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Abstract: Effective management and optimization of urban infrastructures necessitates scalable and accessible simula-
tion frameworks. Modern BIM-based solutions present a promising avenue for novel construction projects;
however, these solutions are often inapplicable to the extensive array of legacy infrastructures developed prior
to the establishment of BIM as a construction standard. Commensurate with this, we present a new model-
driven simulation approach for urban infrastructures that (i) utilizes a novel domain-specific modeling lan-
guage (DSML) to represent both structural and behavioral characteristics of these infrastructures and (ii) em-
ploys the Discrete Event System Specification (DEVS) formalism for simulation purposes. Reframing urban
infrastructures as IoT-based, event-driven systems facilitates efficient, hierarchical simulations of complex
dynamic environments, including resource management and water networks. Simulation artifacts produced
from the DSML through model-to-text generation are executed within the DEVS simulation framework. We
validate our approach through a case study conducted at IIIT Hyderabad’s Smart City Living Lab, illustrating
its capacity to identify optimization opportunities within urban infrastructures.

1 INTRODUCTION

Urban and civil infrastructures consume over two-
thirds of the world’s energy (International Energy As-
sociation, 2021). This has led to the rise of smart
infrastructures (Snoonian, 2003), i.e., urban infras-
tructures equipped with numerous IoT devices for im-
proved monitoring and more timely reaction w.r.t. op-
timizing, e.g., the operational footprint (King and
Perry, 2017). However, this only solves one part of
the problem. The situation is more critical if taking a
closer look at the large stock of legacy infrastructures.
According to the EU’s Energy Performance of Build-
ing’s Directive, 35 million building units are to be ren-
ovated to achieve higher resource efficiency (Coun-
cil of European Union, 2024). Similarly, with the
ECO Niwas Samhita 2018, India is also pushing novel
building codes to improve buildings’ and infrastruc-
tures’ operational performance (Bureau of Energy Ef-
ficiency, Govt. of India, 2018). To even come close to
achieving these ambitious goals, accessible, efficient
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and scalable solutions for the identification of quick
optimization potentials of legacy infrastructures are
much-needed. Modeling and simulation provide an
efficient remedy.

Over the last decades, Building Information Mod-
eling (BIM) has emerged as a new, de-facto stan-
dardized workflow for digital planning, design, con-
struction, and operation in the architecture, engineer-
ing, and construction (AEC) industry (Marketsand-
Markets, 2024). This increased adoption naturally
has led to the exploration of BIM-based simulations
which became feasible as to a collaborative process
that integrates digital representations of an infrastruc-
ture’s physical and functional characteristics to sup-
port its design, construction, and operation (Eastman
et al., 2011; Di Biccari et al., 2022). However, in the
event of legacy infrastructures, as to the recency of
BIM, such models largely do not exist thus rendering
BIM-based simulations infeasible.

In light of the above, we identify a paramount
demand for accessible, efficient and scalable solu-
tions for the identification of quick optimization po-
tentials of legacy infrastructures that does not capital-
ize on BIM. By reframing an infrastructure as a dis-
crete event system (Lu and Olofsson, 2014) we even-
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tually arrive at a feasible and efficient representation,
e.g., in terms of its embedded IoT devices, which can
be leveraged for discrete event simulation (Agalianos
et al., 2020) using the DEVS formalism (Zeigler,
2000). This then directly yields the central research
questions investigated in our work, viz.

• RQ1. How can we efficiently model infrastruc-
tures by their embedded IoT devices to simulate
and understand their operational behavior?

• RQ2. How can DEVS be leveraged for model-
driven, discrete event-based simulations of con-
nected IoT infrastructures for the identification of
quick optimization potentials?
Commensurate with the above, in this paper, we

present a novel domain-specific modeling language
(DSML) for modeling infrastructures at the IoT layer.
This allows for capturing both structural and op-
erational behavior aspects in a accessible and effi-
cient way without the need for a BIM model. From
the resulting DSML-based models, we generate run-
time artifacts as Python code which are then ex-
ecuted in the Python PDEVS simulation environ-
ment (Van Tendeloo and Vangheluwe, 2016). This re-
sults in an efficient, model-driven workflow that cap-
italizes on model-based tool integration (Kapsammer
et al., 2006) for accessible model-driven simulation
of infrastructures for the identification of quick op-
timization potentials. We evaluate our proposal in a
Living Lab at the IIIT Hyderabad in India.

2 BACKGROUND AND
RESEARCH PROBLEM

To reduce the global resource footprint of infrastruc-
tures, efficient and scalable solutions for the fast iden-
tification of optimization potentials in legacy infras-
tructures are necessary. Unfortunately however, mod-
ern BIM-based simulations of legacy infrastructures
usually are not feasible as to various reasons:

• Data Acquisition and Model Creation: Legacy
infrastructures often lack up-to-date or accurate
documentation, making it difficult to gather nec-
essary data for BIM. Technologies like laser scan-
ning (LiDAR) or photogrammetry are often used
to capture data, but this can be time-consuming
and costly and only reconstructs an infrastruc-
ture’s hull (e.g., a visual 3D model of an infras-
tructure’s manifestation) (Volk et al., 2014).

• Complexity of Building Forms: Legacy infrastruc-
tures often feature non-standard geometries or ir-
regular forms that are difficult to capture and rep-
resent in modern BIM software, which is typically

optimized for contemporary designs with regular
shapes (Baik et al., 2014).

• Material Degradation and Unknown Conditions:
Legacy infrastructures often experience material
degradation or undocumented changes over time,
such as renovations or repairs, which compli-
cate the process of creating accurate BIM models
without comprehensive manual examination (Fai
et al., 2011).

• Interoperability of Data: Many legacy infrastruc-
tures only have outdated records in non-digital
formats (e.g., paper blueprints or 2D CAD draw-
ings), which are difficult to translate into BIM
models without extensive effort. Ensuring in-
teroperability between these formats and BIM
software adds to the complexity (Murphy et al.,
2013).

• Cost and Skill Requirements: The cost of apply-
ing BIM to legacy infrastructures is often high
due to the need for advanced scanning tools and
specialized expertise to interpret the data and
translate it into a usable BIM model. The re-
turn on investment is uncertain, particularly for
non-commercial projects like historic preserva-
tion (Becerik-Gerber et al., 2012).

• Heritage Conservation Concerns: When BIM
is applied to historically significant buildings, it
may conflict with heritage conservation princi-
ples, which prioritize maintaining the building’s
original condition. BIM’s focus on efficiency and
standardization can clash with these values (Dore
and Murphy, 2012).

Commensurate with this, we thus look for feasible
approaches elsewhere, mainly in the field of DEVS
by following the idea of reframing an infrastructure
as an event-driven system, where state changes occur
at discrete points in time in response to events to en-
able efficient and hierarchical simulation of complex
dynamic systems, e.g., infrastructures (Zeigler, 2000;
Lu and Olofsson, 2014; Agalianos et al., 2020).

2.1 Infrastructures as DEVS-Based
Simulations

We rely on the fundamental assumption of being able
to represent an infrastructure as a DEVS system. Fol-
lowing Lu and Olofsson (2014), a building can be
treated as a DEVS system by modeling its compo-
nents (e.g., sensors and actuators) as atomic models
with discrete states that change in response to specific
events, such as occupancy detection or temperature
fluctuations. These components can be organized hi-
erarchically to represent an IoT infrastructure, with
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subsystems (for rooms or floors) interacting through
a coupled model that simulates coordinated responses
to events, such as adjusting lighting and HVAC when
occupants enter a room. DEVS manages time-driven
events efficiently, simulating both scheduled opera-
tions (e.g., daily heating routines) and unpredictable
occurrences (e.g., sudden temperature drops or water
contamination). Such an approach enables real-time
simulations of dynamic behaviors like energy use or
water demand, providing a comprehensive model of
infrastructure operations.

Albataineh and Jarrah (2021) developed a DEVS-
based framework to evaluate smart home IoT systems,
where device scheduling simulations provide action-
able recommendations to optimize resource use. Sim-
ilarly, Antoine-Santoni et al. (2007) applied DEVS
formalism to model wireless sensor networks for en-
vironmental monitoring, particularly in wildfire de-
tection, showcasing the modular capacity of DEVS
in managing complex environmental interactions. Es-
teban et al. (2023)proposed an early warning sys-
tem for harmful algal blooms, using DEVS within an
IoT architecture to integrate layered simulation and
validation stages for real-time monitoring and data
processing. Mittal and Martin (2013a) introduced
the DEVS Unified Process (DUNIP) for netcentric
systems, aligning DEVS with model-driven systems
engineering (MDSE) to integrate Service-Oriented
Architecture (SOA) and Event-Driven Architecture
(EDA), enhancing interoperability for large-scale sys-
tems.

Expanding on IoT applications within DEVS, Al-
bataineh and Jarrah (2019) further explored smart
home device management by simulating behaviors
and interactions among monitoring and control de-
vices. Their DEVS-based IoT management system
improves device deployment efficiency and allows
simulation of scenarios involving power consumption
and cost, providing insights for optimal smart home
configuration.

Fazel and Wainer (2023) investigated model-
based development for the IoT, focusing on a DEVS-
based methodology to streamline IoT application life
cycle management through abstraction and reusabil-
ity. Their work emphasizes the importance of network
protocols like MQTT for data transmission, imple-
menting DEVS-based MQTT models to ensure qual-
ity of service (QoS) and reliability in connected sys-
tems, which are critical for real-time and distributed
IoT applications in complex environments like health-
care and industrial settings.

Lastly, Im et al. (2021) introduced methods to sim-
ulate mobile IoT systems using DEVS, overcoming
challenges associated with simulating dynamic IoT

nodes. Their approach incorporates hierarchical parti-
tioning and a novel event-driven technique to manage
node mobility, significantly reducing simulation time
while maintaining model accuracy. This advancement
is especially relevant for applications where IoT de-
vices are mobile, such as in smart city or vehicular
networks, addressing scalability and efficiency con-
cerns inherent in large-scale, mobile IoT systems.

Together, these works underscore the versatility
of DEVS in modeling, simulation, and optimization
for connected, dynamic systems across smart infras-
tructure applications. However, these works also
demonstrate that so far the application of model-
driven engineering for simulation engineering to
reduce the complexity in capturing an infrastruc-
ture’s structure and interactions has not been suf-
ficiently explored. Specifically, despite employing
a model-based methodology, model-driven engineer-
ing’s full potential by automation, consistency, valida-
tion & verification, simulation generation, and tool in-
tegration for faster, scalable development and adapt-
ability to changing system requirements or manifes-
tations remains largely unrealized (Domingo et al.,
2020; Cetinkaya et al., 2011; Mittal and Martin,
2013b; Zeigler et al., 2018).

2.2 Case Study: Smart City Living Lab
at IIIT Hyderabad

In the following we discuss the ideas from Section 2.1
in the context of our running case study, i.e., the
simulation of connected infrastructures in the context
of the Smart City Living Lab at the IIIT Hyderabad
and its implications for the successful application of
DEVS, alongside a brief primer on DEVS.

The Smart City Living Lab at 1 at IIIT Hyder-
abad’s Smart City Research Center is an advanced ur-
ban innovation ecosystem, created with support from
MEITY (Government of India), the Telangana gov-
ernment, EBTC, and Amsterdam Innovation Arena.
Spanning a 70-acre smart campus, it incorporates a
distributed IoT infrastructure comprising sensors, ac-
tuators, and data systems to address critical urban
challenges like air quality monitoring, energy effi-
ciency, weather forecasting, water management, and
adaptive smart infrastructure. The lab serves as a real-
time testbed for developing and deploying scalable
smart city solutions in a live environment, housing
over 4,000 residents, research labs, and more than 22
research centers - six of which are directly focused on
smart cities.

In our study, the Living Lab offers a rich set of

1https://smartcitylivinglab.iiit.ac.in
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real-world scenarios (cf. Section 2.4) in a connected
infrastructure, which we aim to model and simulate
in part using our proposed formalisms. By compar-
ing real system data with the simulation results, we
can assess the accuracy and reliability of our mod-
els. This comparison enables us to determine if the
models effectively represent the underlying system
structure and dynamics with sufficient detail, ensur-
ing that the simulations provide a trustworthy basis
for informed decision-making. The Living Lab’s real-
world testing and data collection, particularly in the
areas of smart energy, water management, and urban
infrastructure, offer valuable insights into the fidelity
of our models.

2.3 A Brief Primer on DEVS

An atomic DEVS model is defined as
aDEV S = ⟨S, ta,δint ,X ,δext ,Y,λ⟩ (1)

with S denoting the set of admissible, sequential
states, ta the time advance function, δint the internal
transition function, X the set of admissible, external
inputs, δext the external transition function for captur-
ing external influences, Y the set of admissible (exter-
nal) outputs, and λ the output function for mapping
internal states onto the output set. The time base T is
continuous, e.g., T = R.

To capture interaction among different systems
(cf. devices, or atomic models), DEVS further defines
a coupled model as

cDEV S =

⟨Xsel f ,Ysel f ,D,{Mi},{Ii},{Zi, j},select⟩ (2)
with Xsel f the set of allowed external inputs and Ysel f
the set of allowed (external) outputs. D denotes the
set of unique component references (names), {Mi}
denotes the coupled components with each Mi denot-
ing an aDEV S model (cf. Equation 1), Ii the set of
influencees of a component Mi, i.e., the components
influenced by i ∈ D, thereby specifying the coupling
network structure. The set {Zi, j} denotes the output-
to-input translation functions to map the output from
one component i ∈ D to the input of another j ∈ D.
Finally, select specifies a tie-breaking between simul-
taneous events by choosing a unique component from
any non-empty subset E ∈ D where E corresponds to
the set of all components having a state transition si-
multaneously. A more extensive treatment is available
from Zeigler (2000).

2.4 Case Study Description

An IoT-driven system has been deployed to optimize
water resource management and device monitoring

in the Living Lab at IIIT Hyderabad. The aim is
to ensure sustainable and efficient urban water us-
age while maintaining infrastructure responsiveness.
The deployed solution seamlessly combines sensors,
controllers, and a central gateway (oneM2M (Gezer
and Taşkın, 2016)) for real-time data exchange and
automated responses among connected components
(cf. Figure 1).

At its core, the system uses interconnected nodes
to monitor water quality, flow, and levels, while also
enabling device control and energy tracking. Esp32
controllers collect data such as pH, turbidity, temper-
ature, water levels, flow rates, and pressure, trans-
mitting this information via HTTP/HTTPS through
the oneM2M communication layer for provisioning
this data to downstream applications. Designed for
interoperability and scalability, this system not only
addresses immediate urban water challenges but also
lays a robust foundation for integrating additional IoT
capabilities in the future.

This scenario is valuable to our work as it high-
lights a single node within a connected infrastructure
(e.g., the Living Lab), composed of interlinked sub-
components like sensors and actuators. These com-
ponents communicate either directly or through the
oneM2M layer. The modular design supports easy
adaptation to other applications by exchanging com-
ponents. Moreover, the scenario exemplifies the mod-
ular and hierarchical structure of such systems. Con-
sequently, by adopting a modular and hierarchical
modeling approach that allows to capture such struc-
tures, our proposed solution readily achieves scalabil-
ity in model size.

2.5 Challenges and Contributions

Commensurate with our discussions so far and in light
of the research questions from Section 1, we identify
the following challenges, viz.:

1. How to model infrastructures at the IoT-device
level?

2. How to model operational behavior of such infras-
tructure?

3. How to generate a DEVS simulation from the in-
frastructure model?

Aligned with these, we deliver the following contri-
butions:

1. A DSML for modeling both

• infrastructures as connected IoT networks, and
• their accompanying operational behavior for

DEVS-based simulation.
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Data flow of sensors along with communication protocols: 
 

 
 

This data flow diagram current implementation of  IoT nodes. The system is centered around 
the oneM2M interoperable layer, which facilitates communication between different IoT 
nodes using HTTP/HTTPS protocols. 

• Water Quality IoT Node collects sensor data (e.g., pH, turbidity, TDS) using an 
Esp32 controller and transmits this information through the oneM2M layer. 

• Water Level IoT Node measures water levels and temperature via sensors connected 
to an Esp32 controller, which communicates over UART/SPI and GSM. 

• Motor Controller IoT Node uses a current sensor and relay module connected to an 
Esp32 controller to manage motor operations. 

• Water Quantity IoT Node uses pulse and interrupt signals (with Esp32) to track 
water quantity, while a Raspberry Pi with a Pi camera can provide visual data. 

All sensor data flows through the oneM2M layer to the backend, where FastAPI processes it 
using machine learning models and mathematical algorithms. The processed data is stored in 
a PostgreSQL database via a psycopg2 driver. A React.js frontend interfaces with the 
backend, while Grafana is used for data visualization, integrated using an iframe 
 

  

Figure 1: Water quality control scenario: The diagram illustrates the data flow between IoT nodes, communication protocols
(HTTP/HTTPS), and the oneM2M gateway, which enables seamless interoperability. Sensor data from nodes measuring water
quality, levels, flow, and device status is transmitted to a centralized back-end for processing and visualization, forming the
backbone of the water management infrastructure.

2. Model-2-text code generators for emitting both
aDEV S and cDEV S models (and accompany-
ing boilerplate code) for simulation using Python
PDEVS (Van Tendeloo and Vangheluwe, 2016).

3 MODEL-DRIVEN SIMULATION
OF CONNECTED
INFRASTRUCTURES

Our work leverages earlier results by Albataineh and
Jarrah (2019, 2021), Im et al. (2021), Esteban et al.
(2023), and Fazel and Wainer (2023) who introduced
the conceptual foundations on simulating IoT devices
using DEVS. Our work builds atop their results by in-
troducing a DSML for modeling IoT devices and their
infrastructure topology for the subsequent automated
generation of executable Python PDEVS simulations.
In the following we outline our modeling infrastruc-
ture, the metamodel of our DSML for modeling con-
nected IoT infrastructures, and finally elaborate on the
model-2-text generation of executable DEVS simula-
tions using Python PDEVS.
Scope: The modeling methodology covers the mod-
eling of infrastructures at the IoT-level which includes
the definition of devices and their connections. In ad-
dition, operational behavior and environmental prop-
erties like transmission delay or the frequency of sen-
sors readings is also included as part of the modeling

process.
Modeling Languages: Eclipse Xtext (Bettini, 2016)
is used for metamodelling, i.e., defining the abstract
and concrete syntax of our DSML. This yields the
necessary tooling for modeling and later code gen-
eration as an Eclipse plugin (d’Anjou, 2005). Code
generation is done using Eclipse Xtend (Bettini, 2016;
Birken, 2014).
Runtime Infrastructure: Python PDEVS (Van Ten-
deloo and Vangheluwe, 2016) is leveraged for run-
ning DEVS simulations. The relevant artifacts, i.e.,
executable Python code yield from an Xtend-based
model-2-text generator (cf. Section 3.3).

3.1 A DSML for Modeling Connected
IoT Infrastructures

The metamodel outlined in Figure 2 delineates a
detailed schema that governs the interaction and
functionality of diverse devices (as to space restric-
tions, enum types such as LinkType or DataType
are not shown). At the core of this model is the
CommunicationLink, which functions as a conduit
enabling uninterrupted communication between de-
vices. Each instance of CommunicationLink is char-
acterized by several essential attributes: an id, which
serves as a unique string identifier representing the
specific link instance (inherited from Linkable, see
below); a protocol that describes the communication
methodology – options include HTTPS, UART, among
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Linkable

id: string

CommunicationLink

protocol: LinkType
dataType: DataType

Node

uuid: string

DataGateway

delay: int
priority: int

Device

priority: int

Sensor

type: SensorType

Module

Controller

type: ControllerType

hosts

DelayRange

min: Int
max: Int

source destination

internalLinks

Action

id: string

TriggeredAction CyclicAction

*

Frequency

value: int
unit: FrequencyUnit

Figure 2: Metamodel for modeling connected IoT infras-
tructures. As to space restriction, enum types are not shown.

others; a dataType, which specifies the nature of the
data being transmitted (e.g., Boolean values, floating-
point numbers).

Complementary to the CommunicationLink, the
metamodel incorporates a Linkable entity, which
denotes any device that possesses the capability to
interface via the CommunicationLink. This entity
facilitates the heterogeneous integration of devices,
thereby ensuring effective communication among var-
ious components within the ecosystem. The meta-
model encompasses a variety of SensorType entities,
such as PH, TURBIDITY, TEMPERATURE, among others,
each specifically designed to monitor distinct envi-
ronmental conditions that are essential for effective
building management. Simultaneously, Controller
entities, including ESP32 and RASPBERRY_PI, repre-
sent the computational architecture that governs these
sensors, thereby enabling real-time data processing
and decision-making capabilities. Our DSML avoids
the need for a dedicated actuator entity by capturing
actionable behavior inside Devices (see below).

To facilitate precise regulation of the operations
conducted by the devices, the DSML integrates
Frequency, which models the temporal intervals for
the execution of actions or the monitoring of tasks.
Units may encompass HERTZ, SECONDS, MINUTES,
among others, facilitating the system’s adaptation to
diverse operational requirements.

The DataGateway possesses the capability to
manage various data types, including BOOL and

FLOAT,thereby offering flexibility in the administra-
tion of diverse device outputs. The interoperability
is further enhanced by attributes such as priority,
which determines the urgency of actions; delay,
which specifies the latency prior to executing an ac-
tion. In practice, this DataGateway can be realized by
various implementations, e.g., a data store or an ex-
ternal API to forward data to an external consumer.
As such external actors however are not the core fo-
cus of our work, the DataGateway is implemented as
a simple data store (cf. Section 4.2).

Alongside these fundamental components, the
model delineates a range of actions that devices
are capable of executing, which are classified un-
der the TriggeredAction and CyclicAction en-
tities. Each action is subject to configuration
through parameters including min and max thresholds,
postingFrequency, and a distinct id. Collectively,
this facilitates precise regulation of operational be-
havior, guaranteeing that devices react appropriately
to both internal and external inputs and directives.

Observe that the DataGateway does not inherit
from Device as the former is not intended to be a part
of the latter, i.e., DataGateways exist outside Nodes.

Our metamodel establishes a comprehensive
framework for the representation and management of
IoT devices within smart building environments. This
facilitates organized communication, promotes inter-
operability among various devices, and permits adap-
tive response mechanisms customized to the specific
requirements and functionalities of interconnected
systems. Consequently, the model facilitates the pri-
mary objective of developing intelligent, responsive
environments that improve operational efficiency and
user experience.

3.2 Modeling Steps

The modeling procedure for connected IoT infrastruc-
tures for DEVS simulations comprises five steps:

(1) Defining IoT devices in the model, including
their types (e.g., sensors, actuators, or controllers) and
configurations, (2) Establishing device connections
and configurations, (3) Specifying operational behav-
ior and properties, (4) Code generation, and (5) Vali-
dation and testing. Crucially, the below steps need to
be followed in order.
(1) Defining IoT Devices. To begin, IoT devices
(e.g., sensors or controllers) are modeled through the
utilization of the provided language constructs (e.g.,
Sensor or Controller) as defined in by metamodel
(cf. Figure 2). This includes the definition of rele-
vant devices properties for later generating complete
simulation artifacts (see (3) below). Listing 1, among
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others, shows devices as modeled as part of the sce-
nario from Figure 1.
(2) Establishing Device Connections. Moving on
from modeling the IoT devices, the second step in-
volves creating a topology by connecting the var-
ious modeled devices with each other using the
CommunicationLink construct. This results in the
establishment of a connected infrastructure for sub-
sequent simulation and analysis. As for devices, this
also comprises the modeling of connection proper-
ties, i.e., the underlying Protocol or a Delay. List-
ing 1, among others, shows various modeled connec-
tions between modeled devices as part of implement-
ing the scenario from Figure 1.
(3) Specifying Operational Behavior and Proper-
ties. This step focuses on establishing parameters
that can influence the behavior of IoT devices, in-
cluding factors such as transmission delays or sen-
sor reading frequencies. By carefully defining these
properties, users are empowered to simulate diverse
scenarios that closely mirror real-world conditions,
thereby improving the realism and reliability of the
resulting simulations (cf. Listing 1 where we model
the postFrequency for nodes).
(4) Code Generation. With the model fully estab-
lished, in the next step, executable simulation arti-
facts are generated for Python PDEVS. Aside from
generating the necessary aDEV S and cDEV S models
(cf. Equations 1 and 2) this also comprises the gen-
eration of relevant boilerplate code for running sim-
ulations (cf. Listing 2) or Generators (Van Tende-
loo and Vangheluwe, 2016) for a sensor to actually
send values during simulation (cf. Figure 4). Ob-
serve that at this point, relevant configuration data
from modeled entities is leveraged, e.g., a node’s
Frequency in the ta function of a its corresponding
aDEV S model. Section 3.3 further elaborates on our
underlying model-2-text generator.
(5) Validation and Testing. The final step entails val-
idating the generated model to confirm that it accu-
rately reflects the intended system and that the gen-
erated code performs as expected (cf. Section 4.2).
Preliminary simulations can be conducted to evalu-
ate the model’s fidelity in comparison to real-world
data or established benchmarks. Should any dis-
crepancies arise during this testing phase, they can
prompt iterative refinements in device definitions or
connection parameters, thereby fostering continuous
improvement and optimization of the model. The
model-driven nature of our approach naturally facil-
itates such iterative development (cf. IterSPEC (Zei-
gler, 2000)).

node waterQuantityNodeCam { 1

sensor cameraWQ type CAMERA priority 1 2

controller raspiWQ type RASPBERRY_PI priority 3 3

4

postFrequency 300 SECONDS 5

6

link SPI from cameraWQ -> raspiWQ { 7

delay [1..12] 8

datatype CAMERA 9

} 10

priority 3 11

} 12

13

node waterQuantityNodePulse { 14

sensor pulseWQ type PULSE priority 1 15

controller espWQP type ESP32 priority 3 16

17

postFrequency 300 SECONDS 18

19

link SPI from pulseWQ -> espWQP { 20

delay [1..12] 21

datatype PULSE 22

} 23

priority 3 24

} 25

Listing 1: Model of the WaterQuantityNodeCam and
WaterQuantityNodePulse from Figure 1.

model = MyModel() 1

sim - Simulator(model) 2

sim. simulate() 3

Listing 2: Python PDEVS boilerplate code for running a
simulation, which is also generated as part of our model-2-
text code generation.

3.3 Code Generation

Our model-2-text code generator plays a pivotal role
in ensuring that the user-defined models are accu-
rately represented in the simulation environment. The
algorithm consists of various stages, each aimed at
translating specific elements of the DSML into exe-
cutable code.

As shown in Algorithm 1, for generating and
aDEV S simulation model for a node, our algorithm
begins by defining a state class for the node, which is
named with the node’s name. Within this state class,
a dictionary named data_aggregated is initialized to
maintain a node’s state.

Following this, an instance of an AtomicDEVS
class is established for the node itself, featuring a
constructor that sets relevant properties such as the
node’s name and pin configuration. This constructor
also creates an instance of the state class defined ear-
lier and keeps track of the last execution time via an
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Algorithm 1: Compile Node.
Input: Node node with links, frequency, and priority
Output: Atomic DEVS model

1 Initialize nodeLinks (list) and distinctLinkTypes (set) from node.links;
33 Compute postFrequency from node.freqValue and node.freqUnit;
55 Determine knownController based on node.controller type;

6 Generate Class NodeState definition:
88 Initialize data_aggregated (empty) and set next_internal_time with randomness around postFrequency;

9 Generate Class Node (AtomicDEVS) definition:
10 Initialize (name, pinout):
11 Set state (NodeState), timeLast (0.0), pins (pinout);
12 Create input ports for distinctLinkTypes;
13 Define output port and set node priority;

14 Generate Function timeAdvance():
15 Return time until next event if data exists, else INFINITY;

16 Generate Function extTransition(inputs):
17 Update state with received inputs if matching links exist;
18 Update timeLast to next_internal_time;

19 Generate Function intTransition():
20 Increment next_internal_time and update timeLast;

21 Generate Function outputFunc():
22 If data exists, package with timestamp, send via output, and clear state;

1 class PulseWQ(AtomicDEVS):

2 def __init__(self, data_generator):

3 super().__init__('pulseWQ')

4 self.inport = self.addInPort("in_port")

5 self.outport = self.addOutPort("outport")

6 self.state = {'PULSE': 0}

7 self.priority = 1

8 self.gen = data_generator

9

10 def intTransition(self):

11 self.state['PULSE'] = self.gen.value('pulse')

12 return self.state

13

14 def extTransition(self, inputs):

15 return self.state

16

17 def outputFnc(self):

18 return {self.outport: self.state['PULSE']}

19

20 def timeAdvance(self):

21 return 1.0

22

23 def __lt__(self, other):

24 return self.priority < other.priority

Listing 3: Generated atomic DEVS model for the pulse
sensor from Listing 1.

internal variable called timeLast. In addition, this
constructor dynamically generates input ports for dif-
ferent link types that the node will manage.

The primary functionalities of a Node are defined
in several methods as required by the DEVS formal-

class DataGenerator: 1

def __init__(self, 2

mode='random', 3

config='generator/sensors_config.json', 4

csv_file=None): 5

if mode == 'csv' and csv_file is None: 6

raise ValueError('CSV mode: Invalid CSV file') 7

elif mode == 'csv': 8

self.generator = CSVDataGenerator(csv_file) 9

elif mode == 'random': 10

self.generator = RandomDataGenerator(config) 11

else: 12

raise ValueError(f"Unsupported mode: {mode}") 13

14

def value(self, sensor_name): 15

return self.generator.generate_value(sensor_name) 16

17

def pulse_value(self, sensor_name): 18

return self.generator.pulse_value(sensor_name) 19

20

def camera_value(self, name): 21

return self.generator.camera_value(sensor_name) 22

Listing 4: Generated Generator for the pulse sensor model
from Figure 3.

ism (cf. Section 2):

• timeAdvance determines the duration until the
next internal transition, returning INFINITY if
there is no aggregated data.

• extTransition oversees external transitions trig-
gered by inputs, executing specific logic upon re-

SIMULTECH 2025 - 15th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

100



ceiving data from a designated controller.

• intTransition updates the internal state accord-
ing to the current conditions of the node and in-
crements the next_internal_time.

• outputFunc formats the output data to be sent,
which includes a timestamp and the data that has
been aggregated.

Generation for other entities (e.g.,
CommunicationLink or DataGateway) follows
the same procedure, i.e., a template-based ap-
proach where modeled entities are expanded into
executable aDEV S models. The full algorithm of
our code generator is available for download from
https://doi.org/10.5281/zenodo.15172097. Figures 3
and 4 show examples of generated and readily exe-
cutable Python PDEVS code utilizing the generator
from Figure 4 on the model from in Listing 1.

Omitted in Algorithm 1 due to spatial constraints,
our code generator additionally produces the cDEV S
model to ultimately simulate all the nodes depicted in
Figure 1 (see Section 4).

By relying on Eclipse Xtend and our translation
algorithm, we ensure efficient and scalable generation
of simulation models, facilitating rapid prototyping
and analysis of connected IoT infrastructures. This
streamlined approach significantly reduces the com-
plexity traditionally associated with model develop-
ment, thereby enhancing usability for researchers and
practitioners alike by facilitating the efficient genera-
tion of simulation-ready code but also supports quick
modifications and testing based on the defined model.

4 RESULTS AND DISCUSSION

In the following, we discuss (i) the modeling of the
scenario from Figure 1 (cf. Section 4.1), (ii) run-
ning simulations of the modeled scenario (cf. Sec-
tion 4.2), and (iii) the results retrieved from the sim-
ulation (cf. Section 4.3) with the developed model
in Figure 1. We conclude this section with a discus-
sion of our results (cf. Section 4.4).

Our primary focus is on (a) ensuring complete-
ness and correctness in relation to the guiding sce-
nario, (b) assessing the engineering effort needed to
develop working simulations within our proposal, and
(c) evaluating the implications of our approach for
adopting end users. Accordingly, we will not pro-
vide an in-depth analysis of our DSML which will be
evaluated as part of future work using the Technology
Acceptance Model (Davis et al., 1989).

4.1 Modeling the Living Lab

We have modeled the scenario from Figure 1 follow-
ing the steps outlined in Section 3.2. Consequently,
the modeling process followed a structured approach
to develop a simulation-ready representation of the
scenario’s IoT infrastructure. This involved defining
components, establishing interactions, and generating
executable DEVS simulation artifacts in four steps:

1. Defining IoT Devices: Key IoT components, in-
cluding sensors (water quality, temperature, flow),
controllers (ESP32, Raspberry Pi), and actuators,
were modeled with properties like data type, com-
munication protocol, priority, and data transmis-
sion frequency (cf. Lst. Listing 1). The oneM2M
component is modeled by the DataGateway as a
simple data sink.

2. Establishing Device Connections: Device inter-
actions were defined using CommunicationLink,
representing protocols such as HTTP, SPI, and
UART. Each connection included parameters like
transmission delay and data type to reflect real-
time data exchange (cf. Lst. Listing 1).

3. Specifying Operational Behavior and Properties:
Sensor reading frequencies, transmission delays,
and environmental conditions were incorporated
to ensure realistic behavior. For example, a water
quality sensor transmitting data every 300 seconds
was modeled with corresponding frequency and
latency (cf. Lst. Listing 1).

4. Code Generation: Our model-to-text generator
(cf. Section 3.3) generated Python PDEVS sim-
ulation artifacts, including aDEV S and cDEV S
models, and accompanying Generators. A 75-line
input model produced 740 lines of Python PDEVS
code. Scaling the model resulted in a sublinear
increase in code generation time, confirming ef-
ficiency (cf. Table 1). In addition, these results
also show the high expressiveness of our proposed
DSML by capturing and abstracting away tedious
low-level details during simulation modeling.

As to space restrictions, we cannot show the complete
model for the scenarios from Listing 1; however, it is
available from our artifact.

Our structured modeling approach enables the
rapid transformation of a conceptual IoT infrastruc-
ture into a functional simulation. Using domain-
specific modeling and automated code generation sig-
nificantly reduces complexity and manual effort in
setting up large-scale simulations. In addition, as
shown by the data from Table 1, our proposed DSML
offers a high-level of expressivity by effectively ab-
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Table 1: Performance evaluation of the code generator.
Generation time is averaged over three runs. Our results
show that our proposal achieves scalability in model size by
being able to handle substantially large models. Baseline
refers to the scenario from Figure 1, i.e., the number of en-
tities modeled therein; consequently, 2x implies double the
entities, 4x four times the entities, etc.

Factor Input LoC Generated LoC Time (ms)

Baseline 75 740 1452
2× 145 1330 1494
4× 285 2510 1553
8× 565 4870 1652
32× 2245 19030 2160

Input LoC: Lines of "code" in the input model; Generated LoC: generated
number of lines of code

stracting away low-level modeling details in simula-
tion engineering.

4.2 Simulating the Living Lab

The simulation setup utilized real-world sensor data
collected over 12 months (available from our arti-
fact) to train a distributed lognormal model (Crow
and Shimizu, 1987), which served as the basis for
synthetic data generation. The goal was to validate
the accuracy of the modeled infrastructure and as-
sess its performance under different conditions. The
trained lognormal distribution produced simulated
sensor values that were tested in real-time scenarios,
enabling direct comparison with live measurements.
The generated DEVS models were executed using
Python PDEVS, following a structured workflow:

1. Initialization of the simulation environment with
the Living Lab’s IoT components.

2. Execution of time-stepped simulations to model
sensor data collection, device interactions, and
real-time responses.

3. Comparison of simulated outputs with real-world
measurements to ensure model fidelity.

The simulation successfully reproduced observed
behaviors, such as water quality and water flow rate
fluctuations and automated actuator responses. The
results validated through repeated observations and
closely matched real-world data, confirm the model’s
reliability. For example, Figure 3 shows a comparison
of real-world water quality and water flow rate read-
ings compared to data collected during simulation. As
clearly visible from Figure 3, our simulations are able
to reproduce real-world behavior accurately.

The simulation validated the accuracy and effi-
ciency of the developed model (cf. Section 4.1). By
replicating real-world behaviors and supporting sce-
nario testing, our proposal provides a valuable tool for

Figure 3: Comparison of real and simulated data for Com-
pensated TDS and Flowrate. The graph shows 1,000 data
points, reflecting both real and simulated values across mul-
tiple observation cycles.

optimizing IoT-based infrastructure operations. Ob-
serve that this validations comprises step 5 of our
modeling methodology (cf. Section 3.2).

4.3 Results

The simulation fidelity of our approach was evaluated
by analyzing its ability to replicate the actual data of
the water quality network. Key metrics such as Mean
Absolute Error (MAE) and Root Mean Square Er-
ror (RMSE) are used to evaluate alignment between
simulated outputs and observed values. As we can
observe from Figure 3, for compensated TDS, the
MAE value is 29.83844 denoting a reasonable simu-
lation fidelity, while for Flow Rate, the MAE value
is 1.686508 denoting a high simulation fidelity for
the generated data. This is further reinforced by the
RMSE score of 37.09545 for Compensated TDS and
2.204044 for Flow Rate between the actual values and
simulated values. There are instances where the simu-
lated values deviate from actual values, particularly in
situations when there is variation in steady-state flow.
This can be potentially improved by improving the
granularity of modeling and simulation but this is be-
yond the scope of this work.

Overall, as can be seen, the results demonstrate
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Table 2: Summary of simulation results.

Metric Compensated TDS Flow Rate

MAE 29.83844 1.686508
RMSE 37.09545 2.204044

a strong correlation between simulated data and ob-
served values, capturing key features such as water
flow, water quality rate, etc. Table 2 summarizes the
simulation results.

4.4 Discussion

Our study introduced a novel DSML and a model-
driven approach leveraging the DEVS formalism to
simulate IoT infrastructures. Through the Smart City
Living Lab case study, we validated the effectiveness
of our approach in accurately modeling, simulating,
and analyzing operational behaviors of connected in-
frastructures. The results support our research ques-
tions while offering insights into both the capabilities
and limitations of our proposal.

In response to RQ1, we demonstrated how con-
nected infrastructures can be efficiently modeled at
the IoT-device level using our DSML. By encapsu-
lating both structural and operational aspects, our lan-
guage facilitates a systematic representation of infras-
tructure dynamics without relying on the availability
of BIM models. The modeling process—spanning de-
vice definitions, communication links, and behavioral
properties—proved adaptable and expressive, captur-
ing complex dependencies within the IoT ecosys-
tem. The automated model-to-text code generation
further reduced manual effort, accelerating the tran-
sition from conceptual models to executable simula-
tions.

Regarding RQ2, our results affirm that DEVS is a
suitable foundation for model-driven, discrete event-
based simulations of connected IoT infrastructures.
By utilizing Python PDEVS, we achieved an efficient
simulation environment capable of handling large-
scale infrastructures. The comparison between real-
world data and simulated outputs exhibited a reason-
able degree of fidelity, particularly for flow rate and
water quality metrics. This suggests that our DEVS-
based approach can deliver actionable insights for op-
timizing resource management and infrastructure per-
formance.

Our model-driven workflow proved to be both
scalable and adaptable. The ability to generate com-
plex simulation artifacts from concise, high-level
specifications enhances both productivity and model
accuracy. Performance measurements demonstrated
that the code generation scales sublinear with model
complexity, making our approach viable for larger in-

frastructures. Furthermore, the structured method-
ology supports iterative refinement and validation, a
critical feature for real-world applications.

Nevertheless, certain limitations persist. The
granularity of our models, while sufficient for our
case study, may not capture more intricate physical
phenomena or emergent behaviors in highly dynamic
environments. Additionally, while the DSML ab-
stracts much of the modeling complexity, the reliance
on accurate input data remains a bottleneck for gen-
eralization. It should be emphasized, however, that
this does not affect the fidelity of a simulation as evi-
denced by the results (cf. Section 4.2 and Section 4.3),
but rather pertains to the correctness of a simulation in
general, specifically how closely it mirrors the under-
lying real-world event. Future work should explore
advanced modeling constructs for representing envi-
ronmental factors and heterogeneous sensor behav-
iors.

While the simulation accurately replicated real-
world behaviors, discrepancies observed in Figure
3 between simulated and actual data underscore the
need for further refinement. These variations may
stem from model assumptions or limitations in captur-
ing the full complexity of real-world dynamics, sug-
gesting potential areas for improvement in future iter-
ations. To address these discrepancies, we plan to in-
corporate additional validation metrics and sensitivity
analyses, ensuring a more robust assessment of model
fidelity.

Furthermore, comparative evaluations with exist-
ing simulation frameworks will be conducted to high-
light the unique advantages of our approach, par-
ticularly in terms of scalability and ease of integra-
tion. Looking ahead, we aim to explore the broader
applicability of our framework beyond urban water
management, potentially extending it to smart en-
ergy grids and intelligent transportation systems. This
expansion will not only validate the flexibility and
adaptability of our approach but also contribute to the
development of more efficient and responsive urban
environments.

4.4.1 Practical Implications

The findings of our work hold significant practical
implications for the management and optimization of
urban infrastructures. By providing a model-driven
simulation framework that does not rely on BIM, we
offer a viable solution for legacy systems that often
lack such advanced modeling tools. The capacity to
simulate infrastructures at the IoT-level allows urban
planners, engineers, and decision-makers to visual-
ize complex interactions within urban environments
and identify areas for optimization in real-time. This
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could enable more informed resource allocation, im-
proved resource efficiency, and enhanced responsive-
ness to operational challenges. Additionally, the use
of our DSML facilitates quick adjustments and testing
of various scenarios without the extensive time and la-
bor often associated with conventional modeling ap-
proaches. Ultimately, this research contributes to the
development of smart cities by equipping stakehold-
ers with more effective tools for responding to urban
challenges, paving the way for sustainable develop-
ment and improved quality of life in urban areas.

5 CONCLUSIONS

This paper presented a novel DSML and a model-
driven simulation approach for IoT infrastructures us-
ing the DEVS formalism. We successfully applied
this methodology to a real-world Smart City Living
Lab, showcasing its ability to capture and simulate
operational behaviors. Our findings underscore the
value of a model-driven approach in enabling rapid
prototyping, iterative validation, and detailed scenario
analysis.

The primary contributions of this work are: (i)
a DSML tailored for modeling both structural and
operational aspects of connected infrastructures, (ii)
an automated model-to-text generator for producing
Python PDEVS artifacts, and (iii) an empirical valida-
tion through an IoT-driven water management system.
These contributions collectively advance the state of
the art in IoT infrastructure modeling and simulation,
particularly for legacy systems where traditional BIM
approaches are infeasible.

While promising, several avenues remain for fu-
ture exploration. First, enhancing the DSML to cap-
ture more nuanced operational behaviors—such as
user interactions, environmental variability, and mate-
rial degradation—would improve model fidelity. An-
other critical direction involves extending the scope
of our methodology to additional domains beyond ur-
ban water management, including smart energy grids
and intelligent transportation systems. In addition, in-
corporating adaptive simulation techniques and paral-
lelized execution could significantly enhance scalabil-
ity and simulation responsiveness. Lastly, a compre-
hensive user-centered evaluation of the DSML’s us-
ability and its acceptance is required to understand its
broader applicability.

In conclusion, our DSML and DEVS-based
framework provide a robust foundation for simulating
connected infrastructures. While further research is
needed to address scalability and fidelity challenges,
our work offers a promising path toward more ef-

ficient and accurate modeling of complex, intercon-
nected urban systems.
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