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Abstract: Efficient separation of metals and plastics in recycling is crucial for improving material purity and reducing
costs. This paper optimizes the performance of a Barrier Eddy Current Separator (BECS) for sorting alu-
minium, copper, plastic, and brass. The BECS consists of a conveyor belt, vibration feeder, and magnetic
drum. Current methods rely on operator experience for speed and angle settings, often leading to suboptimal
performance. This research applies a data-driven approach to determine optimal operational parameters. The
study examines how varying conveyor belt speed (6.80 Hz to 87.70 Hz), vibration feeder amplitude (low,
medium, high), and magnetic drum angle (20°, 30°, 40°) affect separation accuracy and energy consumption.
Eighty-two experiments measured separation errors and energy use, with machine learning models identifying
optimal settings. Experimental validation showed significant error reduction, achieving the lowest separa-
tion errors and energy consumption. Minimizing errors also eliminated rework, improving efficiency. Unlike
conventional trial-and-error methods, this systematic approach enhances BECS calibration, demonstrating its
effectiveness in improving recycling separation accuracy and energy efficiency.

1 INTRODUCTION

The increasing demand for sustainable recycling solu-
tions has significantly emphasized improving the effi-
ciency and accuracy of material separation processes
in the recycling industry. Barrier eddy current separa-
tors (BECS) are widely used to separate non-ferrous
metals like aluminium, copper, and brass from other
materials like plastic. However, achieving optimal
separation quality remains a challenge due to the dy-
namic interaction between the three primary compo-
nents of the separator: the conveyor belt, vibration
feeder, and magnetic drum. Each component operates
at variable speeds, directly impacting the separation
process (Rem et al., 1997). As they have been shown
in Figure. 1

The conveyor belt transports materials to the mag-
netic drum, while the vibration feeder regulates the
flow and distribution of materials on the conveyor.
The magnetic drum generates high-intensity mag-
netic fields to separate non-ferrous metals from non-
magnetic materials. Finding the optimal speed config-
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Figure 1: [1]Magnetic drum, [2]Vibration feed, [3]Con-
veyor belt.

uration for these components is critical to minimizing
separation errors and ensuring the purity of recovered
materials. Furthermore, operational efficiency must
balance energy consumption and machine durability.
Excessive speeds may increase energy costs and wear
on mechanical components, while insufficient speeds
can lead to poor material separation and the need for
reprocessing. Traditional manual adjustments to com-
ponent speeds often lead to suboptimal performance,
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making the process time-consuming and error-prone.
This study optimizes the BECS system parameters
to maximize material throughput while maintaining
a sorting accuracy of 90%. The goal is to ensure ef-
ficient separation with minimal energy consumption.
Experimental data, including separation error rates
and energy consumption, were collected for various
conveyor belts and vibration feeder speed combina-
tions to achieve this. In contrast, the magnetic drum
speed on the control panel was fixed at level 6, corre-
sponding to 67.40 Hz as displayed on the PLC moni-
tor, to ensure consistent operation and maintain safety
across all experiments. A machine learning model
analyses the data and identifies the optimal speed con-
figuration that minimizes separation errors and energy
consumption. By integrating advanced data analy-
sis and optimization techniques, this study provides a
framework for enhancing the quality of recycled ma-
terials while reducing operational costs and environ-
mental impact (Wang et al., 2020; Nagel et al., 2020;
Smith et al., 2019; Rem et al., 1997).

Note: All speed values are reported in Hertz (Hz),
as used by the machine’s frequency converters and
PLC interface. The drives operate within a 0–50 Hz
range (equivalent to 0–100% capacity). Conversion
to meters per second (m/s) was not possible due to a
lack of access to mechanical specifications. For the
magnetic drum, Hz refers to revolutions per second.
Each test separated fine particles (1–4 mm) of alu-
minium, copper, brass, and plastic. After separation,
the misclassified materials were weighed to quantify
the error for each category. Due to space constraints,
only a selection of representative charts is shown be-
low. These were chosen based on their closeness to
machine-learning model predictions to support later
evaluation. The full dataset, including all 81 scenar-
ios and visual outputs, is publicly available on our
GitHub repository.

1.1 Background

The BECS process is one of the most important in-
dustrial techniques for recycling non-ferrous metals
from industrial and electronic waste. This method is
based on the induction of eddy currents in non-ferrous
metals, which generate Lorentz forces that separate
them from other materials when exposed to the rotat-
ing magnetic drum (Roy et al., 2010). Aluminium,
copper, and brass are among the most commonly re-
cycled metals.

They are widely used in various industries, from
electronics manufacturing to industrial packaging.
With technological advancements and the increas-
ing demand for high-quality recycling and energy-

efficient processes, various research efforts have been
made to improve BECS performance (Ahmed Nour
El Islam and Youcef, 2016). Most of these studies
have either focused on optimizing the physical design
of the magnetic drum or using numerical modelling to
analyze magnetic forces. However, simultaneous op-
timization of the operating speeds of different BECS
components to enhance separation efficiency and re-
duce energy consumption has received less attention.

1.2 Problem

Achieving optimal and precise separation of non-
ferrous metals has always been a significant challenge
in the recycling industry. Improper speed adjustments
of the conveyor belt, vibration feeder, and magnetic
drum can lead to reduced separation efficiency, caus-
ing misclassification of materials and the need for re-
processing, which increases operational costs. Fur-
thermore, a lack of precise control over component
speeds can result in excessive energy consumption
and higher electricity costs for recycling facilities.
Figure. 2 shows separation challenges in a BECS sys-
tem, where incorrect material sorting has occurred
during the recycling process.

The major challenge is the absence of a data-
driven model to determine the optimal speed con-
figuration for BECS components. In many exist-
ing systems, speed adjustments are performed man-
ually based on operator experience, which is time-
consuming, prone to errors, and inefficient. Addi-
tionally, most previous studies have relied primarily
on numerical simulations, with limited experimental
validation under industrial conditions. Therefore, an
approach to simultaneously optimizing the operating
speeds of BECS components using real-world data
and machine learning methods is essential. Such an
approach can enhance material purity, reduce separa-
tion errors, lower energy consumption, and improve
system safety, making BECS more reliable and effi-
cient for industrial applications.

1.3 Existing Body of Knowledge and
State of the Art

Various studies have been conducted on eddy cur-
rent separators (ECS) to recover non-ferrous metals.
Some studies (Yi et al., 2022; Bin et al., 2022) have
focused on the effect of a single variable, such as
temperature and particle size, on separation perfor-
mance. Article (Yi et al., 2022) utilized liquid nitro-
gen to lower the material temperature, increasing its
electrical conductivity and generating a more potent
Lorentz force. In contrast, Article (Bin et al., 2022)
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Figure 2: Errors collections.

investigated the effect of particle size on ECS perfor-
mance, showing that reducing particle size increases
particle rotation and alters the Lorentz force, making
separation more challenging. Other studies (Smith
et al., 2019; Shan et al., 2024b) have focused on op-
timizing the physical design of ECS devices, partic-
ularly the magnetic drum and magnetic pole arrange-
ments. Article (Smith et al., 2019) demonstrated that
increasing the drum speed or modifying the magnetic
pole configuration can enhance the Lorentz force and
improve separation efficiency. Article (Shan et al.,
2024b)optimized the magnetic drum design, showing
that a Halbach array configuration can increase mag-
netic field density by up to 75%. Several other studies
(Bin et al., 2021; Huang et al., 2021) have utilized
numerical simulations to predict ECS performance.
They used numerical modelling to simulate particle
trajectories in ECS separation, while Article (Li et al.,
2018) li2018preliminary analyzed magnetic flux den-
sity and its impact on separation efficiency. Some
studies (Shan et al., 2024a; Shan et al., 2025) have
examined particle interactions and their influence on
ECS performance. Article (Shan et al., 2024a) found
that eddy current induction between particles can al-
ter their movement trajectories, reducing separation
efficiency. Article (Shan et al., 2025) explored the
feasibility of vertical eddy current separation (VECS)
and identified slight differences in electrical conduc-
tivity among metals, such as Ag/Cu and Pt/Pb, which
make their separation challenging. Increasing the
drum speed and magnet thickness was proposed to ad-
dress this issue. Other studies (Ye et al., 2020; Huang
et al., 2024) have focused on ECS applications for re-

cycling specific waste materials, such as printed cir-
cuit boards (PCBs) and aluminum-contaminated plas-
tics. Article (Ye et al., 2020) showed that optimizing
magnetic drum design can enhance metal separation
from PCBs, but challenges such as particle interac-
tions and magnetic flux density effects remain. Ar-
ticle (Huang et al., 2024) used finite element anal-
ysis (FEA) to investigate magnetic field distribution
and Lorentz forces to address aluminium contami-
nants in HDPE plastics. Finally, Articles (Ruan and
Xu, 2012; Bai et al., 2023) focus on mathematical
modelling and experimental testing to optimize BECS
performance. Article (Ruan and Xu, 2012) developed
a mathematical model to predict eddy current forces
and showed that particle size and AC frequency sig-
nificantly impact separation efficiency. Article (Bai
et al., 2023), which focused on metal separation from
lithium-ion batteries, proposed a novel combination
of ball milling and BECS to achieve more energy-
efficient metal recovery.

1.4 Gap Detection

A review of prior studies on ECS for non-ferrous
metal recovery highlights several overlooked aspects.
Most research has examined isolated variables, such
as temperature, particle size, or magnetic drum speed,
without considering their combined effects. However,
in industrial settings, separation efficiency depends
on multiple interrelated factors, including conveyor
belt speed, vibration feeder speed, and magnetic drum
speed. Optimizing a single parameter without ac-
counting for system interactions often results in lim-
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ited and unstable improvements.
Many studies (Ruan and Xu, 2012; Bai et al.,

2023) rely heavily on numerical simulations with-
out industrial experimental validation, reducing real-
world applicability. While simulations provide valu-
able insights, industrial data is essential for practi-
cal optimization, as real-world conditions often differ
from theoretical models. Additionally, most research
(Ruan and Xu, 2012; Bai et al., 2023) prioritizes sepa-
ration performance over energy efficiency, neglecting
the impact of parameter adjustments on power con-
sumption. Increasing component speeds without con-
sidering energy usage can lead to higher costs and re-
duced system performance.

Some studies (Smith et al., 2019; Shan et al.,
2024b) propose physical modifications to the mag-
netic drum or field distribution but overlook safety
concerns. Strong high-speed magnetic fields can gen-
erate excessive heat, shorten equipment lifespan, and
pose fire hazards if ferrous particles become trapped.
Despite its critical role, safety remains underexplored
in prior research. Furthermore, solutions like new
drum shell designs (Huang et al., 2024) enhance
separation efficiency but lack adaptability, requiring
costly modifications when material composition or
size changes. This study introduces a data-driven
approach to BECS optimization, evaluating key op-
erational parameters—conveyor belt speed, vibration
feeder speed, and magnetic drum speed—using ma-
chine learning to identify optimal configurations that
minimize separation errors and maximize purity. Un-
like previous studies that rely predominantly on sim-
ulations, this research incorporates real-world indus-
trial data, ensuring practical applicability. Analyzing
energy consumption at different speed settings opti-
mizes separation efficiency and power usage, reduc-
ing operational costs. Magnetic drum speed is fixed
at level 6 on the control panel, to enhance safety, pre-
vent overheating, and mitigate fire hazards, ensuring
stable and efficient separation while minimizing mis-
classification errors.

1.5 Research Questions

RQ: How can the optimal combination of component
speeds in a BECS and the magnetic drum angle be
determined using experimental data analysis and sta-
tistical modelling to minimize separation errors while
optimizing energy consumption?

RQ1: What are the key factors to consider when
developing a comprehensive and standardized dataset
for optimizing the BECS process, considering com-
ponent speeds, magnetic drum angle, and energy con-
sumption?

RQ2: What technologies and approaches can be
applied to analyze experimental data and optimize the
operational settings of the BECS to enhance separa-
tion accuracy and reduce energy consumption?

2 SUPPLEMENTARY
LITERATURE AND RELATED
WORK

Many previous studies have focused on optimizing
the performance of ECS. In some of these studies
(Yi et al., 2022; Bin et al., 2022), the investigation
was limited to the effect of a single variable, such
as temperature or particle size, on the separation per-
formance. However, in real-world industrial applica-
tions, multiple operational parameters, including con-
veyor belt speed, vibration feeder speed, and mag-
netic drum speed, play a crucial role in determining
separation efficiency.

The present study addresses this limitation by
analyzing the combined influence of multiple vari-
ables on separation efficiency and energy consump-
tion rather than focusing on a single factor. More-
over, in Article (Yi et al., 2022), liquid nitrogen was
used to lower the material temperature to improve
separation efficiency. However, this method is im-
practical in large-scale industrial applications due to
its high operational cost and process complexity. In
contrast, the present study achieves separation opti-
mization without needing expensive technologies, re-
lying solely on the intelligent adjustment of compo-
nent speeds to enhance system performance. Several
studies (Smith et al., 2019; Shan et al., 2024b) primar-
ily focused on the physical optimization of the mag-
netic drum design. These works demonstrated that in-
creasing drum speed or altering magnetic pole config-
urations could enhance Lorentz’s force and improve
separation efficiency. However, such approaches have
significant challenges, including high costs, increased
maintenance requirements, and potential safety haz-
ards. The present study proposes a software-based op-
timization approach rather than implementing expen-
sive hardware modifications. This eliminates the need
for costly physical redesigns of the magnetic drum or
stronger magnets, which require continuous monitor-
ing. Additionally, by keeping the drum speed within
a safe range (60 - 70 Hz), the risks associated with
overheating, which were overlooked in previous stud-
ies, have been effectively mitigated. Most previous
research (Bin et al., 2021; Huang et al., 2021; Shan
et al., 2024a; Shan et al., 2025) relied on numeri-
cal simulations to predict ECS performance. While
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3D simulations can provide valuable insights, their
accuracy in industrial settings is often compromised
due to variations in real-world material properties and
environmental factors. These studies used simulated
numerical data instead of actual experimental results,
which may lack the reliability for real-world imple-
mentation. The present study overcomes this limi-
tation by conducting all experiments in a real indus-
trial environment, where operational data were col-
lected and analyzed. This approach enhances the re-
liability of the results compared to purely simulated
models, ensuring the proposed optimization strate-
gies can be directly applied in industrial settings. An-
other major limitation of previous studies (Bin et al.,
2021; Huang et al., 2021) and (Ye et al., 2020) is
their failure to account for energy consumption in
ECS operations. These works focused on enhanc-
ing separation efficiency without considering that spe-
cific optimizations—such as increasing drum speed
or magnetic field intensity—can significantly esca-
late energy consumption. The present study addresses
this issue by accurately measuring energy consump-
tion across various speed configurations. As a result,
both separation efficiency and energy consumption
have been optimized, leading to a reduction in opera-
tional costs. While Article (Bin et al., 2021) claimed
that a redesigned magnetic drum could reduce en-
ergy consumption, no documented experimental data
were provided to support this claim. In contrast, the
present study leverages real-world data to quantify en-
ergy usage and integrates it as a key variable in the
regression-based optimization model. Furthermore,
none of the reviewed studies (Yi et al., 2022; Bin
et al., 2022; Smith et al., 2019; Shan et al., 2024b; Bin
et al., 2021; Huang et al., 2021; Shan et al., 2024a;
Shan et al., 2025; Ye et al., 2020; Huang et al., 2024;
Ruan and Xu, 2012; Bai et al., 2023) considered the
safety implications of ECS operation. Hazards such
as drum overheating, fire risks due to unintended iron
particle presence, and the need for constant operator
supervision at high speeds were ignored entirely. Ad-
ditionally, all these studies focused on ECS technol-
ogy, which does not apply to BECS due to differences
in drum angles and their impact on the separation pro-
cess. The present study meticulously addresses these
critical aspects. Additionally, the impact of various
operational parameters was systematically analyzed
to ensure long-term machine stability and reduced
operator intervention requirements. Some previous
studies (Shan et al., 2024a) explored new casing de-
signs for the magnetic drum, which were customized
for a specific particle size range (e.g., 3–5 mm). How-
ever, this approach lacks adaptability since a com-
pletely new casing design would be required if the in-

put material size varies, adding significant costs and
complexity. Reviewing related works shows that most
prior research either focused on isolated variables, re-
lied solely on numerical simulations, or failed to con-
sider energy efficiency and safety concerns. None of
these studies addressed ECS adaptability for differ-
ent material types and sizes in a practical industrial
setting. In contrast, the present study provides a com-
prehensive optimization framework based on accurate
experimental data. It simultaneously analyzes the im-
pact of multiple operational parameters while ensur-
ing energy efficiency and machine safety. By stabi-
lizing drum speed, fire hazards and overheating risks
are minimized, making the system more reliable for
industrial applications.

Rather than introducing costly physical modifica-
tions, the present study utilizes a software-driven ap-
proach to adjust component speeds dynamically. This
allows for greater adaptability across various material
types without expensive hardware alterations. This
methodology enhances flexibility, reduces operational
costs to almost zero, and improves overall system ef-
ficiency, making it a practical and scalable solution.

3 CONSTRUCTING A RELIABLE
DATASET FOR MACHINE
LEARNING-BASED BECS
OPTIMIZATION

The Barrier Eddy Current Separator (BECS) sys-
tem is designed to recover non-ferrous metals such
as aluminium, copper, and brass from mixed waste
streams (Gomathi and Sridevi, 2015). Due to the sys-
tem’s complex physical dynamics and sensitivity to
mechanical settings, achieving high separation qual-
ity requires precise tuning of operational parameters.
This project optimizes separation efficiency and en-
ergy usage by experimentally analyzing the effects of
conveyor belt speed, vibration feeder speed, and mag-
netic drum angle. A comprehensive dataset was de-
veloped through 81 experimental scenarios, system-
atically varying key operational parameters to support
this. The magnetic drum speed was fixed at 67.40 Hz
in all tests to maintain system stability and safety. The
conveyor belt speed ranged from 6.80 Hz to 87.70 Hz,
while the drum angle was set at 20°, 30°, and 40°. The
vibration feeder was tested at low, medium, and high
levels to assess its effect on material distribution and
separation outcomes.

Figure. 3 to Figure. 11 illustrate these scenar-
ios, showcasing representative vibration combina-
tions, belt speed, and drum angle combinations. The
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complete dataset and the remaining experimental vi-
sualizations from all 81 test scenarios are available in
the project’s GitHub repository.

Each chart illustrates the separation errors (in
grams) for the four target material classes. For vi-
sualization clarity, plastic errors are visualized using
segmented stacked colors representing mixed mate-
rial residues.

After each experiment, separation errors were
quantified by measuring the weight of incorrectly
classified materials within each category.

Figure. 12 shows the weight measurement of col-
lected errors in wrong bins.

The errors recorded included:

• The amount of copper misclassified into the plas-
tic fraction.

• The amount of plastic misclassified into the metal
fraction.

• The amount of brass misclassified into the plastic
fraction.

• The amount of aluminum misclassified into the
plastic fraction.

Additionally, the device’s electrical energy con-
sumption was measured in each scenario using an En-
ergy Logger (Sen, 2021; Nunn, 2013; Hirst et al.,
2013) to assess the impact of different speed settings
on power usage. Measurements were taken system-
atically across varying belt speeds, drum speeds, and
vibration levels to capture the complete energy profile
under different operational conditions. All collected
data—including detailed records of separation errors,
power consumption, and their corresponding speed
settings—was carefully documented for each tested
configuration. This ensured a structured dataset that
allowed for precise analysis. The dataset underwent
comprehensive analysis following the experimental
phase to examine the interdependencies between op-
erational parameters and energy efficiency. The goal
was to identify optimal speed and drum angle com-
binations that minimize separation errors while opti-
mizing power consumption, ultimately enhancing the
system’s overall efficiency.

4 MACHINE LEARNING-BASED
OPTIMIZATION OF BARRIER
EDDY CURRENT SEPARATION

Our approach focused on analyzing experimental data
and optimizing the BECS operational settings using
machine learning techniques to address the second re-
search question. These settings include conveyor belt

speed, drum speed, vibration speed, and drum angle,
all of which directly impact the accuracy of material
separation. To achieve this, a Multi-Output Regres-
sion machine learning model was implemented to pre-
dict the optimal operational settings, enhancing sep-
aration accuracy while minimizing operational costs.
This chapter outlines the dataset and data Preparation,
model implementation, and optimization process. It
explains how the model processed and analyzed the
collected data and how the results improved separa-
tion accuracy and reduced energy consumption.

4.1 Dataset and Data Preparation

The dataset used in this study was collected from a
real-world industrial BECS system containing opera-
tional parameters and material separation error rates.
The data is categorized into two main groups:

Input Features (X):

• Vibration Speed(low, medium, high)

• Magnetic Drum Speed (Hz)

• Conveyor Belt Speed (Hz)

• Separation Error for – aluminum, copper, brass,
and plastic (grams)

• Drum Angle (degrees)

Output Variables (y):

• Optimized Vibration Speed

• Optimized Magnetic Drum Speed

• Optimized Conveyor Belt Speed

• Optimized Drum Angle

During preprocessing, missing values were identified
and handled. To enhance the model’s accuracy, Min-
MaxScaler normalized the input features, ensuring
all variables were scaled within a standardized range.
The dataset was split into 80% training data and 20%
test data for model evaluation.

4.2 Model Development and Machine
Learning Implementation

A Multi-Output Regression model (Peng et al., 2023)
was implemented using the Scikit-learn library (Gar-
reta and Moncecchi, 2013) to predict the optimal
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Figure 3: Vibration=4, Belt=3, Drum Angle=20°.

Figure 4: Vibration=5, Belt=3, Drum Angle=20°.

Figure 5: Vibration=6, Belt=3, Drum Angle=20°.

Figure 6: Vibration=4, Belt=3, Drum Angle=30°.
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Figure 7: Vibration=5, Belt=3, Drum Angle=30°.

Figure 8: Vibration=6, Belt=3, Drum Angle=30°.

Figure 9: Vibration=4, Belt=3, Drum Angle=40°.

Figure 10: Vibration=5, Belt=3, Drum Angle=40°.
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Figure 11: Vibration=6, Belt=3, Drum Angle=40°.

Figure 12: Errors weight measurement.

BECS settings. This approach allows for the simul-
taneous prediction of multiple target variables, mak-
ing it well-suited for optimizing interdependent pa-
rameters. The Random Forest Regressor (Rodriguez-
Galiano et al., 2015) was selected as the base model
due to its ability to capture complex nonlinear rela-
tionships between input and output variables. This
model leverages multiple decision trees to enhance
predictive accuracy compared to simpler regression
models. Multi-Output Regression with Random For-
est Regressor:

y j = f j(X)+ ε j, j = 1,2, ...,m (1)

where:

• X = (x1,x2, ...,xn) is the vector of input features,
consisting of:
– x1: Vibration Speed (low, medium, high)
– x2: Magnetic Drum Speed (Hz)
– x3: Conveyor Belt Speed (Hz)
– x4: Separation Error for Aluminum in Plastics

(grams)

– x5: Separation Error for Copper in Plastics
(grams)

– x6: Separation Error for Brass in Plastics
(grams)

– x7: Separation Error for Plastics in Metals
(grams)

– x8: Drum Angle (degrees)

• y j represents the predicted optimized operational
settings, including:

– y1: Optimized Vibration Speed (low, medium,
high)

– y2: Optimized Magnetic Drum Speed (Hz)
– y3: Optimized Conveyor Belt Speed (Hz)
– y4: Optimized Drum Angle (degrees)

• f j(X) is a nonlinear function approximated by the
Random Forest model, trained to find the optimal
settings for the BECS system.

• ε j represents the model error, accounting for the
discrepancy between the predicted and actual op-
timal operational settings.

After selecting the model, it was trained using the
prepared dataset, learning the relationships between
operational settings and separation accuracy. Once
trained, the model was tested on unseen data to eval-
uate its predictive performance. The model’s primary
function is to take initial operational values and out-
put the most effective configuration for maximizing
separation efficiency.

5 EVALUATION AND
DISCUSSION

The MultiOutputRegressor was selected as the ma-
chine learning framework due to its capacity to si-
multaneously predict multiple output parameters crit-
ical to optimising the BECS system. These param-
eters—vibration speed, drum speed, conveyor belt
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Figure 13: Separation errors using model-predicted parameters.

speed, drum angle, and energy usage—are interde-
pendent, and a change in one often affects the oth-
ers. The chosen model architecture enables the train-
ing of dedicated regressors (Borchani et al., 2015) for
each output while maintaining cross-dependencies.
Random Forest Regressor (Rodriguez-Galiano et al.,
2015), employed as the base estimator, is well-suited
for detecting complex nonlinear patterns and provides
accurate results even with relatively small datasets. It
is also lightweight enough to run on standard CPUs or
embedded systems with limited memory (e.g., 2–4GB
RAM), making it an ideal solution for industrial set-
tings with constrained computational resources. Deep
learning models (e.g., neural networks) were deemed
unsuitable due to limited data availability and overfit-
ting risks. Classical models (Cook et al., 2022), like
linear regression, also fail to capture complex nonlin-
ear relationships between inputs and outputs.

Figure. 13 presents the separation error results
obtained by applying the optimized parameter val-
ues predicted by the trained model. This model was
trained on 81 real industrial test scenarios using actual
material and equipment in an operational recycling fa-
cility. The recommended values for vibration speed,
belt speed, and drum angle were tested in a real ex-
periment. The results showed a noticeable reduction
in misclassification errors—especially for aluminium,
copper, and brass—compared to those observed in the
original experimental dataset.

This performance demonstrates the effectiveness
of using machine learning for parameter optimiza-
tion. Lower error rates mean materials need not be
routed back into the separation process, saving signif-
icant energy and labour. In contrast, arbitrary or un-
balanced parameter combinations can lead to severe
issues. For example, if the drum speed is fixed at 6,
but the vibration feeder is set too high (e.g., 7) and
the conveyor belt too low (e.g., 3), excessive material
accumulates on the belt. As shown in Figure. 14, this

buildup creates a bulk that overwhelms the magnetic
drum, which ends up ejecting the entire load instead
of separating it. The resulting mess disrupts separa-
tion quality and spills material around the device, re-
quiring human intervention for cleanup.

Figure 14: Material buildup caused by high vibration speed
and low belt speed.

Similarly, very little material lands on the belt
when the conveyor belt is too high relative to the
vibration feeder (e.g., belt at 8 and vibration at 4).
This situation, depicted in Figure. 15, leads to mostly
empty belt operation. Even if a few particles reach
the magnetic field zone, they pass too quickly to be
separated correctly. This causes poor separation and
unnecessary energy usage while accelerating mechan-
ical wear due to underloaded operation.

By contrast, when the vibration feeder and belt
speeds are well-balanced, the material spreads uni-
formly across the conveyor, enabling stable and ef-
ficient separation. An example of this can be seen
in Figure. 16, where the material flow from the feeder
onto the belt appears evenly distributed, a prerequisite
for effective downstream separation. Hence, finding
optimal and compatible speed combinations is essen-
tial for achieving high separation accuracy, improving
energy efficiency and reducing the need for reruns.
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Figure 15: Sparse material flow due to high belt speed and
low vibration feed.

The model suggested in this work achieved this by
learning directly from real industrial data. The chart
in Figure. 13 reflects a scenario selected by the trained
regressor as optimal, and the result confirms its su-
perior performance. These findings underscore the
potential of intelligent systems in enhancing the sus-
tainability and reliability of industrial recycling pro-
cesses.

Figure 16: Proper material flow with balanced vibration and
belt speeds.

5.1 Post-Model Training Steps

Real-world industrial data from a BECS system was
used for training. Initial material quantities included:

• 500 grams of aluminum

• 500 grams of copper

• 500 grams of brass

• 500 grams of plastics

uniformly mixed and processed. Separation errors
under varying operational parameters were recorded.
For example at:

• medium- vibration

• 47.30 Hz conveyor speed

• 30 degrees drum’s angle

47 grams of aluminium were misplaced into the
plastic bin. Similar copper, brass, and plastic errors
were logged under different conditions. These error
values and operational parameters served as input for
model training. After training, the model proposed
optimized parameters (e.g., vibration speed, conveyor
speed, drum angle) to minimize separation errors.
The Table 1 shows suggested optimized speeds.

To validate the model’s results, we tested its rec-
ommendations under industrial conditions. During
this phase, we reran the separation process, but this
time, we used the machine learning model’s sug-
gested settings. The results showed a significant re-
duction in separation errors. Table 2 presents the
recorded errors and the separation process’s accuracy.

Additionally, energy consumption was measured
throughout the process, revealing that the average en-
ergy consumption reached its lowest recorded level
compared to all previous measurements. Power con-
sumption data was measured before and after model
implementation using an energy logger to evaluate the
impact of the machine learning model on energy con-
sumption. The two images, Figures. 17 and 18, repre-
sent the system’s power consumption under different
conditions, which are analyzed and compared below.

• The total power consumption fluctuates between
1.2 kW and 1.4 kW.

• Power at Cursor 1 (09:58:38): 0.494 kW

• Power at Cursor 2 (10:05:26): 0.490 kW

• Delta (Power Difference): 0.041 kW

• The system’s power consumption is relatively
high and exhibits significant fluctuations.

• The total power consumption is now within 1.1
kW to 1.2 kW, which is lower than in the previous
graph.
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Table 1: Optimized Table with Merged Cells.

Final Model’s Output
Machine Components Model Evaluation (Mean Absolute Error) Predicted Output
Vibration Speed 0.0 medium
Drum Speed 0.0 67.40
Belt Speed 0.0547 36.60
Drum Angle 0.0 20.0

Table 2: Recorded Errors and Accuracy of the Separation.

Material Recorded Errors (gram) Accuracy of Separation (%)
Aluminum 19 96.2
Copper 9 98.2
Brass 15 97.0
Plastic 26 94.8

Figure 17: Energy Consumption Before Machine Learning Optimization.

• Power at Cursor 1 (14:45:05): 0.430 kW

• Power at Cursor 2 (14:46:37): 0.418 kW

• Delta (Power Difference): 0.012 kW

• Energy consumption is lower, and fluctuations are
significantly reduced.

Table 3 compares the machine’s energy consump-
tion in two scenarios: one during data collection while
measuring all 82 cases and the other with the sug-
gested optimized speeds applied to all three machine
components.

The reduction in energy consumption is approxi-
mately 0.2 kW – 0.25 kW, representing a 15% – 18%
decrease in total energy usage. This reduction in en-
ergy consumption directly impacts operational cost
savings and enhances system sustainability, which
can be highly valuable in industrial environments.

This model is not limited to a specific type of bar-
rier eddy current separator but can also be applied
to other recycling machines. For instance, it works
for both a barrier eddy current separator and a simple
eddy current separator. This flexibility allows differ-
ent industries to customize the model based on their
needs by adding new input variables or removing un-
necessary ones. Recycling industries can modify the
model according to their machine’s conditions and
obtain customized results.

One of the key factors contributing to the success
of this project was the use of accurate industrial data.
Unlike similar studies (Bin et al., 2021; Huang et al.,
2021; Shan et al., 2024a; Shan et al., 2025) that rely
on simulated data, our proposed model was trained on
real-world industrial data. This makes its predictions
far more reliable for practical applications. Previous
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Figure 18: Energy Consumption After Machine Learning Optimization.

Table 3: Comparison of Energy Consumption Before and After ML Optimization.

Comparison Before ML Optimization After ML Optimization
System Condition Higher power consumption with instability Lower power consumption with increased stability

Average Total Power Consumption 1.2 kW – 1.4 kW 1.1 kW – 1.2 kW
Power Usage Variations Significant fluctuations observed Reduced variations, more stable operation

studies often suffered from low accuracy because sim-
ulated data failed to capture unpredictable variables in
real industrial environments.

Additionally, one major factor overlooked in pre-
vious studies (Yi et al., 2022; Bin et al., 2022; Smith
et al., 2019; Shan et al., 2024b; Bin et al., 2021;
Huang et al., 2021; Shan et al., 2024a; Shan et al.,
2025; Ye et al., 2020; Huang et al., 2024; Ruan and
Xu, 2012; Bai et al., 2023) was measuring energy
consumption during the separation process. In our
project, we recorded power consumption in all test
scenarios. This is a key advantage for industries be-
cause lower energy consumption translates into lower
operational costs on a large scale. This project was
not financially expensive and was executed with al-
most zero financial cost. However, it was quite time-
consuming.

The reason for this was the collection of accurate
industrial data, which required running over 82 differ-
ent test scenarios, meticulously recording errors, and
processing experimental data. No similar research
study has been conducted with such a large volume
of real-world data because conducting industrial ma-
chine experiments, logging data, and accurately re-
peating each scenario is exceptionally tedious, time-
consuming, and exhausting.

5.2 Limitations

The data collected in this study corresponds to ma-
terials that have undergone industrial pre-processing
before entering the BECS. These materials passed
through milling and screening stages before separa-
tion. As a result, all tested samples had particle
sizes between 1 and 4 millimetres and were rounded
without sharp edges. This characteristic facilitated
magnetic drum calculations for detection and sepa-
ration, improving separation quality compared to ir-
regular or sharp-edged materials. Additionally, ex-
periments demonstrated that the optimal drum angle
decreases as particle size decreases. However, since
this study focused solely on materials within the 1
to 4-millimeter range, its findings are limited to this
size range. The model’s performance for finer pow-
ders (less than 1mm) remains unexplored. Industries
intending to adopt this approach should first analyze
their materials’ composition, shape, and size distribu-
tion. The model’s effectiveness is highly dependent
on the characteristics of the input materials, and its
performance may vary when applied to materials out-
side the studied range. However, if the input materi-
als align with the conditions examined in this study,
the proposed optimization method can deliver highly
accurate and reliable results. Moreover, experimen-
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tal results indicated that particle size. Decreases, the
optimal angle of the magnetic drum should also be
reduced. This is because smaller particles are more
sensitive to magnetic and gravitational forces, and at
steeper angles, they may deviate from their intended
separation trajectory. However, it is important to note
that the scope of this study was limited to materi-
als ranging from 1 to 4 millimetres in size. There-
fore, the findings can only be generalized within this
size range, and the model’s performance on signif-
icantly finer materials—especially powders smaller
than 1 millimetre—has not been evaluated. During
this research, access to powder samples and parti-
cles smaller than 1 millimetre was extremely limited.
Even if a more significant quantity had been avail-
able, conducting accurate experiments on such mate-
rials would have presented significant challenges. Un-
like particles in the 1–4 mm range, where misclassi-
fied items could be visually identified and manually
separated for weighing, powders made this process
unfeasible. The naked eye could not easily distin-
guish ultra-fine particles, and manual separation was
practically impossible. This limitation made it impos-
sible to evaluate the model’s accuracy on powdered
inputs, as there was no practical method for reliably
identifying or quantifying separation errors in those
cases. Therefore, the proposed model’s effectiveness
has only been validated for materials within a spe-
cific particle size range. Extending its applicability to
other material types—particularly powders—will re-
quire more precise detection and measurement tools
to support future studies.

6 CONCLUSION AND FUTURE
WORK

This study successfully optimized the operational
parameters of the Barrier Eddy Current Separator
(BECS) using machine learning techniques. Imple-
menting the MultiOutputRegressor with a Random
Forest base model identified optimal settings for key
system components, significantly improving separa-
tion accuracy and reducing energy consumption. The
optimized parameters determined by the model were:

• Vibration speed: medium
• Drum speed: 67.40 Hz
• Belt speed: 36.30 Hz
• Drum angle: 20.0°

Applying these optimized settings in actual industrial
conditions resulted in a significant reduction in sepa-
ration errors. The accuracy rates achieved for differ-
ent materials were as follows:

• Aluminum: 96.2%

• Copper: 98.2%

• Brass: 97.0%

• Plastic: 94.8%

In addition to improving separation accuracy, the
optimization also enhanced energy efficiency. The
system’s power consumption decreased from an ini-
tial range of 1.2 kW—1.4 kW to a more stable 1.1
kW—1.2 kW, leading to a 15%—18% reduction in
total energy usage. This translates into lower opera-
tional costs and increased system sustainability, mak-
ing the solution highly practical for industrial appli-
cations. Future research will enhance the system’s
adaptability by incorporating predictive mechanisms
for detecting unwanted materials (e.g., sharp-edged
or ferromagnetic contaminants) and expanding the
dataset to cover a broader range of particle sizes.
These improvements will further strengthen the op-
timized BECS system’s applicability and robustness
in diverse industrial settings. All the codes, recorded
datasets, and other related needed information are
available in GitHub (Kia, 2025).
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