, Helm et al. 
1993)  design pattern has been successfully applied. 
MVC enhances modularity, maintainability, and 
scalability by separating an application into three 
components: the Model, which encapsulates the core 
logic, including quantum algorithms and interactions 
with quantum hardware; the View, responsible for 
displaying information in a user-friendly manner, 
such as visualizing quantum results or circuit 
representations; and the Controller, which mediates 
user input, orchestrates hybrid quantum-classical 
processing, and ensures appropriate data flow. In 
hybrid software architecture, MVC plays a crucial 
role by abstracting quantum complexity within the 
Model, allowing the Controller to select appropriate 
quantum resources and oversee post-processing of 
probabilistic results, and enabling the View to present 
meaningful interpretations to users. However, 
applying this pattern becomes more complex due to 
the stochastic nature of quantum software, which 
requires multiple shots to obtain meaningful 
solutions, as measurements are derived from 
probability distributions rather than deterministic 
outputs. Additionally, quantum jobs are often queued, 
meaning the system must efficiently manage job 
execution times, track when responses are obtained, 
and synchronize results with classical processing. 
This introduces challenges in managing 
asynchronous quantum requests and ensuring that 
users receive timely, interpretable solutions, 
reinforcing the need for a robust orchestration layer 
within the Controller to handle scheduling, retrieval, 
and integration of quantum results. 

4 MAIN IMPLICATIONS 

Hybrid software architectures pose challenges to 
efficiency, maintainability, and scalability, requiring 
structured strategies to integrate classical and quantum 
computing effectively. Section 4.1 summarizes the key 

IQSOFT 2025 - 1st International Conference on Quantum Software

150



challenges while section 4.2 discusses their 
implications and the architectural needs. 

4.1 Key Challenges in Hybrid Software 
Architectures 

This section presents a summary of the challenges, 
main impacts in hybrid software architectures as well 
as main quality characteristics affected. 

Sparse Pre-processing and Fragmented Data 
Handling 

 Challenge Summary: In hybrid software 
architectures, classical data must be properly 
structured and encoded before being processed 
by quantum algorithms. However, current 
approaches often distribute pre-processing tasks 
across different layers or modules without a 
centralized strategy, leading to inconsistencies 
in data representation. 

 Impact: This fragmented handling of data 
makes it difficult to track transformations, 
introduces latency, and complicates data 
integration with quantum computation. The lack 
of standardization also reduces software 
maintainability and interoperability with 
different quantum backends. 

 Quality characteristics affected: 
Maintainability, interoperability, performance. 

Unstructured Quantum Circuit Generation 

 Challenge Summary: Many hybrid software 
systems generate quantum circuits dynamically 
at runtime based on input data. However, 
without predefined rules for structuring these 
circuits, the process becomes unpredictable, 
making debugging, performance optimization, 
and reproducibility difficult. 

 Impact: The absence of structured circuit 
generation affects software maintainability, as 
dynamically generated circuits may differ 
between executions, reducing traceability. 
Additionally, inefficient circuit structures can 
lead to increased execution times and 
suboptimal use of quantum hardware. 

 Quality characteristics affected: 
Maintainability, traceability, scalability. 

Fragmented Post-processing and Result 
Interpretation 

 Challenge Summary: Quantum computations 
typically produce probabilistic results that 

require post-processing before they can be used 
effectively in decision-making processes. When 
post-processing is distributed across multiple 
software components without a unified 
framework, integrating and interpreting results 
becomes challenging. 

 Impact: Without a structured post-processing 
mechanism, quantum results may lack clarity, 
reducing their usability. Additionally, 
inconsistencies in result aggregation and 
interpretation may compromise the reliability of 
hybrid systems. 

 Quality characteristics affected: Usability, 
reliability, interpretability. 

Centralized Execution Orchestration 

 Challenge Summary: Hybrid software often 
relies on a centralized controller to manage 
multiple quantum circuits or algorithms. While 
this approach simplifies initial development, it 
creates bottlenecks that affect the efficiency and 
scalability of the system. 

 Impact: Centralizing execution orchestration 
increases system coupling, making it difficult to 
scale as the number of quantum tasks grows. A 
single point of failure also reduces system 
reliability and flexibility, as every execution 
request depends on a single coordination 
mechanism. 

 Quality characteristics affected: Scalability, 
fault tolerance, flexibility. 

Problem Partitioning Complexity 

 Challenge Summary: Hybrid software requires 
partitioning computational tasks between 
classical and quantum components. However, 
determining which parts of a problem should be 
executed on quantum hardware versus classical 
processors is complex and depends on hardware 
constraints, algorithmic efficiency, and problem 
structure. 

 Impact: Incorrect problem partitioning can lead 
to inefficiencies, excessive communication 
overhead, or infeasible hybrid execution. If 
quantum resources are not optimally utilized, 
classical components may end up handling most 
of the workload, reducing the benefits of 
quantum acceleration. 

 Quality characteristics affected: Performance, 
adaptability, feasibility. 
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4.2 Architectural Needs for Hybrid 
Software Systems 

To address these challenges, hybrid software 
architectures require structured design principles. 
Below, we outline key architectural needs that should 
be incorporated into future high-level design patterns: 

1. Pre-processing Standardization. Establishing 
a centralized transformation mechanism ensures 
that input data follows a consistent format, 
improving traceability, maintainability, and 
interoperability with quantum systems. This 
includes defining common encoding schemes 
for quantum algorithms and integrating pre-
processing steps into a modular framework to 
simplify data preparation. 

2. Structured Circuit Generation. Defining clear 
rules and templates for dynamic quantum circuit 
generation ensures predictability and 
reproducibility. This includes using modular 
circuit components that follow a standardized 
approach to gate arrangement, qubit mapping, 
and circuit optimization techniques. 

3. Post-processing Interpretation Layer. 
Implementing a structured post-processing 
framework centralizes result aggregation, 
filtering, and error mitigation, improving clarity 
and usability. This ensures that quantum results 
are transformed into meaningful outputs for 
classical decision-making, enhancing system 
interpretability and reliability. 

4. Distributed Execution Orchestration. 
Introducing independent execution controllers 
for different quantum circuits reduces 
bottlenecks and improves system scalability. 
This approach enables parallel execution of 
multiple quantum tasks, increases system 
flexibility, and enhances fault tolerance by 
preventing failures in one component from 
affecting the entire execution pipeline. 

5. Partitioning Strategies for Hybrid 
Workloads. Developing automated workload 
distribution strategies that analyze 
computational complexity and assign tasks to 
classical or quantum processors based on 
efficiency criteria. Ensuring that partitioning 
strategies dynamically adapt to quantum 
hardware capabilities and optimize data flow 
between classical and quantum components. 

5 CONCLUSION AND FUTURE 
WORK 

This study analyzes the challenges of hybrid software 
architectures, including problem modeling, dynamic 
quantum circuit generation, execution orchestration, 
problem partitioning, and the interpretation of 
quantum results. Addressing these challenges is 
essential for improving hybrid software quality, 
ensuring properties such as maintainability and 
scalability, and facilitating the broader adoption of 
quantum computing in industry. 

This study has limitations, including potential 
subjectivity in the selection of challenges and the lack 
of empirical validation, which affects the 
generalizability of the results. Future work should 
address these issues and consider the evolving nature 
of quantum technologies. A key direction for future 
research is the identification of design and 
architectural patterns to systematically address these 
challenges. Defining high-level, reusable design 
patterns can support modular quantum software 
development, scalable quantum-classical integration, 
and efficient problem partitioning. Additionally, it is 
crucial to identify and mitigate architectural 
antipatterns—common but suboptimal design choices 
that may introduce or exacerbate the challenges 
discussed. By formalizing both effective design 
patterns and potential pitfalls, hybrid quantum 
software can become more robust, maintainable, and 
scalable, accelerating its practical adoption. 
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