
To Model, to Prompt, or to Code? The Choice Is Yours:
A Multi-Paradigmatic Approach to Software Development

Thomas Buchmann1 a, Felix Schwägerl2 b and René Peinl1 c

1Hof University of Applied Sciences, Hof, Germany
2OTH Regensburg, Regensburg, Germany

Keywords: Model-Driven Development, Large Language Models, Software Engineering, Code Generation.

Abstract: This paper considers three fundamental approaches to software development, namely manual coding, model-
driven software engineering, and code generation by large language models. All of these approaches have
their individual pros and cons, motivating the desire for an integrated approach. We present MoProCo, a
technical solution to integrate the three approaches into a single tool chain, allowing the developer to split a
software engineering task into modeling, prompting or coding sub-tasks. From a single input file consisting of
static model structure, natural language prompts and/or source code fragments, Java source code is generated
using a two-stage approach. A case study demonstrates that the MoProCo approach combines the desirable
properties of the three development approaches by offering the appropriate level of abstraction, determinism,
and dynamism for each specific software engineering sub-task.

1 INTRODUCTION

This paper contributes and discusses an integrated
approach combining the three software develop-
ment paradigms paradigms summarized in Figure 1,
namely modeling, prompting and coding. Our sug-
gested multi-paradigmatic appraoch is implemented
by the tool MoProCo (= modeling, prompting and
coding woven together), which is documented in this
paper and published as VSCode extension.

1.1 Background and Motivation

Manual coding is the traditional paradigm to soft-
ware development and still preferred for many sce-
narios, e.g., when performance or safety are crucial.
Higher-level programming languages are determinis-
tic by design, meaning that the same syntactical input
always produces equivalent run-time semantics. Fur-
thermore, they are suited for describing the dynamic
behavior of software systems. On the downside, pro-
grams have to be specified on a high level of detail,
requiring a deep understanding of programming lan-
guages, algorithms, and design patterns, making the

a https://orcid.org/0000-0002-5675-6339
b https://orcid.org/0009-0004-9852-5418
c https://orcid.org/0000-0001-8457-1801

approach time-consuming and error-prone.
The modeling paradigm has gained significant at-

tention in recent decades. Model-Driven Develop-
ment (MDD) (Völter et al., 2006) focuses on creat-
ing abstract models of software systems, which are
then transformed into concrete implementations us-
ing automated and deterministic generators. Relying
on standards like the Uniform Modeling Language
(UML) (OMG, 2017) or domain-specific languages
(Fowler and Parsons, 2010), this approach empha-
sizes traceability, consistency and reusability. It was,
however, demonstrated that MDD can be challeng-
ing to adopt in practice, particularly when it comes
to modeling dynamic behavior of systems. Therefore,
modeling is often used for the static structure as a
starting point, and dynamic behavior is added, e.g.,
by manual coding (Steinberg et al., 2009).

Coding

Modeling Promptingabstract

de
ter
mi
nis

tic dynamic

informal

detailed

static

MoProCo

Figure 1: A triad of software development paradigms.

296
Buchmann, T., Schwägerl, F. and Peinl, R.
To Model, to Prompt, or to Code? The Choice Is Yours: A Multi-Paradigmatic Approach to Software Development.
DOI: 10.5220/0013557100003964
In Proceedings of the 20th International Conference on Software Technologies (ICSOFT 2025), pages 296-303
ISBN: 978-989-758-757-3; ISSN: 2184-2833
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

Third, prompt-based software engineering using
Large Language Models (LLMs) has recently revo-
lutionized software development, particularly in code
completion, bug fixing, and program synthesis tasks
(Lyu et al., 2024). Being based on statistics and
heuristics, LLMs are inherently informal and lack de-
terminism, making it challenging to ensure the cor-
rectness and reliability of generated code. LLMs,
having been trained on vast amounts of data and being
able to generalize to new scenarios, accept informal
input, making them particularly well-suited for gener-
ating dynamic parts of software systems. LLMs gen-
erate code from informal natural language prompts
usally phrased at a high level of abstraction.

1.2 Contributions

Previous work (Buchmann et al., 2024) suggests that a
combination of MDD and LLMs is promising; MDD
provides a deterministic structure which “tames” the
inherently volatile LLMs by using them only for lo-
cal prompts with limited scope. To date, integrated
tool support for interweaving model-driven and LLM-
generated artifacts is still missing. This is the research
gap where the paper at hand steps in by making the
following contributions:

1. An extension to an existing textual modeling lan-
guage for UML-like class models by two types of
annotations: natural language prompts and Java
code snippets.

2. Fully automated transformation tooling consist-
ing of two components, one of which is respon-
sible for deterministically transforming models
(and their contained Java code snippets) into an
initial code base. The second component then
uses LLMs to generate method bodies based on
the natural language prompts and weaves them
into the code base.

3. A case study (on-line shop) demonstrating the
feasibility and effectiveness of the proposed ap-
proach.

4. A classification of related research in the inter-
secting fields of MDD and LLMs.

1.3 Outline

The remainder of this paper describes the design and
implementation of our Toolchain (Section 2), pro-
vides a qualitative discussion (Section 3), and aligns
with related work (see Section 4). Future work is out-
lined in the conclusion.

2 THE MoProCo TOOLCHAIN

In this section, we present the architecture and usage
of the MoProCo toolchain. Figure 2 summarizes the
explanations below. Source code and build instruc-
tions are available in two separate GitHub reposito-
ries4. We implemented the toolchain as two exten-
sions to the popular editor VSCode5. The extensions’
core components are:

Editor A textual editor for a class model language
(a subset of UML class diagrams). It describes
the static structure of a software system to be de-
veloped. Operations may optionally carry natural
language prompts and Java code snippets.

Generator A deterministic code generator that trans-
forms the class models into two artifacts, namely
a visualization file for PlantUML (see below) and
an initial Java code base. The latter contains the
static class structure derived from the model (e.g.,
considering bidirectional and composition seman-
tics for associations). Code snippets are directly
copied into the generated code. Natural language
prompts attached to operations are generated into
JavaDoc comments, which are in turn processed
by the downstream Weaver component.

PlantUML Viewer We reuse the PlantUML exten-
sion for VSCode to graphically visualize the class
model as diagram while the developer creates
them using the textual syntax; see Figure 3. The
PlantUML file (extension .classdiag) is gener-
ated by the Generator component automatically
when the class model file is updated and saved.

Weaver The Weaver component is responsible for
generating method implementations based on the
natural language prompts attached to methods in
the intermediate Java code. The Weaver uses
a large language model (LLM) to generate Java
code fragments based on the prompts and the ex-
isting codebase. The generated code snippets are
then woven into the intermediate Java code pro-
duced by the upstream Generator component.

LLM Server For generating code snippets from
JavaDoc annotations, the Weaver component in-
teracts with a remote server hosting the LLM.
Our architecture does not assume a specific LLM;
rather it offers integrations based on two de-facto
standard interfaces, namely llama.cpp6 (best per-
formance if the LLM runs locally) and OpenAI-

4https://github.com/tbuchmann/class-diag-langium,
https://github.com/tbuchmann/mdellmprocessor

5https://code.visualstudio.com/
6https://github.com/ggml-org/llama.cpp

To Model, to Prompt, or to Code? The Choice Is Yours: A Multi-Paradigmatic Approach to Software Development

297

Developer

VSCode

LLM Server
(llama.cpp or

Ollama)

tUML file

diagram
file

PlantUML
Viewer

MoProCo
Editor

MoProCo
Generator

.java files
(intermediate

.java files
(intermediate

Java files
(intermediate)

MoProCo
Weaver

.java files
(intermediate

.java files
(intermediate

Java files
(woven)

edit

run

view

run

edit

access

out

in

out

in

out

Figure 2: A context view of the architecture of the MoProCo toolchain. Gray boxes indicate existing components, while green
boxes indicate components developed as part of the new tool chain.

compatible endpoints such as Ollama7 (if the
LLM runs on a remote server). The component is
configurable with respect to the URL of the LLM
server, as well as the language model and variant.

2.1 MoProCo Editor

The first component, MoProCo Editor, is based on
the textual modeling language tUML (Buchmann and
Schwägerl, 2025), which allows to describe domain
models at a level of abstraction between UML and
source code. It has been developed with Langium8

and TypeScript and integrates with PlantUML9 to vi-
sualize the model as non-editable diagram.

A minimal example (an excerpt of the case study
initially presented in (Buchmann et al., 2024)) of the
textual syntax is shown in Listing 1. Packages may
contain primitive types, classes, associations (assoc
), and interfaces as well as nested packages (not
shown in the example). Classes contain attributes
with primitive types and optional cardinalities (lower
..upper; -1 is for unbounded). Operations of classes
are modeled with visibility, parameters and return
types. Associations have two ends, each referencing
a class and carrying visibility and multiplicity. One
association end may be marked as composite. A
more detailed description of the tUML syntax (not
considering the prompt and code paradigms) is pro-
vided in (Buchmann and Schwägerl, 2025).

In the model syntax, the connection to the prompt
and code paradigms is achieved as follows: Op-
erations may optionally be annotated with either a
prompt (desc, followed by a natural language de-
scription of the expected dynamic behavior) or an im-

7https://ollama.com/
8https://langium.org/
9https://plantuml.com/

plementation (impl, followed by Java source code).
These annotations are used by the downstream Gen-
erator to produce JavaDoc comments and Java code.
package shop {

primitive Integer
// more primitive types
class Customer {

public names : String
public email : String [0..1]
public placeOrder(o : Order) : Boolean

desc "For every item of the order,
check if enough items are in stock.
If so, add to orders and update the
items in stock. Return whether
order was added"

}
class Order {

public orderID : String
public addItem(item : OrderItem)

: Boolean desc "If an order
referring to the same article
already exists, reuse that one
updating the quantity and returning
true. Else return false."

public totalPrice() : Decimal
impl "return items.stream()
.mapToDouble(i -> i.getQuantity()
* i.getArticle().getCurrentPrice()
).sum();"

}
// more classes and associations
assoc hasOrders {

public customer : Customer [1..1]
public orders : Order [0..-1]

composite
}
assoc hasItems {

public order : Order [1..1]
public items : OrderItem [0..-1]

composite
}

}

Listing 1: A minimal example of a tUML file.

ICSOFT 2025 - 20th International Conference on Software Technologies

298

Figure 3: A screenshot showing the MoProCo editor and the PlantUML Viewer in VSCode.

2.2 MoProCo Generator

The generator receives as input a tUML file and pro-
duces two artifacts: a PlantUML file for visualiza-
tion and the intermediate Java file. For consistency
reasons, the visualization is automatically generated
when the developer saves a changed class model,
whereas the Java code generation must be manually
triggered using the VSCode command Generate Java
Code contributed by our extension. We here describe
the Java code generation focusing on the prompt and
code paradigms; general Java code generation as well
as PlantUML generation is described in (Buchmann
and Schwägerl, 2025).

Listing 2 shows an excerpt of the intermediate
code generated for Listing 1; the full code is available
in the GitHub repository referenced above.

public class Order {
private String orderID;
private Customer customer;
private List<OrderItem> items

= new ArrayList<OrderItem>();

public String getOrderID() {
return this.orderID;

}
public void setOrderID(String orderID) {

this.orderID = orderID;
}

public Customer getCustomer() {
return this.customer;

}
public void setCustomer(Customer c) {

if (this.customer != caption) {
Customer o = customer;
if (o != null) {

this.customer = null;
o.removeFromOrders(this);

}
this.customer = c;
if (c != null)

c.addToOrders(this);
}

}

public List<OrderItem> getItems() {
return unmodifiableList(this.items);

}
public void addToItems(OrderItem o) {

if (!this.items.contains(o)) {
this.items.add(o);
o.setOrder(this);

}
}
public void removeFromItems(OrderItem o){

if (this.items.contains(o)) {
this.items.remove(o);
o.setOrder(null);

}
}

/** @prompt If an order referring to the
same article already exists,
reuse that one updating the
quantity. */

public Boolean addItem(OrderItem item) {

To Model, to Prompt, or to Code? The Choice Is Yours: A Multi-Paradigmatic Approach to Software Development

299

// to be inserted by LLM
}

public Double totalPrice() {
return items.stream().mapToDouble(i ->

i.getQuantity() * i.getArticle()
.getCurrentPrice()).sum();

}
}

Listing 2: Generated intermediate Java code exercpt.

The generated Java code implements the class
structure defined in the model, considering the se-
mantic details. For instance, attributes are trans-
formed into Java fields with getters and setters, as-
sociations are transformed into pairs of Java fields
with consistency-preserving bidirectional accessor
methods (e.g., setCustomers and addToItems/
removeFromItems). Being based on templates, the
code generated here is deterministic and traceable to
the static model structure; a property that LLMs can-
not guarantee due to their non-deterministic nature.

Operations are generated as Java methods based
on the the following rules:

• If no annotation is provided, only a stub is gen-
erated, instructing the developer to implement the
method afterwards.

• If a desc annotation is provided, a JavaDoc com-
ment is generated with the content of the annota-
tion. The comment serves as a controlled prompt
for the Weaver component.

• If an impl annotation is provided, the content of
the annotation is directly copied into the body.

2.3 MoProCo Weaver

The MoProCo Weaver extension is responsible for
generating method implementations based on the nat-
ural language prompts attached to methods in the in-
termediate Java code as JavaDoc annotations. Trig-
gered by a context menu action Process Java files, the
Weaver proceeds as specified by the following algo-
rithm:

• For every Java file containing a @prompt tag

– For every occurrence of @prompt in the file

* Extract method name and memorize range of
method body (embraced by {}) of the subse-
quent Java method.

* Extract the value of the @prompt tag.
* Send a request to the LLM on the LLM server.

The request includes:
· all Java files of current project as context,

· a system prompt instructing the LLM to gen-
erate Java code for the method based on the
provided user prompt without additional ex-
planations or markup in the response.

· The specified prompt as user prompt.
* Extract the content of the method body from

the response produced by the LLM.
* Replace memorized range of the Java file with

the extracted method body.

Listing 3 shows the generated Java code after the
Weaver has processed the @prompt annotations.

public class Order {
// existing contents

/** @prompt If an order referring to the
same article already exists, reuse that
one updating the quantity and returning
true. Else return false. */

public Boolean addItem(OrderItem item) {
for (OrderItem i : this.items) {

if (i.getArticle().equals(
item.getArticle())) {

i.setQuantity(i.getQuantity()
+ item.getQuantity());

return true;
}

}
this.items.add(item); return false;

}

public Double totalPrice() {
return items.stream().mapToDouble(i ->

i.getQuantity() * i.getArticle()
.getCurrentPrice()).sum();

}
}

Listing 3: An excerpt of the woven Java code.

Method addItem has been completed by the LLM
based on the provided prompt. To provide traceability
to the original model, the @prompt annotation is re-
tained in the JavaDoc comment. Method totalPrice
has not been touched by the Weaver since it does not
carry a @prompt annotation.

3 DISCUSSION

Qualitative experiments of our tool based on the pre-
sented case study raised several questions.

3.1 Determinism and Traceability

The added determinism of our hybrid approach is
a key advantage over pure (black-box) LLM-based

ICSOFT 2025 - 20th International Conference on Software Technologies

300

code generation (Buchmann et al., 2024). The Mo-
ProCo Generator component ensures that the gener-
ated code is consistent with the static model and that
the generated methods are traceable to their originat-
ing natural language prompts. This allows developers
to reason about the generated code and to understand
the relationship between model, prompts, and code.

In contrast to the black-box style, the code frag-
ments to be generated by LLMs are much smaller,
giving the developer more control over the generated
code and reducing the risk of, e.g., hallucinations.
The Weaver component further enhances the trace-
ability of the generated code by preserving the orig-
inal prompts in the JavaDoc comments. This allows
developers to understand why a certain piece of code
was generated and to verify that the generated code is
consistent with the intended behavior. Nevertheless,
the decision to employ LLMs only locally still does
not make our presented approach fully deterministic.
Varying results and hallucinations may still occur.

3.2 Quality and Consistency

The quality of the code produced by the Weaver com-
ponent depends on both the capabilities of the con-
nected LLM and the quality of the natural language
prompts provided by the developer.

As soon as the LLM generates incorrect code,
however, it is hard to determine if the problem is due
to the prompt or due to the LLM. Our contribution
does not intend to overcome this general problem, but
to provide a tool chain that allows developers to ex-
periment with different LLMs and prompts in order
to engineer the best possible solution iteratively.

In our own experimentation, we used both Ol-
lama and llama.cpp with small-size LLMs including
llama3.2 (3 billion parameters) and qwen2.5-coder (3
billion parameters). In all cases, the generated code
was consistent with the natural language prompts.

3.3 Tooling and Integration

Unexpected results may also be due to technical limi-
tations. For instance, our approach may not overcome
the general limits of LLMs such as context size.

It is obvious that the editing support for the impl
construct is not yet optimal as it is represented as

a plain string without syntax highlighting or valida-
tion. This can be worked around in the following way
(see future work): The intermediate or final code has
been generated, the developer may either implement
methods manually using the full-fledged Java editor
or have the LLM generate fragments using the desc
annotation, and propagate the code back into the

model. In the latter case, this also resolves the prob-
lem of non-determinism and accelerates future gener-
ation steps by reducing the number of LLM iterations.

3.4 Domain Unspecificity

The presented approach is limited to UML-like class
models, which are initially domain-unspecific and
technology-neutral. Speaking in terms of Model-
Driven Architecture (Frankel, 2003), our tooling al-
lows to create and maintain platform-independent
(yet programming language specific, namely Java)
models, but the transfer to specific technology (e.g., a
specific Java framework for web development) is not
supported. While this is percieved as a common lim-
itation of MDD approaches, LLMs provide the op-
portunity for manual intervention to adapt the gen-
erated code to the target platform. To this end, one
additional building block could be global prompts at-
tached not to operations, but to entire classes or pack-
ages, to guide the LLM in generating code that is
consistent with the target platform. For instance, we
could imagine a prompt like “Generate a REST API
offering CRUD functionality for this domain model”
to guide the LLM in generating the appropriate boiler-
plate code. While this is a promising idea in general,
we have to keep in mind that it may negatively impact
the improved determinism.

4 RELATED WORK

Although the incredibly fast-paced progress in LLM
development has slowed down, the idea of using
LLMs to aid in software development is still strik-
ing and researched manifold. Current coding bench-
marks show, that models are often optimized towards
a few selected popular benchmarks, intended or not
(Jain, Naman et al., 2024), but fail to show their gen-
eralization abilities when tested in different bench-
marks. HumanEval (Chen, Mark et al., 2021) for ex-
ample shows that many models are able to achieve
85% accuracy and more, including a few small mod-
els like Qwen 2.5 Coder 7B, whereas the same mod-
els achieve less than 30% accuracy in SciCode (Tian
et al., 2025) and LiveCodeBench (Jain, Naman et al.,
2024), two more recent and more practically rele-
vant coding benchmarks according to ArtificialAnal-
ysis.ai10. For small models, the drop is especially
severe. Qwen Coder 2.5 7B drops from 90% Hu-
manEval to 9% LiveCodeBench and 14% SciCode,
whereas Qwen 2.5 70B achieves only 73% in Hu-

10https://artificialanalysis.ai/models

To Model, to Prompt, or to Code? The Choice Is Yours: A Multi-Paradigmatic Approach to Software Development

301

manEval, but 28% and 27% in the other two bench-
marks. This impression is supported by findings
from Bytedance (Cheng, Yao et al., 2024) that no-
tice that QwenCoder models perform much better on
HumanEval than on their self-constructed FullStack
Bench, whereas nearly all other models show a lin-
ear correlation between HumanEval performance and
FullStack Bench performance .

One idea to overcome this is combining the cre-
ativity and background “knowledge” of LLMs with
the formal precision of MDD code generators. This
can be seen as an incarnation of the ongoing debate
between symbolic and subsymbolic AI (Saba, 2023)
and their compromise resolution in neuro-symbolic
approaches combining formal reasoning and LLMs
(Dinu et al., 2024; Mirzadeh et al., 2024). It remains
unclear whether we should rather “directly go from
natural language requirements to code, or is there still
[..] a sweet spot for using models in such highly au-
tomated processes” (Burgueño et al., 2025).

Blinn et al. propose to use type hints and ap-
propriate code context by using the Hazel Language
Server in order to aid LLMs in correctly filling holes
in the code (Blinn et al., 2024). This kind of support
is similar to what IDEs provide for human program-
mers. Blinn et al. show that this increases model per-
formance dramatically while reducing the inferencing
time significantly, especially during error rounds.

Although general purpose LLMs are highly suc-
cessful, specific LLMs for coding can be more effec-
tive (Hui, B. et al., 2024). Nevertheless, using spe-
cific system prompts targeting the various tasks in aid-
ing software developers to create a multi-agent sys-
tem can further enhance the LLM’s capabilities (Bur-
gueño et al., 2025). Typical multi-agent setups for
code generation focus on role specialization and iter-
ative feedback loops to optimize collaboration among
agents like an Orchestrator, Programmer, Reviewer,
Tester, and Information Retriever (He et al., 2025).
On the other hand, large reasoning models following
the Quiet-Star (Zelikman et al., 2024) or DeepSeeks
R1 (Guo, Daya et al., 2025) pattern are taught via re-
inforcement learning to look at a problem from multi-
ple perspectives themselves without the need for dif-
ferent system prompts. This allows both the general
LLMs to be highly successful in coding benchmarks,
but is also translated to specific coding LLMs (Li,
Dacheng et al., 2025). S* achieves 20% absolute in-
creases on LiveCodeBench v2 across a wide variety of
models like differently sized Qwen 2.5 Coder models,
R1-distill models and GPT-4o-mini. Only the previ-
ously best model tested, o1-mini, did benefit much
less with only 8.6% absolute gain.

One of the first to evaluate the use of LLMs in

model driven development are (Fill et al., 2023). They
use ChatGPT to create ER, UML, BPMN and Herak-
lit diagrams with reasonable success. Puranik et al
analyze the possibility of using NLP techniques and
other AI methods to construct UML diagrams from
textual descriptions of the requirements for the de-
sired software (Puranik et al., 2024).

Sadik et al. research the other way around and use
GPT-4 to generate Java and Python code to run within
the JADE or PADE multi-agent system frameworks
based on UML diagrams and use either OCL alone or
OCL and FIPA-ontologies to constrain the generated
code. They use cyclomatic complexity as a measure
of quality for the generated code and find that there
is an average of four bugs per class (7 classes in their
use case) in the GPT-4 generated code. Most of the
bugs were easily fixable missing library imports.

The closest existing publication to our endeavor
is from Netz, Michael and Rumpe (Netz et al., 2024).
They develop CD4A, a DSL in a Java-like syntax, and
use it together with LLMs to generate running Web
applications. The LLM is used to generate CD4A
syntax in a few-shot approach, but GPT-4 is less suc-
cessful in that than in generating PlantUML code. Af-
ter that, MontiGem is used to generate the code for
the Web application. The claim of a “running Web
application” implies some functionality, which is not
given by the automated approach. The resulting code
still needs business logic implemented by human de-
velopers, but generates a runnable Web UI as needed
by data-centric enterprise information systems.

5 CONCLUSION

The multi-paradigmatic approach presented in this
paper integrates a triad of software development
paradigms, consisting of modeling, prompting, and
coding. It maximizes determinism (which is guaran-
teed by coding and modeling), abstractness (which
are provided by both modeling and prompting), and
dynamism (which is difficult to achieve in many static
modeling approaches).

By combining the rigor of MDD with the accessi-
bility of LLMs, we provide a powerful tool for accel-
erating software development while ensuring trace-
ability. When combined with support technologies
such as version control, continuous integration, and
automated testing, our approach can streamline the
entire software development life-cycle.

The running case study has demonstrated that it is
possible to combine the strengths of structured mod-
eling with the generative power of LLMs, while the
user may locally decide for a development paradigm

ICSOFT 2025 - 20th International Conference on Software Technologies

302

(modelling, prompting, coding) suiting the current
sub-problem. Our approach allows developers to ex-
periment with different prompts and LLMs to find the
best solution for their specific needs. The resulting
code is consistent with the static model structure and
traceable to the original prompts.

Future work is motivated by the discussion. We
are planning to address the life-cycle management of
the class model and its derived artifacts. As already
mentioned in the discussion, code added after the ini-
tial generation, either manually or via LLM prompt-
ing, should be propagated back into the model. This
would eventually allow for a round-trip engineering
process, where the model is the central artifact and
the code is derived from it in a preferredly deter-
ministic way while its traceability (e.g. its original
prompt) is maintained. Futhermore, integrations with
futher AI backends in addition to llama.cpp and Ol-
lama are desirable. Last, global prompts attached to
packages or classes may overcome the problem of do-
main unspecificity by guiding the LLM in generat-
ing platform-specific target code, obviating the need
of heaviweight MDD-like approaches such as domain
specific languages or code generation templates.

REFERENCES

Blinn, A., Li, X., Kim, J. H., and Omar, C. (2024). Stat-
ically Contextualizing Large Language Models with
Typed Holes. Proceedings of the ACM on Program-
ming Languages, 8(OOPSLA2):468–498.

Buchmann, T., Peinl, R., and Schwägerl, F. (2024). White-
box llm-supported low-code engineering: A vision
and first insights. In Proc. 27th Int’l Conf Model
Driven Engineering Languages and Systems, MOD-
ELS Companion ’24, page 556–560. ACM.

Buchmann, T. and Schwägerl, F. (2025). Bridging UML
and Code in Education: A Textual Modeling Lan-
guage for Teaching Object-Oriented Analysis and De-
sign. To appear, currently under review.

Burgueño, L., Di Ruscio, D., Sahraoui, H., and Wimmer, M.
(2025). Automation in Model-Driven Engineering: A
look back, and ahead. ACM Transactions on Software
Engineering and Methodology, page 3712008.

Chen, Mark et al. (2021). Evaluating Large Language Mod-
els Trained on Code. arXiv:2107.03374 [cs].

Cheng, Yao et al. (2024). FullStack Bench: Evaluating
LLMs as Full Stack Coders. arXiv:2412.00535 [cs].

Dinu, M., Leoveanu-Condrei, C., Holzleitner, M., Zellinger,
W., and Hochreiter, S. (2024). SymbolicAI: A frame-
work for logic-based approaches combining genera-
tive models and solvers. arXiv:2402.00854 [cs].

Fill, H., Fettke, P., and Köpke, J. (2023). Conceptual model-
ing and large language models: Impressions from first
experiments with chatgpt. Enterp. Model. Inf. Syst.
Archit. Int. J. Concept. Model., 18:3.

Fowler, M. and Parsons, R. J. (2010). Domain-Specific Lan-
guages. Addison-Wesley Professional.

Frankel, D. S. (2003). Model Driven Architecture: Apply-
ing MDA to Enterprise Computing. Wiley Publishing,
Indianapolis, IN.

Guo, Daya et al. (2025). DeepSeek-R1: Incentivizing Rea-
soning Capability in LLMs via Reinforcement Learn-
ing. arXiv:2501.12948 [cs].

He, J., Treude, C., and Lo, D. (2025). LLM-Based Multi-
Agent Systems for Software Engineering: Literature
Review, Vision and the Road Ahead. ACM Transac-
tions on Software Engineering and Methodology.

Hui, B. et al. (2024). Qwen2.5-Coder Technical Report.
arXiv:2409.12186 [cs].

Jain, Naman et al. (2024). LiveCodeBench: Holistic and
Contamination Free Evaluation of Large Language
Models for Code. arXiv:2403.07974 [cs].

Li, Dacheng et al. (2025). S*: Test Time Scaling for Code
Generation. arXiv:2502.14382 [cs].

Lyu, M. R., Ray, B., Roychoudhury, A., Tan, S. H., and
Thongtanunam, P. (2024). Automatic programming:
Large language models and beyond. ACM Transac-
tions on Software Engineering and Methodology.

Mirzadeh, S., Alizadeh, K., Shahrokhi, H., Tuzel, O.,
Bengio, S., and Farajtabar, M. (2024). Gsm-
symbolic: Understanding the limitations of mathe-
matical reasoning in large language models. CoRR,
abs/2410.05229.

Netz, L., Michael, J., and Rumpe, B. (2024). From nat-
ural language to web applications: using large lan-
guage models for model-driven software engineering.
In Modellierung 2024, pages 179–195.

OMG (2017). Unified Modeling Language (UML). Object
Management Group, Needham, MA, formal/2017-12-
05 edition.

Puranik, B. S., Sonawane, A., Jose, J., Chavan, S., and Patil,
Y. (2024). Enhancement of Model Driven Software
Development using AI. In 4th Asian Conference on
Innovation in Technology (ASIANCON), pages 1–5.

Saba, W. S. (2023). Stochastic LLMs do not Understand
Language: Towards Symbolic, Explainable and Onto-
logically Based LLMs. In Conceptual Modeling, vol-
ume 14320, pages 3–19. Springer Nature Switzerland.

Steinberg, D., Budinsky, F., Paternostro, M., and Merks,
E. (2009). EMF Eclipse Modeling Framework. The
Eclipse Series. Addison-Wesley, Boston, MA, 2nd
edition.

Tian, M., Gao, L., Zhang, S., Chen, X., Fan, C., Guo, X.,
Haas, R., Ji, P., Krongchon, K., and Li, Y. (2025). Sci-
code: A research coding benchmark curated by sci-
entists. Advances in Neural Information Processing
Systems, 37:30624–30650.

Völter, M., Stahl, T., Bettin, J., Haase, A., and Helsen, S.
(2006). Model-Driven Software Development: Tech-
nology, Engineering, Management. John Wiley &
Sons.

Zelikman, E., Harik, G. R., Shao, Y., Jayasiri, V., Haber,
N., and Goodman, N. (2024). Quiet-star: Language
models can teach themselves to think before speaking.
In First Conference on Language Modeling.

To Model, to Prompt, or to Code? The Choice Is Yours: A Multi-Paradigmatic Approach to Software Development

303

