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Abstract: Quantum technology is rapidly improving the capacity of quantum computers, increasing the number of cubits 
and fostering the development of quantum software capable of solving complex problems that, until now, 
were beyond the reach of the most powerful classical computers. Unfortunately, quantum computational 
capacity is growing faster than Quantum Software Engineering, which is necessary to avoid a new (quantum) 
software crisis. In this article, we focus on quantum software testing, with the specific goal of ensuring the 
quality of quantum software. For this purpose, we propose to apply the mutation-based software testing 
technique, applied to the context of quantum computing, since mutation has proven to be one of the most 
powerful tools to improve the quality of test suites. A set of quantum mutation operators have been developed 
to improve quantum test suites, and reduce the number of test cases required, which is important due to the 
cost of using quantum computers (and the need to run each circuit multiple times to obtain reliable results due 
to their stochastic nature). A tool for automating the generation of quantum mutants from original quantum 
circuits is also presented. 

1 INTRODUCTION 

In 1982, Richard Feynman posed the question: “What 
kind of computer are we going to use to simulate 
physics?” This inquiry marked the beginning of the 
“second quantum revolution.” Since then, quantum 
computing has advanced significantly (Maslov et al., 
2018). Based on principles such as superposition and 
entanglement, it enables faster and more efficient 
computations, with applications in various domains 
(Lopez & Da Silva, 2019), including economics, 
healthcare, logistics, and energy. 

Expectations surrounding quantum computing 
have driven a global effort toward its development 
(Humble & DeBenedictis, 2019). Companies such as 
Google, IBM, and Microsoft are exploring its 
applications in business, while countries like China 
and the United States are heavily investing in the 
technology. Notable initiatives include the U.S. 
National Quantum Initiative Act and the Quantum 
Manifesto in the European Union. 

Currently, several quantum platforms exist, such 
as IBM Q, IonQ, and Rigetti, along with multiple 
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programming languages (Qiskit, Q#) (Garhwal et al., 
2021) and development tools (Forest, Cirq, 
Orquestra) (LaRose, 2019). A comprehensive review 
of quantum computing and its software and hardware 
ecosystem is provided in (Gill et al., 2022). 

The Quantum Software Manifesto emphasizes the 
urgency of strengthening quantum software 
development due to hardware advancements, 
highlighting the need for Quantum Software 
Engineering (QSE) to ensure quality and productivity 
(Piattini et al., 2020). 

The predominant approach in quantum computing 
is the gate-based model, which decomposes 
algorithms into fundamental operations. Quantum 
circuits are central to this paradigm and are used in 
simulators such as Quirk and QCEngine, as well as in 
platforms like Qiskit. Their transformation into 
quantum code is straightforward and provides an 
agnostic representation of the algorithm. 

Given the current state of quantum software and 
the challenges outlined in the Quantum Software 
Manifesto, this paper focuses on strengthening 
Quantum Software Engineering. It proposes the 
development of processes and tools for software 
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verification at the quantum circuit level, facilitating 
testing across multiple platforms. This approach 
contributes to the establishment of an agnostic testing 
theory within Quantum Software Engineering, which 
is considered a priority in (Piattini, 2021). 
Furthermore, a high-level representation is crucial 
due to the diverse topologies of gate-based quantum 
computers (Pattel & Tiwari, 2020). 

Before addressing the objectives of this study, it 
is necessary to differentiate between “verification” 
and “error identification.” Most studies attribute 
quantum errors to their stochastic nature (Patel et al., 
2020), arising from variations in hardware 
implementations (Pattel & Tiwari, 2020) and testing 
in quantum environments (Smelyanskiy et al., 2016). 
However, as highlighted in (Miranskyy & Zhang, 
2019), it is essential to transfer software engineering 
practices to quantum computing. This work aims to 
develop a technique that, in addition to being useful 
in classical software testing, enables the detection and 
correction of faults in quantum circuits. In (Murillo et 
al., 2024), a set of challenges in Quantum Software 
Engineering is identified, among which several 
critical issues related to quantum software testing are 
emphasized, underscoring the need for further 
development in this area. 

Focusing on this paper, software mutation is an 
effective testing technique in Software Engineering. 
Empirical studies (Just et al., 2014) highlight its 
potential for the automatic generation of test suites 
and resource optimization in costly quantum 
environments. This technique introduces artificial 
faults into the system under test (SUT), based on the 
“competent programmer hypothesis” (DeMillo et al., 
1978) and the “coupling effect,” allowing the 
detection of both simple and complex errors. In the 
context of quantum software, the SUT is referred to 
as the CUT (Circuit Under Test). 

This study identifies common errors in the 
development of quantum circuits and proposes 
mutant operators to simulate them. Following (Just at 
al., 2014), these mutants can enhance the quality of 
quantum test suites. Several studies (Murillo et al., 
2024) (Honarvar, 2020) (Garcia de la Barrera-Amo, 
et al., 2024) (Garcia de la Barrera-Amo, et al., 2022) 
have employed quantum mutation; however, they 
have neither formalized nor classified the mutants, 
leaving room for further exploration of their 
application in quantum software development. 

The remainder of this paper is structured as 
follows: Section 2 presents a brief state-of-the-art 
review, summarizing key aspects of quantum 
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computing, quantum circuits, and quantum software 
testing. Section 3 provides an overview of the testing 
and mutation process, while Section 4 discusses the 
application of this process using the QuMu tool, 
which automates it, and includes a small validation 
through an example. Finally, Section 5 presents the 
conclusions of this study. 

2 STATE OF THE ART 

2.1 Quantum Software: Quantum 
Circuits 

A quantum circuit is both a visual representation of 
the steps required to perform a quantum computation 
and a high-level abstraction of a quantum program. In 
fact, a quantum circuit can be translated into a 
quantum program and vice versa. The circuit consists 
of a set of horizontal lines, each representing a qubit 
that is manipulated by the quantum gates placed on 
that line. Thus, quantum gates affecting a qubit are 
drawn on its corresponding line. 

Figure 1 presents an excerpt from the 
teleportation test circuit. It consists of five qubits, 
each affected by the gates placed on their respective 
lines. For example, the first qubit is manipulated by a 
Hadamard gate on the first line, followed by a CNOT 
gate applied to qubits 1 and 5. 

A quantum circuit visually represents the steps of 
a quantum computation and can be translated into a 
quantum program and vice versa. It comprises 
horizontal lines representing qubits, on which 
quantum gates are applied. 

Figure 1 illustrates an excerpt from the 
teleportation circuit with five qubits. Each qubit is 
affected by gates on its respective line, such as the 
first qubit, which is subject to a Hadamard gate 
followed by a CNOT gate applied along with qubit 5. 

 
Figure 1: Quantum Circuit Fragment1. 

In addition to operational gates, the circuit 
includes measurement gates, which collapse the qubit 
and allow its state to be read as a classical bit. 
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Measurement is irreversible, preventing the qubit 
from returning to its previous state. 

Even without measurement, the qubit is always in 
a state, represented as a particle at a specific position 
on the Bloch Sphere (Figure 2). 

 
Figure 2: Representation of a qubit with a Blotch sphere. 

Thus, a particle located at the north pole of the 
sphere is in the state |0⟩. When rotating it along the Z-
axis, it moves to the south pole, which corresponds to 
the state |1⟩. State changes are performed by quantum 
gates, which can be represented as matrices. The 
process of applying a gate to a qubit consists of 
calculating the product of the matrix representing the 
input qubit (or qubits) by the gate matrix. As an 
example, Figure 3 describes the application of the 
Hadamard gate to a qubit in state |0⟩. H rotates the 
qubit particle π radians about X and π/2 radians over 
Y. 𝐻|0  1√2 ቀ1 11 െ1ቁ ቀ10ቁ ൌ 1√2 ቀ11ቁ ൌ 1√2 ሺ|0  |1ሻ 

Figure 3: H Gate applied to state |𝟎⟩. 
There is a set of primitive quantum gates that 

allow relatively simple operations to be performed 
with cubits. All gates modify the state of the cubit by 
changing the position of its associated particle on the 
Bloch Sphere. 

Just as it is possible to call a subroutine in 
classical computing, it is also possible to integrate a 
predefined quantum circuit into another, thus 
handling it as if it were a primitive gate. 

Table 1 summarizes the five most commonly used 
gates acting on a single cubit. These gates rotate the 
cubit particle about one or more axes of the Bloch 
Sphere at a fixed angle. 

The CNOT (aka Controlled NOT) gate performs 
an X gate on one qubit (target) if the state of the other 
qubit (control) is |1⟩. This gate is used, along with a 
Hadamard gate, in the qubit entanglement 
mechanism.  Controlled-Z and Controlled-Phase 

gates apply a Z-gate or an S-gate to a target qubit 
whenever the controlling qubit is in the |1⟩ state.  

The Toffoli gate is a three-qubit gate. It uses two 
control qubits and a single target. If both control 
qubits are in the |1⟩ state, an X gate is applied to the 
target qubit, thus behaving like a classical AND gate.  

The Fredkin gate (aka Controlled swap) performs 
a swap between the two target qubits when the control 
qubit is in the |1⟩ state.  Finally, the Swap gate 
swaps the state of two qubits. 

Table 1: Quantum Gates for 1 qubit. 

Gate 
Rotation Example 

Axis Angle Initial 
state Final state 

X (NOT) X π |0 
|1 

|1 
|0

Y Y π |0 
|1 

i·|1 
-i·|0

Z (FLIP) Z π |0 
|1 

|0 
|1 S Z π/2

T Z π/4

H 
(Hadamard) 

X 
 

Y 

π 
 

π/2 

|0 
 

|1 

1√2 ሺ|0⟩  |1⟩ሻ
 1√2 ሺ|0⟩ െ |1⟩ሻ

2.2 Mutation-Based Testing in 
Quantum Software 

Mutation testing has improved the quality of test 
suites from structured programming (Agrawal et al., 
2006) to object-oriented development (Polo et al., 
2009) (Deng, L., Offutt, 2018) and other software 
domains (Deng et al., 2017). These tests generate 
mutants using automated tools that introduce 
syntactic changes, simulating errors that a competent 
programmer (DeMillo et al., 1978) might make, 
which is more common in classical computer science 
programmers (Li et al., 2020). 

Mutation tools mimic simple human errors based 
on the coupling effect, ensuring that a test suite 
sensitive to simple bugs also detects more complex 
bugs (Offutt, 1992). 

In (Honarvar, 2020), it is used in metamorphic 
testing of quantum software in Q#, but only as 
validation. In (Boncalo et al., 2007), an innovative 
fault injection technique based on quantum mutants, 
replacing specific gates, is presented. In the review 
presented in (Murillo et al., 2024), some more 
proposals on the topic are identified, although their 
scope is still very narrow. 
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2.3 Fault Models for Quantum 
Software 

Bug models are key to defining mutation operators, 
as they should reflect real bugs from programmers. 
Zhao et al. collected 36 bugs in Qiskit programs from 
GitHub and forums, creating the Bug4Q repository 
(Zhao et al., 2023). However, many bugs are more 
related to Python than to Qiskit, so this repository is 
not entirely representative for quantum bug models. 

Huang and Martonosi (2018) analyzed bugs in 
three applications: quantum chemistry, Shor's 
algorithm, and Grover's algorithm. They identified 
several types of faults, such as (i) incorrect classical 
input parameters, (ii) incorrect operations and 
transformations, or (iii) incorrect cubit deassignment. 
Some of these, e.g. errors in classical input 
parameters, composition of operations by iteration or 
recursion, and incorrect cubit deassignment, originate 
in the classical part of the program and are therefore 
not relevant for pure quantum computation. 

Among valid quantum bugs, incorrect initial 
values stand out, although most programs start with 
cubits at ∣0⟩| and then apply gates to modify them. 
Also mentioned are errors in operations and 
transformations, incorrect use of mirroring when 
reverting changes, and failures in gate composition. 

Biamonte et al. (2010) identify errors in quantum 
circuits, distinguishing between quantum noise and 
design faults, such as initialization errors, phase 
errors and control gate faults. Lukac et al. (2017) 
collect faults in reversible circuits, including 
omission or incorrect use of gates and connection 
errors between qubits. 

3 MUTATION-BASED TESTING 
PROCESS 

The proposal made in this paper is based on (i) a 
proposed process for performing mutation-based 
quantum software testing, and (ii) a tool called 
QuMu2 that implements this process.  

QuMu is a web tool for quantum software testing 
based on the mutation technique. QuMu takes as input 
a quantum circuit designed with Quirk3 and generates 
mutant circuits in this same notation. However, to 
execute the mutants, QuMu translates the circuits into 
Qiskit code and executes each circuit a customizable 
number of times (known as shots). To determine 
whether a mutant is alive or dead, the difference 

 
2 https://alarcosj.esi.uclm.es/qumu/ 

between the probability distribution obtained by the 
CUT and the mutant is compared. 

QuMu consists of a single web page where all the 
steps necessary to perform the mutation tests are 
executed. The following subsections describe these 
steps and the functionalities of the tool. 

As shown in Figure 4, the process is divided into 
two sub-processes: (i) CUT testing, and (ii) mutation 
process. 

 
Figure 4: Mutation process based on testing. 

In the following section, the process illustrated in 
Figure 4 will be explained, illustrated with a simple 
example developed in QuMu. 

4 QUMU - AUTOMATION OF 
THE TESTING AND 
MUTATION PROCESS 

4.1 Fault Models for Quantum 
Software 

For the testing of the CUT (Figure 4), the CUT itself 
and the test suite that has been designed to test it 
(Figure 4, 2) are taken as input. The definition of the 
CUT can be done (see Figure 5): (i) by entering the 
URL of the Quirk editor where a quantum circuit has 
already been edited, (ii) by writing the JSON code of 
the circuit in Quirk format in the “Original Quirk 
code” area, or (iii) by selecting a previously defined 
CUT in “Available circuits”. Once the CUT is 
selected, QuMu loads the circuit into a Quirk-based 
editor so that any modifications to the circuit can be 
carried out if necessary. 

3 https://algassert.com/quirk 
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The testing subprocess is agnostic to the type of 
testing technique applied or the type of circuit 
(stochastic (Garcia de la Barrera-Amo, et al., 2024) or 
deterministic (Garcia de la Barrera-Amo, et al., 
2022)). As can be seen, the first step consists of 
executing the test cases against the CUT. The number 
of runs of each test case (as occurs in quantum 
circuits) should be calculated based on the number of 
cubits and depth of the circuit, so that the resulting 
probability distribution is sufficiently reliable to give 
the result as correct. In the event that a test case 
reveals a failure, the CUT will be corrected until all 
test cases are satisfactory. After that, the CUT will be 
mutated. 

The QuMu prototype executes the testing and 
mutation subprocesses sequentially, for which, the 
selection of the mutation operators to be applied to 
the CUT is required.  Figure 5 details how to select 
which cubits represent the input of the circuit (there 
are cubits, called “ancilla”, which, due to their 
auxiliary nature, are not considered a valid input of 
information for the circuit) and the output cubits 
(which will contain the relevant information to be 
measured at the end of the execution). In addition, the 
number of shots or runs of both the CUT and each of 
the mutants generated from the CUT will also be 
defined ( Figure 5). 

 
 Figure 5: Example CUT for mutation process. 

 
Figure 6: Configuration of the testing and mutation process. 

As Figure 6 shows, there are four types of 
mutation operator categories (although thanks to 
QuMu's extensible architecture, more advanced 
quantum software mutation operators are already in 
the works): 
- Initialization errors, where the initialization 

values of the cubits are mutated, or the first gate 
in the circuit is repeated. 

- Gate swapping, where a common error is the 
confusion between the Pauli gates (X, Y and Z). 

- Control gates, where typical errors arising from 
CNOT and CCNOT/Toffoli gates are induced. 

- Other operators, where the duplication and 
elimination of quantum gates is simulated. 

Once the configuration process has been carried 
out, we proceed with the generation of mutants 
(Figure 6). Depending on the number of cubits, the 
number of quantum gates of the CUT, and the number 
of mutation operators, the number of mutants 
generated may vary. Thus, for the example shown, the 
generation of mutants would be as shown in Figure 8, 
obtaining a total of 143 mutants. 

 
Figure 7: Fragment of the Qiskit code generated for the 
mutant from the CUT with a specific operator. 

 
Figure 8: (top) Collections of mutants generated with the 
selected configuration, and (bottom) details of a specific 
mutant. 

Figure 8 (top) also shows, in its lower part, the 
way in which the mutants will be “executed”. This 
refers to the input values that will be used to perform 
the execution of the CUT and the mutants and thus 
compare the behavior of the latter with respect to the 
former, determining whether the mutants “die” or 
“survive”. Due to the “noise” generated in the 
execution of the quantum software, a tolerance error 
is defined to determine whether a mutant lives or dies, 
whose probability distribution is slightly different 
from the one obtained by the CUT. 

The tester can know the details of a mutant by 
selecting it: Figure 8 (bottom) shows the column, row 
and operator applied to mutant number 10, as well as 
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its Quirk representation, so that the error introduced 
by the mutation operator can be observed. In addition, 
the tool also shows the Qiskit code of the mutant, 
highlighting the mutated sentence (Figure 7). 

Although QuMu is a prototype, it offers the 
possibility to choose the execution strategy of the 
CUT and the mutants (see Figure 6 and Figure 8 (top), 
“Mutant execution”):  

“As is” strategy (Figure 8(top)), where both the 
CUT and mutants are executed with the initial values 
of the CUT cubits. For the CUT in  Figure 5, 100 
executions are performed for the CUT and for each of 
the mutants, amounting to a total of 14,500 
executions (100 for the CUT, 14,400 for the mutants). 

The “All against all” strategy (Figure 6), starts by 
running the original circuit with all possible input 
combinations (assuming 3 cubits, vary the input from 
|000⟩ to |111⟩) and then each mutant also with every 
possible input combination. For the example circuit 
(which has three cubits with input data), both the 
original and each mutant are executed 8 x 100 times 
(100 shots). Thus, QuMu launches 8x100x145 (144 
mutants plus the CUT), making a total of 116,000 
runs. 

“Run de circuit with specific inputs” (Figure 7, 
top). In this strategy, assuming that the CUT has been 
previously tested, and its operation is correct and 
expected, specific inputs (test cases) can be 
configured to perform the execution of the CUT and 
mutants with those inputs. 

4.2 Results Analysis 

When a quantum circuit is executed in Qiskit (Figure 
7), a file is generated with the results where the output 
frequency distribution is recorded, which is compared 
with the CUT results file. During the execution of the 
mutants, a table with the results, called “Killing 
table”, is progressively filled in.  

Suppose the tester has selected to run the circuit 
in Figure 5 with the following configuration: 

1) Consider all cubits of the CUT as input. 
2) 1000 shots per circuit for the execution. 
3) Tolerate an error of 0.05. 
4) Simple execution strategy (“As is”) (i.e., 

consider only the initial input values). 
Figure 9 shows the results of this execution: the 

first three columns show the decimal and binary 
outputs (from |000> to |111>) and their respective 
frequencies in the original circuit (in this case, the 
output is always 1002). The other columns show the 
frequencies obtained in each mutant: mutant m7, for 
example, concentrates all the outputs in the values 

01002 and 01012 (with the respective frequencies 470 
and 530).  

The “dead” mutants appear in red, while the live 
mutants appear in green. For example, since the 
distribution of mutant m7 is very different from that 
of the original, it is considered dead; m66 and m77, 
which have exactly the same output distributions as 
the original circuit, are considered “alive”. 

Under each mutant name (m0, m1, etc.) is shown 
the error committed in the execution of that mutant. 
If this error is greater than the tolerance margin, the 
mutant is eliminated. The error of a mutant is 
calculated as the sum of the absolute values of the 
differences between the frequencies obtained in the 
original circuit and in the mutant, divided by twice the 
number of shots. 

 
Figure 9: Partial view of "Deads table" for the mutant 
execution of the CUT. 

Table 2 shows the outputs of both the CUT and 
the m3 mutant: the total deviation of the frequencies 
is 1.794. Since the number of shots is 1,000, the total 
error is obtained as 1,794/2,000 = 0.897. 

The reason for using this formula to calculate the 
error ratio is that the maximum possible error occurs 
when none of the mutant outputs match the outputs of 
the original circuit. An example of this is the case of 
mutant m0: its 1,000 shots fall on 1102, completely 
outside of the original circuit's 1002 output. Thus, the 
total error of m0 is 2,000, which when divided by 
twice the number of shots results in 2,000/2,000 = 1. 
It is important to note that the decision of whether a 
mutant is removed or remains active is completely 
different from that used in classical mutation testing. 
Quantum computing requires the system under test to 
be run multiple times (shots). Therefore, the quantum 
computer returns a set of solutions with a given 
probability distribution, which makes it unlikely that 
two different runs of the same problem will generate 
exactly the same set of solutions after, say, 1,000 
shots. 

For this reason, a mutant should be considered to 
be eliminated when the probability distributions of 
the CUT and the mutant are statistically different. 

Mutation-Based Quantum Software Testing

143



Table 2. Error calculation of mutant "m3". 

Output Original m3 Error 
000 0 125 125
001 0 124 124
010 0 101 101
011 0 136 136
100 1000 103 897
101 0 142 142
110 0 131 131
111 0 138 138

  1794

5 CONCLUSIONS AND FUTURE 
WORK 

This paper addresses software mutation as a 
technique for improving the quality of test suites. This 
technique has proven to be a powerful and effective 
tool, which is why we propose to update and reinvent 
it for its application to quantum software testing. 
Thus, a process is proposed that contemplates (i) the 
testing of the circuit under test (or CUT), and (ii) the 
generation and execution of quantum mutants from 
the CUT by applying a family of specific mutation 
operators for quantum software. 

Along with this process, we present QuMu, a 
prototype that supports this process and by which to 
carry out the generation, execution and evaluation of 
quantum mutants generated from a CUT, thus 
detecting opportunities for improvement in quantum 
test suites, and contributing to the improvement of the 
quality of quantum software. 

As for future work, we present several lines 
related to: (i) the identification of equivalent mutants, 
(ii) the study of the usefulness or not of certain 
mutation operators, (iii) identification of new 
mutation operators based on the typical errors of 
quantum software development, (iv) evaluation of the 
real applicability of the mutation, because although 
the initial results are promising, it is necessary to 
perform validations according to the types of circuit, 
thus being able to identify contexts where the 
mutation has a greater or lesser applicability. 
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