
Mutation-Based Quantum Software Testing

Macario Polo-Usaola a, Manuel A. Serrano b and Ignacio García-Rodríguez de Guzmán c
Universidad de Castilla – La Mancha, Spain

Keywords: Quantum Computing, Mutation Testing, Quantum Software Testing.

Abstract: Quantum technology is rapidly improving the capacity of quantum computers, increasing the number of cubits
and fostering the development of quantum software capable of solving complex problems that, until now,
were beyond the reach of the most powerful classical computers. Unfortunately, quantum computational
capacity is growing faster than Quantum Software Engineering, which is necessary to avoid a new (quantum)
software crisis. In this article, we focus on quantum software testing, with the specific goal of ensuring the
quality of quantum software. For this purpose, we propose to apply the mutation-based software testing
technique, applied to the context of quantum computing, since mutation has proven to be one of the most
powerful tools to improve the quality of test suites. A set of quantum mutation operators have been developed
to improve quantum test suites, and reduce the number of test cases required, which is important due to the
cost of using quantum computers (and the need to run each circuit multiple times to obtain reliable results due
to their stochastic nature). A tool for automating the generation of quantum mutants from original quantum
circuits is also presented.

1 INTRODUCTION

In 1982, Richard Feynman posed the question: “What
kind of computer are we going to use to simulate
physics?” This inquiry marked the beginning of the
“second quantum revolution.” Since then, quantum
computing has advanced significantly (Maslov et al.,
2018). Based on principles such as superposition and
entanglement, it enables faster and more efficient
computations, with applications in various domains
(Lopez & Da Silva, 2019), including economics,
healthcare, logistics, and energy.

Expectations surrounding quantum computing
have driven a global effort toward its development
(Humble & DeBenedictis, 2019). Companies such as
Google, IBM, and Microsoft are exploring its
applications in business, while countries like China
and the United States are heavily investing in the
technology. Notable initiatives include the U.S.
National Quantum Initiative Act and the Quantum
Manifesto in the European Union.

Currently, several quantum platforms exist, such
as IBM Q, IonQ, and Rigetti, along with multiple

a https://orcid.org/0000-0001-6519-6196
b https://orcid.org/0000-0003-0962-5659
c https://orcid.org/0000-0002-0038-0942

programming languages (Qiskit, Q#) (Garhwal et al.,
2021) and development tools (Forest, Cirq,
Orquestra) (LaRose, 2019). A comprehensive review
of quantum computing and its software and hardware
ecosystem is provided in (Gill et al., 2022).

The Quantum Software Manifesto emphasizes the
urgency of strengthening quantum software
development due to hardware advancements,
highlighting the need for Quantum Software
Engineering (QSE) to ensure quality and productivity
(Piattini et al., 2020).

The predominant approach in quantum computing
is the gate-based model, which decomposes
algorithms into fundamental operations. Quantum
circuits are central to this paradigm and are used in
simulators such as Quirk and QCEngine, as well as in
platforms like Qiskit. Their transformation into
quantum code is straightforward and provides an
agnostic representation of the algorithm.

Given the current state of quantum software and
the challenges outlined in the Quantum Software
Manifesto, this paper focuses on strengthening
Quantum Software Engineering. It proposes the
development of processes and tools for software

138
Polo-Usaola, M., Serrano, M. A. and García-Rodríguez de Guzmán, I.
Mutation-Based Quantum Software Testing.
DOI: 10.5220/0013561000004525
In Proceedings of the 1st International Conference on Quantum Software (IQSOFT 2025), pages 138-145
ISBN: 978-989-758-761-0
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

verification at the quantum circuit level, facilitating
testing across multiple platforms. This approach
contributes to the establishment of an agnostic testing
theory within Quantum Software Engineering, which
is considered a priority in (Piattini, 2021).
Furthermore, a high-level representation is crucial
due to the diverse topologies of gate-based quantum
computers (Pattel & Tiwari, 2020).

Before addressing the objectives of this study, it
is necessary to differentiate between “verification”
and “error identification.” Most studies attribute
quantum errors to their stochastic nature (Patel et al.,
2020), arising from variations in hardware
implementations (Pattel & Tiwari, 2020) and testing
in quantum environments (Smelyanskiy et al., 2016).
However, as highlighted in (Miranskyy & Zhang,
2019), it is essential to transfer software engineering
practices to quantum computing. This work aims to
develop a technique that, in addition to being useful
in classical software testing, enables the detection and
correction of faults in quantum circuits. In (Murillo et
al., 2024), a set of challenges in Quantum Software
Engineering is identified, among which several
critical issues related to quantum software testing are
emphasized, underscoring the need for further
development in this area.

Focusing on this paper, software mutation is an
effective testing technique in Software Engineering.
Empirical studies (Just et al., 2014) highlight its
potential for the automatic generation of test suites
and resource optimization in costly quantum
environments. This technique introduces artificial
faults into the system under test (SUT), based on the
“competent programmer hypothesis” (DeMillo et al.,
1978) and the “coupling effect,” allowing the
detection of both simple and complex errors. In the
context of quantum software, the SUT is referred to
as the CUT (Circuit Under Test).

This study identifies common errors in the
development of quantum circuits and proposes
mutant operators to simulate them. Following (Just at
al., 2014), these mutants can enhance the quality of
quantum test suites. Several studies (Murillo et al.,
2024) (Honarvar, 2020) (Garcia de la Barrera-Amo,
et al., 2024) (Garcia de la Barrera-Amo, et al., 2022)
have employed quantum mutation; however, they
have neither formalized nor classified the mutants,
leaving room for further exploration of their
application in quantum software development.

The remainder of this paper is structured as
follows: Section 2 presents a brief state-of-the-art
review, summarizing key aspects of quantum

1 https://n9.cl/aituw6

computing, quantum circuits, and quantum software
testing. Section 3 provides an overview of the testing
and mutation process, while Section 4 discusses the
application of this process using the QuMu tool,
which automates it, and includes a small validation
through an example. Finally, Section 5 presents the
conclusions of this study.

2 STATE OF THE ART

2.1 Quantum Software: Quantum
Circuits

A quantum circuit is both a visual representation of
the steps required to perform a quantum computation
and a high-level abstraction of a quantum program. In
fact, a quantum circuit can be translated into a
quantum program and vice versa. The circuit consists
of a set of horizontal lines, each representing a qubit
that is manipulated by the quantum gates placed on
that line. Thus, quantum gates affecting a qubit are
drawn on its corresponding line.

Figure 1 presents an excerpt from the
teleportation test circuit. It consists of five qubits,
each affected by the gates placed on their respective
lines. For example, the first qubit is manipulated by a
Hadamard gate on the first line, followed by a CNOT
gate applied to qubits 1 and 5.

A quantum circuit visually represents the steps of
a quantum computation and can be translated into a
quantum program and vice versa. It comprises
horizontal lines representing qubits, on which
quantum gates are applied.

Figure 1 illustrates an excerpt from the
teleportation circuit with five qubits. Each qubit is
affected by gates on its respective line, such as the
first qubit, which is subject to a Hadamard gate
followed by a CNOT gate applied along with qubit 5.

Figure 1: Quantum Circuit Fragment1.

In addition to operational gates, the circuit
includes measurement gates, which collapse the qubit
and allow its state to be read as a classical bit.

Mutation-Based Quantum Software Testing

139

Measurement is irreversible, preventing the qubit
from returning to its previous state.

Even without measurement, the qubit is always in
a state, represented as a particle at a specific position
on the Bloch Sphere (Figure 2).

Figure 2: Representation of a qubit with a Blotch sphere.

Thus, a particle located at the north pole of the
sphere is in the state |0⟩. When rotating it along the Z-
axis, it moves to the south pole, which corresponds to
the state |1⟩. State changes are performed by quantum
gates, which can be represented as matrices. The
process of applying a gate to a qubit consists of
calculating the product of the matrix representing the
input qubit (or qubits) by the gate matrix. As an
example, Figure 3 describes the application of the
Hadamard gate to a qubit in state |0⟩. H rotates the
qubit particle π radians about X and π/2 radians over
Y. 𝐻|0 1√2 ቀ1 11 െ1ቁ ቀ10ቁ ൌ 1√2 ቀ11ቁ ൌ 1√2 ሺ|0 |1ሻ

Figure 3: H Gate applied to state |𝟎⟩.
There is a set of primitive quantum gates that

allow relatively simple operations to be performed
with cubits. All gates modify the state of the cubit by
changing the position of its associated particle on the
Bloch Sphere.

Just as it is possible to call a subroutine in
classical computing, it is also possible to integrate a
predefined quantum circuit into another, thus
handling it as if it were a primitive gate.

Table 1 summarizes the five most commonly used
gates acting on a single cubit. These gates rotate the
cubit particle about one or more axes of the Bloch
Sphere at a fixed angle.

The CNOT (aka Controlled NOT) gate performs
an X gate on one qubit (target) if the state of the other
qubit (control) is |1⟩. This gate is used, along with a
Hadamard gate, in the qubit entanglement
mechanism. Controlled-Z and Controlled-Phase

gates apply a Z-gate or an S-gate to a target qubit
whenever the controlling qubit is in the |1⟩ state.

The Toffoli gate is a three-qubit gate. It uses two
control qubits and a single target. If both control
qubits are in the |1⟩ state, an X gate is applied to the
target qubit, thus behaving like a classical AND gate.

The Fredkin gate (aka Controlled swap) performs
a swap between the two target qubits when the control
qubit is in the |1⟩ state. Finally, the Swap gate
swaps the state of two qubits.

Table 1: Quantum Gates for 1 qubit.

Gate
Rotation Example

Axis Angle Initial
state Final state

X (NOT) X π |0
|1

|1
|0

Y Y π |0
|1

i·|1
-i·|0

Z (FLIP) Z π |0
|1

|0
|1 S Z π/2

T Z π/4

H
(Hadamard)

X

Y

π

π/2

|0

|1

1√2 ሺ|0⟩ |1⟩ሻ
 1√2 ሺ|0⟩ െ |1⟩ሻ

2.2 Mutation-Based Testing in
Quantum Software

Mutation testing has improved the quality of test
suites from structured programming (Agrawal et al.,
2006) to object-oriented development (Polo et al.,
2009) (Deng, L., Offutt, 2018) and other software
domains (Deng et al., 2017). These tests generate
mutants using automated tools that introduce
syntactic changes, simulating errors that a competent
programmer (DeMillo et al., 1978) might make,
which is more common in classical computer science
programmers (Li et al., 2020).

Mutation tools mimic simple human errors based
on the coupling effect, ensuring that a test suite
sensitive to simple bugs also detects more complex
bugs (Offutt, 1992).

In (Honarvar, 2020), it is used in metamorphic
testing of quantum software in Q#, but only as
validation. In (Boncalo et al., 2007), an innovative
fault injection technique based on quantum mutants,
replacing specific gates, is presented. In the review
presented in (Murillo et al., 2024), some more
proposals on the topic are identified, although their
scope is still very narrow.

IQSOFT 2025 - 1st International Conference on Quantum Software

140

2.3 Fault Models for Quantum
Software

Bug models are key to defining mutation operators,
as they should reflect real bugs from programmers.
Zhao et al. collected 36 bugs in Qiskit programs from
GitHub and forums, creating the Bug4Q repository
(Zhao et al., 2023). However, many bugs are more
related to Python than to Qiskit, so this repository is
not entirely representative for quantum bug models.

Huang and Martonosi (2018) analyzed bugs in
three applications: quantum chemistry, Shor's
algorithm, and Grover's algorithm. They identified
several types of faults, such as (i) incorrect classical
input parameters, (ii) incorrect operations and
transformations, or (iii) incorrect cubit deassignment.
Some of these, e.g. errors in classical input
parameters, composition of operations by iteration or
recursion, and incorrect cubit deassignment, originate
in the classical part of the program and are therefore
not relevant for pure quantum computation.

Among valid quantum bugs, incorrect initial
values stand out, although most programs start with
cubits at ∣0⟩| and then apply gates to modify them.
Also mentioned are errors in operations and
transformations, incorrect use of mirroring when
reverting changes, and failures in gate composition.

Biamonte et al. (2010) identify errors in quantum
circuits, distinguishing between quantum noise and
design faults, such as initialization errors, phase
errors and control gate faults. Lukac et al. (2017)
collect faults in reversible circuits, including
omission or incorrect use of gates and connection
errors between qubits.

3 MUTATION-BASED TESTING
PROCESS

The proposal made in this paper is based on (i) a
proposed process for performing mutation-based
quantum software testing, and (ii) a tool called
QuMu2 that implements this process.

QuMu is a web tool for quantum software testing
based on the mutation technique. QuMu takes as input
a quantum circuit designed with Quirk3 and generates
mutant circuits in this same notation. However, to
execute the mutants, QuMu translates the circuits into
Qiskit code and executes each circuit a customizable
number of times (known as shots). To determine
whether a mutant is alive or dead, the difference

2 https://alarcosj.esi.uclm.es/qumu/

between the probability distribution obtained by the
CUT and the mutant is compared.

QuMu consists of a single web page where all the
steps necessary to perform the mutation tests are
executed. The following subsections describe these
steps and the functionalities of the tool.

As shown in Figure 4, the process is divided into
two sub-processes: (i) CUT testing, and (ii) mutation
process.

Figure 4: Mutation process based on testing.

In the following section, the process illustrated in
Figure 4 will be explained, illustrated with a simple
example developed in QuMu.

4 QUMU - AUTOMATION OF
THE TESTING AND
MUTATION PROCESS

4.1 Fault Models for Quantum
Software

For the testing of the CUT (Figure 4), the CUT itself
and the test suite that has been designed to test it
(Figure 4, 2) are taken as input. The definition of the
CUT can be done (see Figure 5): (i) by entering the
URL of the Quirk editor where a quantum circuit has
already been edited, (ii) by writing the JSON code of
the circuit in Quirk format in the “Original Quirk
code” area, or (iii) by selecting a previously defined
CUT in “Available circuits”. Once the CUT is
selected, QuMu loads the circuit into a Quirk-based
editor so that any modifications to the circuit can be
carried out if necessary.

3 https://algassert.com/quirk

Mutation-Based Quantum Software Testing

141

The testing subprocess is agnostic to the type of
testing technique applied or the type of circuit
(stochastic (Garcia de la Barrera-Amo, et al., 2024) or
deterministic (Garcia de la Barrera-Amo, et al.,
2022)). As can be seen, the first step consists of
executing the test cases against the CUT. The number
of runs of each test case (as occurs in quantum
circuits) should be calculated based on the number of
cubits and depth of the circuit, so that the resulting
probability distribution is sufficiently reliable to give
the result as correct. In the event that a test case
reveals a failure, the CUT will be corrected until all
test cases are satisfactory. After that, the CUT will be
mutated.

The QuMu prototype executes the testing and
mutation subprocesses sequentially, for which, the
selection of the mutation operators to be applied to
the CUT is required. Figure 5 details how to select
which cubits represent the input of the circuit (there
are cubits, called “ancilla”, which, due to their
auxiliary nature, are not considered a valid input of
information for the circuit) and the output cubits
(which will contain the relevant information to be
measured at the end of the execution). In addition, the
number of shots or runs of both the CUT and each of
the mutants generated from the CUT will also be
defined (Figure 5).

 Figure 5: Example CUT for mutation process.

Figure 6: Configuration of the testing and mutation process.

As Figure 6 shows, there are four types of
mutation operator categories (although thanks to
QuMu's extensible architecture, more advanced
quantum software mutation operators are already in
the works):
- Initialization errors, where the initialization

values of the cubits are mutated, or the first gate
in the circuit is repeated.

- Gate swapping, where a common error is the
confusion between the Pauli gates (X, Y and Z).

- Control gates, where typical errors arising from
CNOT and CCNOT/Toffoli gates are induced.

- Other operators, where the duplication and
elimination of quantum gates is simulated.

Once the configuration process has been carried
out, we proceed with the generation of mutants
(Figure 6). Depending on the number of cubits, the
number of quantum gates of the CUT, and the number
of mutation operators, the number of mutants
generated may vary. Thus, for the example shown, the
generation of mutants would be as shown in Figure 8,
obtaining a total of 143 mutants.

Figure 7: Fragment of the Qiskit code generated for the
mutant from the CUT with a specific operator.

Figure 8: (top) Collections of mutants generated with the
selected configuration, and (bottom) details of a specific
mutant.

Figure 8 (top) also shows, in its lower part, the
way in which the mutants will be “executed”. This
refers to the input values that will be used to perform
the execution of the CUT and the mutants and thus
compare the behavior of the latter with respect to the
former, determining whether the mutants “die” or
“survive”. Due to the “noise” generated in the
execution of the quantum software, a tolerance error
is defined to determine whether a mutant lives or dies,
whose probability distribution is slightly different
from the one obtained by the CUT.

The tester can know the details of a mutant by
selecting it: Figure 8 (bottom) shows the column, row
and operator applied to mutant number 10, as well as

IQSOFT 2025 - 1st International Conference on Quantum Software

142

its Quirk representation, so that the error introduced
by the mutation operator can be observed. In addition,
the tool also shows the Qiskit code of the mutant,
highlighting the mutated sentence (Figure 7).

Although QuMu is a prototype, it offers the
possibility to choose the execution strategy of the
CUT and the mutants (see Figure 6 and Figure 8 (top),
“Mutant execution”):

“As is” strategy (Figure 8(top)), where both the
CUT and mutants are executed with the initial values
of the CUT cubits. For the CUT in Figure 5, 100
executions are performed for the CUT and for each of
the mutants, amounting to a total of 14,500
executions (100 for the CUT, 14,400 for the mutants).

The “All against all” strategy (Figure 6), starts by
running the original circuit with all possible input
combinations (assuming 3 cubits, vary the input from
|000⟩ to |111⟩) and then each mutant also with every
possible input combination. For the example circuit
(which has three cubits with input data), both the
original and each mutant are executed 8 x 100 times
(100 shots). Thus, QuMu launches 8x100x145 (144
mutants plus the CUT), making a total of 116,000
runs.

“Run de circuit with specific inputs” (Figure 7,
top). In this strategy, assuming that the CUT has been
previously tested, and its operation is correct and
expected, specific inputs (test cases) can be
configured to perform the execution of the CUT and
mutants with those inputs.

4.2 Results Analysis

When a quantum circuit is executed in Qiskit (Figure
7), a file is generated with the results where the output
frequency distribution is recorded, which is compared
with the CUT results file. During the execution of the
mutants, a table with the results, called “Killing
table”, is progressively filled in.

Suppose the tester has selected to run the circuit
in Figure 5 with the following configuration:

1) Consider all cubits of the CUT as input.
2) 1000 shots per circuit for the execution.
3) Tolerate an error of 0.05.
4) Simple execution strategy (“As is”) (i.e.,

consider only the initial input values).
Figure 9 shows the results of this execution: the

first three columns show the decimal and binary
outputs (from |000> to |111>) and their respective
frequencies in the original circuit (in this case, the
output is always 1002). The other columns show the
frequencies obtained in each mutant: mutant m7, for
example, concentrates all the outputs in the values

01002 and 01012 (with the respective frequencies 470
and 530).

The “dead” mutants appear in red, while the live
mutants appear in green. For example, since the
distribution of mutant m7 is very different from that
of the original, it is considered dead; m66 and m77,
which have exactly the same output distributions as
the original circuit, are considered “alive”.

Under each mutant name (m0, m1, etc.) is shown
the error committed in the execution of that mutant.
If this error is greater than the tolerance margin, the
mutant is eliminated. The error of a mutant is
calculated as the sum of the absolute values of the
differences between the frequencies obtained in the
original circuit and in the mutant, divided by twice the
number of shots.

Figure 9: Partial view of "Deads table" for the mutant
execution of the CUT.

Table 2 shows the outputs of both the CUT and
the m3 mutant: the total deviation of the frequencies
is 1.794. Since the number of shots is 1,000, the total
error is obtained as 1,794/2,000 = 0.897.

The reason for using this formula to calculate the
error ratio is that the maximum possible error occurs
when none of the mutant outputs match the outputs of
the original circuit. An example of this is the case of
mutant m0: its 1,000 shots fall on 1102, completely
outside of the original circuit's 1002 output. Thus, the
total error of m0 is 2,000, which when divided by
twice the number of shots results in 2,000/2,000 = 1.
It is important to note that the decision of whether a
mutant is removed or remains active is completely
different from that used in classical mutation testing.
Quantum computing requires the system under test to
be run multiple times (shots). Therefore, the quantum
computer returns a set of solutions with a given
probability distribution, which makes it unlikely that
two different runs of the same problem will generate
exactly the same set of solutions after, say, 1,000
shots.

For this reason, a mutant should be considered to
be eliminated when the probability distributions of
the CUT and the mutant are statistically different.

Mutation-Based Quantum Software Testing

143

Table 2. Error calculation of mutant "m3".

Output Original m3 Error
000 0 125 125
001 0 124 124
010 0 101 101
011 0 136 136
100 1000 103 897
101 0 142 142
110 0 131 131
111 0 138 138

 1794

5 CONCLUSIONS AND FUTURE
WORK

This paper addresses software mutation as a
technique for improving the quality of test suites. This
technique has proven to be a powerful and effective
tool, which is why we propose to update and reinvent
it for its application to quantum software testing.
Thus, a process is proposed that contemplates (i) the
testing of the circuit under test (or CUT), and (ii) the
generation and execution of quantum mutants from
the CUT by applying a family of specific mutation
operators for quantum software.

Along with this process, we present QuMu, a
prototype that supports this process and by which to
carry out the generation, execution and evaluation of
quantum mutants generated from a CUT, thus
detecting opportunities for improvement in quantum
test suites, and contributing to the improvement of the
quality of quantum software.

As for future work, we present several lines
related to: (i) the identification of equivalent mutants,
(ii) the study of the usefulness or not of certain
mutation operators, (iii) identification of new
mutation operators based on the typical errors of
quantum software development, (iv) evaluation of the
real applicability of the mutation, because although
the initial results are promising, it is necessary to
perform validations according to the types of circuit,
thus being able to identify contexts where the
mutation has a greater or lesser applicability.

ACKNOWLEDGEMENTS

This work has been partially funded by Q-SERV-
Q&T (Quantum Services Engineering: Quality and
Testing of Quantum Software, PID2021-124054OB-
C32) of the Spanish Ministry of Economy, Industry
and Competitiveness and FEDER funds, QU-ASAP
(Quantum Software Modernization Prototype,

PDC2022-133051-I00) of the Spanish Ministry of
Science and Innovation and NextGenerationEU
funds, and UNION (2022-GRIN-34110), financial
support for the execution of applied research projects
within the framework of the UCLM Research Plan,
85% of which is co-financed by the European
Regional Development Fund (ERDF).

REFERENCES

Maslov, D., Nam, Y., & Kim, J. (2018). An outlook for
quantum computing [point of view]. Proceedings of the
IEEE, 107(1), 5-10.

López, M. A., & Da Silva, M. M. (2019). Quantum
technologies: Digital transformation, social impact, and
cross-sector disruption.

Humble, T. S., & DeBenedictis, E. P. (2019). Quantum
realism. Computer, 52(6), 13-17.

Garhwal, S., Ghorani, M., & Ahmad, A. (2021). Quantum
programming language: A systematic review of
research topic and top cited languages. Archives of
Computational Methods in Engineering, 28, 289-310.

LaRose, R. (2019). Overview and comparison of gate level
quantum software platforms. Quantum, 3, 130.

Gill, S. S., Kumar, A., Singh, H., Singh, M., Kaur, K.,
Usman, M., & Buyya, R. (2022). Quantum computing:
A taxonomy, systematic review and future directions.
Software: Practice and Experience, 52(1), 66-114.

Piattini, M., Peterssen, G., Pérez-Castillo, R., Hevia, J. L.,
Serrano, M. A., Hernández, G., ... & Rodríguez, M.
(2020). The Talavera Manifesto for quantum software
engineering and programming. In QANSWER (pp. 1-5).

Piattini, M., Serrano, M., Perez-Castillo, R., Petersen, G.,
& Hevia, J. L. (2021). Toward a quantum software
engineering. IT Professional, 23(1), 62-66.

Patel, T., & Tiwari, D. (2020). Veritas: accurately
estimating the correct output on noisy intermediate-
scale quantum computers. In SC20: International
Conference for High Performance Computing,
Networking, Storage and Analysis (pp. 1-16). IEEE.

Patel, T., Potharaju, A., Li, B., Roy, R. B., & Tiwari, D.
(2020). Experimental evaluation of nisq quantum
computers: Error measurement, characterization, and
implications. In SC20: International conference for
high performance computing, networking, storage and
analysis (pp. 1-15). IEEE.

Smelyanskiy, M., Sawaya, N. P., & Aspuru-Guzik, A.
(2016). qHiPSTER: The quantum high performance
software testing environment. arXiv preprint
arXiv:1601.07195.

Miranskyy, A., & Zhang, L. (2019). On testing quantum
programs. In 2019 IEEE/ACM 41st International
Conference on Software Engineering: New Ideas and
Emerging Results (ICSE-NIER) (pp. 57-60). IEEE.

Murillo, J. M., Garcia-Alonso, J., Moguel, E., Barzen, J.,
Leymann, F., Ali, S., ... & Wimmer, M. (2024).
Quantum Software Engineering: Roadmap and
Challenges Ahead. arXiv preprint arXiv:2404.06825.

IQSOFT 2025 - 1st International Conference on Quantum Software

144

Just, R., Jalali, D., Inozemtseva, L., Ernst, M. D., Holmes,
R., & Fraser, G. (2014). Are mutants a valid substitute
for real faults in software testing? In Proceedings of the
22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (pp. 654-665).

DeMillo, R. A., Lipton, R. J., & Sayward, F. G. (1978).
Hints on test data selection: Help for the practicing
programmer. Computer, 11(4), 34-41.

Honarvar, S., Mousavi, M. R., & Nagarajan, R. (2020).
Property-based testing of quantum programs in Q#. In
Proceedings of the IEEE/ACM 42nd International
Conference on Software Engineering Workshops (pp.
430-435).

García de la Barrera-Amo, A., Serrano, M.A., García-
Rodríguez de Guzmán, I., Polo, M. & Piattini, M.
(2024) Automatic generation of property-based tests for
the verification of quantum algorithms. In Proceedings
of Services and Quantum Software 2024.

García de la Barrera-Amo, A., Serrano, M.A., García-
Rodríguez de Guzmán, I., Polo, M. & Piattini, M.
(2022) Automatic generation of test circuits for the
verification of Quantum deterministic algorithms. In
Proceedings of the 1st International Workshop on
Quantum Programming for Software Engineering.

Agrawal, H., DeMillo, R. A., Hathaway, B., Hsu, W., Hsu,
W., Krauser, E. W., ... & Spafford, E. (2006). Design of
Mutant Operators for the C Programming Language.

Polo, M., Piattini, M., & García‐Rodríguez, I. (2009).
Decreasing the cost of mutation testing with second‐
order mutants. Software Testing, Verification and
Reliability, 19(2), 111-131.

Deng, L., & Offutt, J. (2018). Reducing the Cost of Android
Mutation Testing. In SEKE (pp. 542-541).

Deng, L., Offutt, J., & Samudio, D. (2017). Is mutation
analysis effective at testing android apps? In 2017 IEEE
International Conference on Software Quality,
Reliability and Security (QRS) (pp. 86-93). IEEE.

Li, G., Zhou, L., Yu, N., Ding, Y., Ying, M., & Xie, Y.
(2020). Projection-based runtime assertions for testing
and debugging quantum programs. Proceedings of the
ACM on Programming Languages, 4(OOPSLA), 1-29.

Offutt, A. J. (1992). Investigations of the software testing
coupling effect. ACM Transactions on Software
Engineering and Methodology (TOSEM), 1(1), 5-20.

Boncalo, O., Udrescu, M., Prodan, L., Vladutiu, M., &
Amaricai, A. (2007, August). Assessing quantum
circuits reliability with mutant-based simulated fault
injection. In 2007 18th European Conference on
Circuit Theory and Design (pp. 942-945). IEEE.

Zhao, P., Miao, Z., Lan, S., & Zhao, J. (2023). Bugs4Q: A
benchmark of existing bugs to enable controlled testing
and debugging studies for quantum programs. Journal
of Systems and Software, 205, 111805.

Huang, Y., & Martonosi, M. (2018). QDB: from quantum
algorithms towards correct quantum programs. arXiv
preprint arXiv:1811.05447.

Biamonte, J. D., Allen, J. S., & Perkowski, M. A. (2010).
Fault models for quantum mechanical switching
networks. Journal of Electronic Testing, 26, 499-511.

Lukac, M., Kameyama, M., Perkowski, M., Kerntopf, P., &
Moraga, C. (2017). Fault models in reversible and
quantum circuits. Advances in Unconventional
Computing: Volume 1: Theory, 475-493.

Mutation-Based Quantum Software Testing

145

