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Abstract: Designing and implementing quantum algorithms is a time-consuming, complex, and error-prone task. As new
quantum algorithms are often published as scientific papers without sufficient documentation and no available
software implementations, algorithm designers and software developers have to figure out the missing details
or redevelop parts of the quantum algorithm. Similar to classical programs, various quantum algorithms share
the same subroutines as building blocks to realize the required functionality. Therefore, these building blocks
have to be documented in a structured and easily understandable manner to foster their reuse and speed up
development. Patterns are a well-established concept for documenting proven solutions to recurring problems
and educating new developers. Hence, a pattern language capturing important concepts in the quantum com-
puting domain was established. It already contains an initial set of patterns documenting common building
blocks of quantum algorithms. In this paper, we extend the quantum computing pattern language by introduc-
ing five novel patterns, documenting fundamental building blocks to realize quantum algorithms.

1 INTRODUCTION

Quantum devices promise advancements in various
domains, such as finance, optimization, and cryp-
tography, by leveraging their ability to solve cer-
tain problems faster, with greater precision, or lower
energy consumption compared to classical comput-
ers (Nielsen and Chuang, 2010; Preskill, 2018). Due
to the high complexity of quantum computing, real-
izing quantum algorithms requires a thorough under-
standing of different topics, such as the encoding of
data for the quantum devices or the subroutines used
in quantum algorithms (Leymann and Barzen, 2020).
Moreover, there is also a lack of documentation
that provides quantum application developers with
the knowledge to understand existing quantum algo-
rithms, their building blocks, and corresponding im-
plementations. Thus, the required building blocks for
realizing quantum algorithms must be documented
in a comprehensive manner (Gilliam et al., 2019).

An established way to capture proven solutions
for recurring problems is patterns (Alexander et al.,
1977). Patterns abstractly document solution strate-
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gies for problems occurring in a specific context.
Thereby, patterns provide a technology and problem-
independent description for solving problems that
can be applied generally. Additionally, they explain
why a problem is difficult to solve and what conse-
quences might result from applying a pattern. To doc-
ument fundamental concepts in the quantum comput-
ing domain, Leymann (2019) introduced a pattern lan-
guage for quantum algorithms. Similar to other pat-
tern languages, the quantum computing pattern lan-
guage can be used to automatically generate soft-
ware artifacts utilizing suitable pattern implementa-
tions (Vietz et al., 2025).

Since pattern languages continuously evolve, it is
important to regularly update and expand the pattern
language to reflect the latest advances. Therefore, in
this paper, we extend the quantum computing pattern
language with five new patterns that capture funda-
mental building blocks for quantum algorithms.

The remainder of this paper is as follows: In Sec-
tion 2, fundamentals about quantum algorithms and
the used pattern format are introduced. Section 3
documents the newly introduced patterns for build-
ing quantum algorithms and Section 4 discusses their
usage and potential limitations. In Section 5 related
work is presented, and Section 6 concludes the paper.
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2 FUNDAMENTALS

This section briefly introduces the fundamentals of
gate-based quantum computing and discusses the pat-
tern format and the applied pattern authoring process.

2.1 Gate-Based Quantum Computing

The currently predominant paradigm for realizing
quantum devices is gate-based quantum comput-
ing (Nimbe et al., 2021; Pfaendler et al., 2024). To
execute quantum algorithms on gate-based quantum
devices, they need to be implemented as so-called
quantum circuits (Nielsen and Chuang, 2010). These
circuits define a sequence of operations, called gates,
that manipulate the qubits and thereby modify the
state of the quantum system. To extract classical infor-
mation about a quantum system the state of its qubits
must be measured (Nielsen and Chuang, 2010). Mea-
suring a qubit causes its quantum state to collapse,
making it an irreversible operation that prevents fur-
ther computations using the measured qubit’s state.

2.2 Pattern Format & Authoring
Method

To facilitate the understanding of patterns within a
pattern language, typically a uniform pattern format
is used (Alexander et al., 1977; Fehling et al., 2014).
In this paper, we adopt the pattern format previously
used for documenting the quantum computing pat-
terns, which is organized as follows:

Each pattern is identified by a unique name within
the pattern language. Additionally, each pattern is as-
sociated with a mnemonic icon to aid in visual recog-
nition. The problem addressed by the pattern is de-
scribed in the problem statement, followed by an out-
line of the context in which the problem occurs. Af-
terward, the forces that complicate solving the prob-
lem are discussed. The solution section presents a
proven strategy for solving the problem, accompanied
by a corresponding solution sketch that visualizes the
essence of the solution. In the result section, the con-
sequences of applying the solution are discussed and
potential next steps for handling them are suggested.
To facilitate the navigation through the pattern lan-
guage, each pattern is semantically linked to related
patterns, e.g., to patterns that are commonly used in
combination. Lastly, the known uses section discusses
several real-world applications of the pattern.

In this paper, we focus on patterns related to build-
ing blocks for quantum algorithms. They were identi-
fied by examining implementations and analyzing the

literature for building blocks that were utilized to im-
plement different quantum algorithms. These build-
ing blocks were then filtered, documented, and iter-
atively refined to extract a set of novel patterns that
can be used to understand and build quantum algo-
rithms. While different methods for identifying and
documenting patterns exist, we follow the approach
presented by Fehling et al. (2014). Their approach
comprises a pattern identification, authoring, and ap-
plication phase, which emphasizes the incremental re-
finement of patterns.

3 PATTERNS FOR BUILDING
QUANTUM ALGORITHMS

In this section, we provide an overview of the existing
quantum computing pattern language and introduce
five novel patterns documenting fundamental building
blocks for realizing quantum algorithms.

3.1 Overview of the Quantum
Computing Pattern Language

Figure 1 gives an overview of the quantum computing
pattern language, showcasing both existing patterns
as well as the novel patterns presented in this paper.
Each pattern is assigned to one category depending
on the related phase in the quantum software develop-
ment lifecycle (Weder et al., 2022). In the following,
the different pattern categories are presented:

First, the unitary transformations (Weigold et al.,
2021a) patterns document subroutines that can be
used as building blocks for realizing different quan-
tum algorithms. The measurement patterns (Weigold
et al., 2021a) describe techniques for extracting
classical data from quantum states, ensuring that
results from quantum computations can be inter-
preted and used effectively. Strategies for distributing
computations across quantum and classical hardware
are discussed by the program flow patterns (Weigold
et al., 2021b). The quantum machine learning
patterns (Stiliadou et al., 2025) provide insights
into the development of quantum algorithms that
leverage quantum mechanics to enhance machine
learning tasks. To encode classical data into quantum
circuits, the data encodings patterns (Weigold et al.,
2021a) detail state preparation routines essential for
embedding classical information into quantum states.
Techniques to partition large quantum circuits into
smaller ones, which can be executed with higher pre-
cision on current quantum devices, are documented
in the circuit cutting patterns (Bechtold et al., 2023).
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Figure 1: Overview of the quantum computing pattern language with some existing patterns (light gray) and the new patterns
introduced in this paper (dark gray).

The warm-starting patterns (Truger et al., 2024)
showcase techniques to improve the performance of
quantum algorithms by initializing them with favor-
able starting points. To realize quantum algorithms,
an understanding of quantum states (Leymann,
2019) is necessary. Approaches to mitigate noise in
today’s quantum devices are summarized in the error
handling patterns (Beisel et al., 2022). This category
describes how they can be created and potential
application areas. The development patterns (Bühler
et al., 2023) summarize best practices for developing
hybrid quantum applications. An important aspect
of developing such applications is understanding
how quantum circuits are executed. These methods
are documented in the execution patterns (Georg
et al., 2023). Further, the operations patterns (Beisel
et al., 2025b) document how to execute, monitor, and
manage quantum applications.

In this work, we introduce five novel patterns
describing fundamental building blocks for realizing
various quantum algorithms: The HADAMARD TEST
pattern focuses on estimating the real and imaginary
parts of the expectation value of a unitary operator
with respect to a quantum state. Further, the SWAP
TEST pattern describes the computation of the
similarity of two quantum states. The QUANTUM

FOURIER TRANSFORM pattern addresses the chal-
lenge of efficiently transforming quantum states from
the computational basis to the Fourier basis. The
MID-CIRCUIT MEASUREMENT pattern documents
an approach for extracting partial information from
a quantum device while a circuit execution is still
running. Finally, the DYNAMIC CIRCUIT pattern de-
scribes how quantum computations can be modified
during runtime based on intermediate information
about a part of the quantum state.

3.2 Hadamard Test

𝝍 𝑼 𝝍

Problem: How to calculate the expec-
tation value of a unitary operator for a
given quantum state?

Context: Given a unitary operator U acting on n
qubits, and let |ψ⟩ be a n-qubit quantum state. Then,
the expectation value ⟨ψ|U |ψ⟩ should be estimated.
Forces: Determining the expectation value classically
is computationally expensive and scales exponentially
with the number of qubits (Bravyi and Gosset, 2016).
Quantum devices enable solving this problem more
efficiently (Aharonov et al., 2006). However, using to-
day’s quantum devices also leads to additional chal-
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Figure 2: Solution sketch for the HADAMARD TEST pattern.

lenges. For example, large quantum circuits can not
be executed successfully, and results are prone to er-
rors (Preskill, 2018).
Solution: Figure 2 gives an overview of the structure
of the quantum circuit, which is required to perform
a Hadamard test. The quantum circuit requires one
ancilla qubit on which a Hadamard gate is applied
to bring it into an equal superposition. Subsequently,
depending on whether the real (see a) or imaginary
part (see b) of ⟨ψ|U |ψ⟩ should be retrieved, a S† gate
is added. Next, the unitary operator U is applied in
a controlled manner by using the ancilla qubit as the
control qubit. Due to a so-called phase-kickback, the
information is transferred from the target register to
the control qubit when entangling the qubits with the
controlled U gate (Ossorio-Castillo et al., 2023). Fi-
nally, another Hadamard gate is applied to the ancilla
qubit enabling the retrieval of the expectation value
⟨ψ|U |ψ⟩ by measuring the ancilla qubit.
Result: The real or imaginary part of the expectation
value ⟨ψ|U |ψ⟩ is the output after measuring the an-
cilla qubit. Depending on the required upper bound
of the absolute error, the number of samples must be
increased.
Related Patterns: The HADAMARD TEST can be
implemented using the QUANTUM MODULE pat-
tern (Bühler et al., 2023), i.e., separating the inputs
from the code generation logic required to create the
quantum circuit realizing the Hadamard test. For sep-
arable input quantum states |ψ⟩, the SWAP TEST pat-
tern can be emulated by (i) separating the input state
into two separate quantum states and by (ii) utilizing
the SWAP gate as the unitary operator U within the
HADAMARD TEST.
Known Uses: The Hadamard test is utilized within
the Aharonov–Jones–Landau algorithm to compute
the Jones polynomial (Aharonov et al., 2006). Fur-
thermore, the Hadamard test can also be used for vari-
ational quantum algorithms to determine the gradient
of the objective function (Harrow and Napp, 2021).
Arad and Landau (2010) utilize the Hadamard test in
the context of tensor networks. Xu et al. (2022) em-
ploy the Hadamard test as the measuring method for
a variational quantum support vector machine.
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Figure 3: Solution sketch for the SWAP TEST pattern.

3.3 SWAP Test

ȁ ۧ𝝋 ȁ ۧ𝝍

Problem: How to evaluate how simi-
lar two given quantum states are to each
other?

Context: Given two n-qubit quantum states |ϕ⟩ and
|ψ⟩. Then, the similarity between these states should
be calculated.
Forces: The similarity of two quantum states may
influence the processing of a quantum algorithm.
Performing classical measurements is unsuitable for
comparing quantum states as the states are destroyed
and can not be used for further computations.
Solution: Perform the SWAP test to determine
the similarity of the two given quantum states
|ϕ⟩ and |ψ⟩. The structure of the quantum circuit,
which is required to perform a SWAP test, is de-
picted in Figure 3. It requires one ancilla qubit
on which a Hadamard gate is applied. Next, a
sequence of controlled SWAP operators is applied
to each qubit of the two states using the ancilla
qubit as the control qubit. For example, the first
controlled SWAP operation is performed between
|ϕ1⟩ and |ψ1⟩. Finally, another Hadamard gate is
applied to the ancilla qubit, leading to the state:
1
2 |0⟩(|φ⟩ |ψ⟩+ |ψ⟩ |φ⟩)+ 1

2 |1⟩(|φ⟩ |ψ⟩− |ψ⟩ |φ⟩).
Result: After the measurement of the ancilla qubit,
the outcome determines the similarity between the
states |φ⟩ and |ψ⟩. If the states are identical, the mea-
surement of the ancilla bit results in 0 with probability
1. In contrast, if the states are orthogonal, the mea-
surement results in 0 or 1 with an equal probability of
0.5.
Related Patterns: The QUANTUM CLASSIFICATION
pattern (Stiliadou et al., 2025) can utilize the SWAP
TEST to estimate the distances between two points.
The SWAP TEST can be realized as a QUANTUM
MODULE, and its functionality can be provided via a
CLASSICAL-QUANTUM INTERFACE to ease its inte-
gration with additional classical functionality (Bühler
et al., 2023).
Known Uses: The SWAP test was initially introduced
by Buhrman et al. (2001). Gitiaux et al. (2022) show

IQSOFT 2025 - 1st International Conference on Quantum Software

64



how to generalize the SWAP test for an arbitrary num-
ber m of states to compare using O(log(m)) ancilla
qubits. Foulds et al. (2021) adapt the SWAP test to en-
able checking the presence of entanglement and show
how it can be used to distinguish different entangle-
ment classes. Zhao et al. (2019) discuss how quantum
neural networks can be built using the SWAP test.

3.4 Quantum Fourier Transform (QFT)

Problem: How to extract frequencies
from a function using a quantum device?

Context: Frequencies need to be extracted from func-
tion values, which are given at N distinct points to
identify characteristics such as periodicity and distri-
bution of the frequencies.
Forces: The best known classical implementation of
a Fourier transform, the so-called Fast Fourier Trans-
form (FFT) is computationally expensive as it re-
quires O(N logN) operations for a vector that con-
tains N data points of a function (Camps et al., 2020).
While quantum computing enables solving this prob-
lem more efficiently, the number of operations ex-
ecutable in sequence on current quantum devices is
limited due to high error rates and short decoherence
times (Preskill, 2018).
Solution: The QFT extracts frequencies from a n-
qubit quantum register |x⟩ = |xn−1, . . . ,x0⟩, where
n = logN. x is interpreted as a decimal number and
x j ∈ {0,1} are the binary digits of x. In the QFT, each
qubit |x j⟩ is transformed as follows:

|x j⟩ 7→
1√
2

(
|0⟩+ e2πix/2 j |1⟩

)
.

The required stages are illustrated in Figure 4. QFT
involves n stages, one for each qubit in the quantum
register. At stage S j, operations are performed solely
on qubit xn− j, which involves a Hadamard gate, fol-
lowed by controlled R2, . . . ,Rn+1− j gates, except in
stage Sn, where only the Hadamard gate is applied.
The Rk gate is controlled by qubit xn+1− j−k to realize
the phase e2πi/2k

. The gate Rk has the form:

Rk =

(
1 0
0 e2πi/2k

)
, for 2 ≤ k ≤ n

This circuit requires O(n2) = O((logN)2) operations,
as each stage S j involves a single Hadamard operation
and n−1+ j controlled rotations.
Result: The QFT provides an exponential speedup
compared to the FFT. After applying the QFT, the
quantum state is transformed into the Fourier basis. If
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Figure 4: Solution sketch for the QUANTUM FOURIER
TRANSFORM pattern.

the QFT is applied to a quantum state encoding a pe-
riodic function with period p, the resulting state has
a high probability of measuring y, where y is a mul-
tiple of N/p (Barzen and Leymann, 2022; Dixit and
Jian, 2022). Due to the controlled phase gates, QFT
requires a high connectivity between the qubits.
Related Patterns: The PHASE SHIFT pattern (Ley-
mann, 2019) is used to implement the modification
of the phase. To reduce the depth of the quantum cir-
cuit implementing the QFT, the DYNAMIC CIRCUIT
pattern can be utilized (Bäumer et al., 2024a). The
QUANTUM PHASE ESTIMATION pattern (Weigold
et al., 2021a) uses QFT to estimate the eigenvalues
of a unitary operator.
Known Uses: Shor’s Algorithm extracts the period of
a modular exponentiation function using QFT (Shor,
1994). Dixit and Jian (2022) use QFT to estimate fre-
quencies from driving cycles of vehicles, i.e., graphs
visualizing the speed of the vehicle over time (Dixit
and Jian, 2022). Roncallo et al. (2023) use QFT to
compress digital images.

3.5 Mid-Circuit Measurement

ȁ ۧ𝝍 Problem: How to extract partial infor-
mation from a quantum device while a
circuit execution is still running?

Context: During the execution of a quantum circuit,
intermediate results, i.e., information about the state
of one or multiple qubits, should be extracted before
the circuit execution finally terminates.
Forces: As quantum devices only provide a limited
number of qubits, these qubits must be utilized ef-
ficiently, e.g., by reusing ancilla qubits that are no
longer required. When measuring a qubit that is en-
tangled with other qubits, the measurement does not
only collapse the state of the measured qubit but also
irreversibly impacts the quantum states of the entan-
gled qubits.
Solution: Incorporate so-called mid-circuit measure-
ments into the quantum circuit, i.e., measurements be-
fore the quantum circuit execution terminates. As il-
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Figure 5: Overview of the solution sketch for the MID-
CIRCUIT MEASUREMENT pattern.

lustrated in Figure 5 various quantum operations are
performed on different qubits initialized in the |0⟩
state, resulting in an intermediate quantum state. A
subset of m qubits is then measured, yielding a mea-
surement outcome s ∈ {0,1}⊗m, extracting classical
information about a part of this intermediate quantum
state. Afterwards, the execution of the quantum cir-
cuit continues. For example, in Figure 5 a mid-circuit
measurement is performed on the last qubit, measur-
ing a classical 0 and collapsing the state of the qubit
into the |0⟩ state.
Result: Mid-circuit measurements provide informa-
tion about the intermediate states of the measured
qubits. Each measured qubit collapses into the state
|0⟩ or |1⟩, which can, e.g., be used to reset them by
applying a controlled X operation after the measure-
ment (Xu et al., 2023). After resetting the qubits, they
can be reused for further computations. By perform-
ing mid-circuit measurements on a qubit, the states of
qubits that are entangled with the measured qubit are
influenced. The states of qubits that are not entangled
with the measured qubits are preserved.
Related Patterns: The DYNAMIC CIRCUIT pat-
tern uses the MID-CIRCUIT MEASUREMENT pattern
to retrieve intermediate information for dynamically
modifying quantum computations during runtime.
Known Uses: Mid-circuit measurements can be used
to reset a qubit conditionally (Koh et al., 2024). Govia
et al. (2023) analyze how mid-circuit measurements
affect the states of topologically connected qubits.
Smith et al. (2024) present a constant-depth state
preparation of matrix product states using mid-circuit
measurements and feedforward operations.

3.6 Dynamic Circuit

?

Problem: How to modify a quantum
computation during runtime based on
intermediate information about a part of
the quantum state?

Context: A quantum circuit must be modified based
on intermediate information about a part of the quan-
tum state.
Forces: Measuring a qubit causes its state to collapse
and breaks the entanglement between the measured
qubit and the entangled qubits. Operations between

0

0

0

… 𝑈1… 𝑈2

CC

0…

…

Figure 6: Overview of the solution sketch for the DYNAMIC
CIRCUIT pattern.

qubits that are far apart from each other require a
lot of intermediate SWAP operations, increasing the
depth of the circuit. The low decoherence times of
current quantum devices limit the maximum execu-
tion time of quantum circuits.
Solution: To modify a quantum computation during
runtime based on intermediate information about a
part of the quantum state, define a dynamic quantum
circuit that utilizes mid-circuit measurements as well
as classical processing. Classical processing can ei-
ther be a feedforward of the measurement results or
a more complex computation that utilizes the mea-
surement results to adaptively apply or skip specific
quantum operations. Figure 6 exemplarily showcases
a dynamic circuit using feedforward: First, the quan-
tum circuit performs a sequence of operations. Then,
a mid-circuit measurement is performed on the first
qubit and the measurement result is used for classi-
cal processing. Based on the outcome of the classical
processing, it is determined if the gate U1 or U2 shall
be applied. If the outcome of the classical processing
is 1, then U1 is applied; if it is 0, then U2 is applied.
Result: Dynamic circuits enable the development of
algorithms and optimization routines that require in-
termediate information about a part of the quantum
state. The classical processing performed after the
mid-circuit measurement must be faster than the de-
coherence time of the quantum device so that the
quantum state is not lost before the quantum compu-
tation can be modified and completed. Additionally,
feedforward of measurement results leads to constant
latency for executing conditional operations, while
more complex real-time computations introduce ad-
ditional variable delays depending on their complex-
ity (Gupta et al., 2024).
Related Patterns: The MID-CIRCUIT MEASURE-
MENT pattern is used to extract intermediate infor-
mation about the quantum states during runtime. Dy-
namic circuits can be utilized with the INITIALIZA-
TION pattern (Leymann, 2019) to reduce the depth
of the quantum circuits. Combining the CIRCUIT
CUTTING pattern (Bechtold et al., 2023) and the
DYNAMIC CIRCUIT pattern can reduce the number
of cuts required to split a quantum circuit (Pawar
et al., 2023). Further, dynamic circuits can be used
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as ansatzes for the VARIATIONAL QUANTUM ALGO-
RITHM pattern (Weigold et al., 2021b) as they are free
of barren plateaus (Deshpande et al., 2024).
Known Uses: Dynamic circuits can be incorporated
into error correction techniques to reduce errors accu-
mulated during the quantum computation (Niu et al.,
2024). Another application area is to reduce the depth
of QFT circuits by utilizing dynamic circuits (Bäumer
et al., 2024a). Distant qubits can be entangled using
dynamic circuits, drastically reducing the number of
required SWAP operations and, therefore, the depth
of the quantum circuit (Bäumer et al., 2024b).

4 DISCUSSION

Patterns are commonly applied to solve real-world
problems. Due to the interdisciplinary nature of quan-
tum computing, establishing common knowledge be-
tween the different stakeholders is especially impor-
tant. As stated above, transferring this knowledge
into executable quantum applications is a complex,
time-consuming, and error-prone task. To facilitate
the development of quantum applications, various ap-
proaches to automate this process have been intro-
duced: Vietz et al. (2025) present an approach to auto-
mate the identification of suitable patterns for a given
problem description. These patterns can be used to
generate a quantum application to solve this prob-
lem. Thus, in this work, we extend the set of usable
patterns, enhancing the capabilities of the framework.
Beisel et al. (2025a) uses the quantum computing pat-
terns to automatically generate quantum workflows.

While mid-circuit measurements can provide dif-
ferent benefits, such as reducing circuit depth, they are
currently not supported by all quantum devices. This
limits the general applicability of the MID-CIRCUIT
MEASUREMENT pattern. Similar limitations apply to
the DYNAMIC CIRCUIT pattern, as it relies on the
availability of mid-circuit measurements and real-
time classical processing. While dynamic circuits are
a promising concept, they are currently only sup-
ported by a small number of quantum programming
frameworks, such as Qiskit or Pennylane.

5 RELATED WORK

This work introduces patterns for building quantum
algorithms that extend the existing quantum comput-
ing pattern language as discussed in Section 3.1. Var-
ious works have explored different aspects of quan-
tum computing, but they do not follow the pattern for-
mat established by Alexander et al. (1977): Baczyk

et al. (2024) document patterns that assist in architec-
tural decision-making for quantum applications. Sim-
ilarly, Khan et al. (2023) identify a range of architec-
ture design patterns for quantum applications through
a systematic literature survey. A variety of patterns for
building quantum circuits were introduced: Gilliam
et al. (2019) present a dictionary for building quantum
algorithms, which aims to avoid linear algebra and
quantum mechanics. While they include QFT in their
dictionary, they do not describe it as a pattern and
only mention it as an alternative to classical Fourier
transform. Huang and Martonosi (2019) apply quan-
tum programming patterns to find bugs in quantum
circuits. Additionally, Guo et al. (2024) present a set
of patterns tailored for defining ansätze in variational
quantum algorithms. However, they do not include
mid-circuit measurements, which are necessary to re-
alize dynamic circuits that have been proven to be bar-
ren plateau-free (Deshpande et al., 2024). To evalu-
ate the real-world adoption of the quantum computing
pattern language, Pérez-Castillo et al. (2024) investi-
gate quantum software repositories, searching for in-
stances of pattern usage. However, their analysis is
limited to only five patterns.

To reduce the manual effort needed to implement
the abstractly documented solutions described by pat-
terns, Falkenthal et al. (2017) introduced the concept
of so-called concrete solutions. Concrete solutions
implement the solution strategy provided by patterns
for a specific use case utilizing a certain technology.
These concrete solutions can be employed as reusable
building blocks for realizing applications.

6 CONCLUSION AND OUTLOOK

Quantum algorithms are often composed utilizing
reusable building blocks. However, these building
blocks typically lack suitable documentation and
proper implementations that can be reused. To over-
come these issues, in this paper, we document five
novel patterns summarizing fundamental building
blocks for quantum algorithms. The patterns are in-
corporated into the quantum computing pattern lan-
guage, which is publicly available in the Pattern
Atlas (Kipu Quantum, 2025), a tool for author-
ing and sharing patterns from different pattern lan-
guages (Leymann and Barzen, 2021).

New quantum algorithms and corresponding soft-
ware tools are developed by researchers in industry
and academia. Thus, in future work, we plan to ana-
lyze new developments to identify best practices that
can be documented as patterns and included in the
quantum computing pattern language.
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