AssertsQ: A Quantum Assertion Tool for Quantum Software Debugging

Javier Ibarra Veganzones'

2 Danel Arias Alamo
and Pablo Garcia Bringas'

1 2(mc

b Alfredo Cuzzocrea
d

YUniversity of Deusto, Avda. Universidades 24, Bilbao, Spain
2 University of Calabria, Rende, Cosenza, Italy

Keywords:
Verification.

Abstract:

Quantum Computing, Quantum Software Testing, Debugging, Swap Test, Circuit Assertions, Quantum

Quantum software debugging faces significant challenges due to measurement-induced state collapse, deco-

herence, and gate noise. We introduce AssertsQ, a framework that integrates assertion-based debugging into
Qiskit, enabling automated verification of quantum circuits. AssertsQ provides three key validation methods:
Swap Test-based state fidelity checks, measurement-based Total Variation Distance (TVD) comparisons, and
noise-aware assertions adaptable to real hardware constraints. Our evaluation on benchmark circuits, including
GHZ, QFT, and Grover’s algorithm, demonstrates the framework’s ability to detect errors and quantify fidelity
degradation under noise. By simplifying quantum circuit verification, AssertsQ enhances the reliability of

quantum software in the NISQ era.

1 INTRODUCTION

Quantum computing has gained significant momen-
tum in recent years due to its potential to outperform
classical computers in certain computational tasks,
including cryptographic analysis, optimization, and
simulation of quantum mechanical systems (Piattini
et al., 2021). However, the process of verifying the
correctness of quantum circuits remains a formidable
challenge (Arias et al., 2023). Unlike classical debug-
ging techniques, where the state of a program can be
inspected at any point without altering the outcome,
quantum states collapse upon measurement, and gate
errors or qubit decoherence can irreversibly disrupt an
entire computation (Metwalli, 2024). This intrinsic
fragility necessitates robust verification tools tailored
to the probabilistic and non-local nature of quantum
phenomena.

In this paper, we introduce AssertsQ, a frame-
work that provides easy-to-use assertion methods
integrated into Qiskit (the IBM developed open-
source quantum programming language). By lever-
aging the Swap Test for state overlap checks and a

https://orcid.org/0009-0007-7382-1300
https://orcid.org/0000-0002-6586-346X
https://orcid.org/0000-0002-7104-6415
4@ https://orcid.org/0000-0003-3594-9534

o

iel

Veganzones, J. |., Alamo, D. A., Cuzzocrea, A. and Bringas, P. G.
AssertsQ: A Quantum Assertion Tool for Quantum Software Debugging.
DOI: 10.5220/0013553300004525

measurement-based approach for output distribution
verification, AssertsQ aims to streamline the debug-
ging and validation pipeline for quantum software de-
velopers. The sections below detail the motivation be-
hind this work, the specific problems it addresses, the
novel contributions we present, and the layout of the

paper.
1.1 Motivation

As the field of quantum computing transitions from
proof-of-concept experiments to the exploration of
real-world applications, reliable circuit validation
grows ever more critical (Arias et al., 2023). In clas-
sical computing, developers can inspect intermediate
variables and step through code execution. In quan-
tum computing, direct state inspections remain elu-
sive unless one resorts to full state tomography, which
becomes exponentially demanding with the number
of qubits (Hoag et al., 2019). Consequently, many de-
velopers rely on partial tests or repeated sampling that
provide incomplete insights into circuit correctness
(Li et al., 2019). Furthermore, quantum hardware re-
mains noisy, and the complex interplay of gate infi-
delities and cross-talk can produce misleading results
if not properly accounted for in verification (Mundada
et al., 2019). These concerns highlight the pressing
need for a user-friendly framework that can automate

49

In Proceedings of the 1st International Conference on Quantum Software (IQSOFT 2025), pages 49-60

ISBN: 978-989-758-761-0
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

IQSOFT 2025 - 1st International Conference on Quantum Software

routine checks of circuit fidelity and identify discrep-
ancies early in the development cycle.

Verifying whether a quantum circuit performs as
intended typically involves comparing its final state
or measurement distribution against an expected re-
sult(Kang et al., 2024). As circuits scale in complex-
ity, conventional debugging techniques do not readily
extend to quantum contexts. The problem is exac-
erbated by limited qubit counts and high error rates
in today’s quantum processors, making repeated sam-
pling or complicated protocols an inefficient endeavor
(Arias et al., 2022). This exacerbates the necessity of
a supporting tool that seamlessly integrates with ex-
isting frameworks and provides accessible implemen-
tations of established techniques, such as the Swap
Test or statistical distance measures, to facilitate de-
bugging and validation.

1.2 Contribution

This paper addresses the challenges above by present-
ing AssertsQ, a modular toolkit that embeds quan-
tum circuit assertions directly into Qiskit-based work-
flows. A key contribution is the implementation
of methods that allow developers to confirm circuit
equivalence, validate fidelity against a known tar-
get state, and compare measurement output distribu-
tions. By unifying these functionalities into a sin-
gle interface, we reduce the overhead of creating cus-
tom verification schemes. Another important feature
is the seamless interoperability with IBM Quantum’s
cloud backends and local simulators, providing flexi-
ble noise modeling and pass manager (transpiler) con-
figuration. These capabilities allow researchers and
developers to iterate rapidly on quantum algorithms,
verifying correctness under both ideal and realistic
hardware conditions. Moreover, the introduction of
adjustable tolerances ensures that the tool can accom-
modate noisy intermediate-scale quantum (NISQ) de-
vices, making it a practical resource in the current
quantum computing landscape. In this way, the tool
presented in this work emerges as a tool that di-
rectly addresses the need for an integrated and effi-
cient quantum circuit verification framework, bridg-
ing the gap between theoretical validation and practi-
cal implementation.

The remainder of the paper is organized as fol-
lows. Section 2 discusses the state of the art in
quantum circuit verification, highlighting why tradi-
tional classical debugging methods might fall short
for quantum software development, and introduces
the theoretical underpinnings of the techniques used
in this work. Section 3 details the methodology be-
hind AssertsQ, explaining how the toolkit composes

50

and executes specialized verification circuits. Section
4 delves into the implementation aspects, including
class design, key methods, and workflow integration
within Qiskit. In Section 5, we describe experimental
results showcasing circuit verification in both simu-
lated environments with noise simulation and perfect
simulation, followed by a discussion of the practical
advantages and limitations of the approach. Finally,
in Section 6 we conclude with an overview of future
directions, potential optimizations, and the broader
significance of automated circuit assertions in quan-
tum computing.

2 STATE OF THE ART

In recent years, quantum computing has advanced
rapidly, promising computational advantages in ar-
eas such as optimization, cryptographic analysis, and
quantum simulation (Piattini et al., 2021). However,
verifying the correctness of quantum computations
poses new challenges that classical methods cannot
readily address (Arias et al., 2023). Gate noise, qubit
decoherence, and the collapse of quantum states upon
measurement all contribute to the difficulty of de-
bugging quantum programs (Metwalli, 2024). Even
straightforward techniques like inspecting intermedi-
ate states become prohibitive, since measurements ir-
revocably alter quantum superpositions (Hoag et al.,
2019).

Much of the existing literature highlights two
main strategies for quantum circuit verification:
measurement-intensive approaches and direct fidelity
or overlap checks. Measurement-intensive methods
can involve state tomography or repeated sampling,
but they tend to be resource-heavy and scale poorly
with increasing qubit numbers (Guo and Yang, 2024).
Partial tests have been introduced to mitigate com-
plexity, yet these may fail to capture subtle deviations.
By contrast, overlap checks through protocols like the
Swap Test estimate how closely two states (or two cir-
cuits’ outputs) coincide without requiring a full recon-
struction of the state (Foulds et al., 2021).

While the Swap Test is a standard method for es-
timating state overlap, recent works have explored al-
ternative approaches to reduce circuit depth and im-
prove efficiency on near-term quantum devices. For
instance, (Cincio et al., 2018) used machine learn-
ing to discover algorithms with shorter depths than
the Swap Test for computing state overlap, including
methods that use CNOT gates and achieve constant
depth. Similarly, (Garcia de la Barrera Amo et al.,
2022)presented a method for automatic generation of
test circuits that verify quantum deterministic algo-

rithms using a CNOT-based test for state compari-
son. Our framework, AssertsQ, complements these
efforts by providing a user-friendly interface for inte-
grating various assertion methods, including the Swap
Test and measurement-based validations, directly into
Qiskit workflows

Despite these efforts, no consensus exists on a
universal debugging protocol for quantum software.
Some investigators explore specialized frameworks
that unify entanglement checks, circuit optimization
passes, and classical post-processing, but many re-
main narrowly focused on either final-state fidelity
(Ramalho et al., 2024) or distribution comparison in
the computational basis (Hashim et al., 2023). The
latter often involves metrics such as Total Variation
Distance (TVD) (Dahlhauser and Humble, 2024),
which can reveal discrepancies in measurement out-
comes but generally overlook phase-sensitive infor-
mation. Meanwhile, advanced noise modeling is in-
creasingly recognized as crucial for capturing the per-
formance of near-term quantum devices (Mundada
et al., 2019), yet many verification proposals treat
hardware imperfections only superficially or not at
all.

Recent approaches have begun to incorporate
quantum assertions, that is, specialized checkpoints
within algorithms, into standard development work-
flows (Memon et al., 2024). These assertions aim to
detect anomalies early by targeting either the ampli-
tude overlap with an expected state or the probability
distribution of measurement outcomes. Nevertheless,
the difficulties posed by state collapse and limited
qubit availability mean that robust frameworks for au-
tomated verification are still emerging. Tools must
balance direct fidelity checks with measurement-
based methods and accommodate the realistic noise
models of modern quantum processors. Overcoming
these constraints is pivotal to ensuring that quantum
algorithms remain correct and resilient to hardware
imperfections.

Besides assertion-based methods, other testing
techniques have been adapted for quantum software.
Metamorphic testing, which leverages relations be-
tween multiple program executions to verify correct-
ness without an oracle, has been applied to quan-
tum programs. For instance, MorphQ (Paltenghi and
Pradel, 2023) uses metamorphic relationships to test
the Qiskit platform, uncovering numerous bugs. More
recently, (Pontolillo and Mousavi, 2024) introduced
an automated debugging technique based on delta de-
bugging and property-based testing for quantum pro-
grams, which identifies changes causing regression
test failures. Similarly, (Abreu et al., 2022) propose
metamorphic testing for oracle quantum programs to

AssertsQ: A Quantum Assertion Tool for Quantum Software Debugging

overcome the measurement problem. On the other
hand, mutation testing, which assesses test suite qual-
ity by introducing artificial faults, has also been ex-
plored.(Fortunato et al., 2022) introduce QMutPy, a
mutation testing tool for Qiskit, demonstrating its
effectiveness on real quantum programs. Addition-
ally, (Wang et al., 2022) present a multi-objective
search approach for generating mutation-based tests
for quantum programs. A recent empirical evaluation
by (Usandizaga et al., 2023) on quantum circuit mu-
tations provides insights into which mutants are most
effective for testing quantum software. A comprehen-
sive survey by (Paltenghi and Pradel, 2024) provides
an overview of various testing and analysis techniques
for quantum software, highlighting the growing inter-
est and diversity in this field.

3 METHODOLOGY

Quantum circuits exhibit unique challenges absent in
classical computing: measurement collapses super-
positions, gate errors compound as circuits deepen,
and interference can mask intermediate states. To
address these concerns in a principled manner, we
propose a methodology leveraging three main com-
ponents: the Swap Test for circuit or state over-
lap, amplitude-based state initialization to compare
against a known reference, and a measurement-based
approach using the TVD metric. Collectively, these
strategies tackle typical NISQ-era constraints such as
limited qubits, high noise levels, and restricted oppor-
tunities for measurement, offering a flexible verifica-
tion suite applicable to various quantum algorithms.

3.1 Circuit Assertion Using Swap Tests

The Swap Test has emerged as a powerful means
to evaluate how closely two quantum states resem-
ble each other without performing a full, resource-
intensive state tomography. Conceptually, one ap-
pends an ancilla qubit to the two states under com-
parison and performs a conditional swap followed by
a final measurement. The probability of measuring
the ancilla in the |0) state corresponds directly to the
squared overlap (or similarity) of the two states(see
Appendix):

Similarity =2 x P(|0)) — 1.

For circuit assertions, one can think of each quan-
tum circuit as producing an output state. By treating
these outputs as the two states in question, the Swap
Test reveals whether the circuits behave equivalently

51

IQSOFT 2025 - 1st International Conference on Quantum Software

within a chosen fidelity threshold. This approach cir-
cumvents the need to measure and compare each qubit
individually, thus minimizing both the measurement
overhead and the risk of disturbing fragile superposi-
tions. As a result, the Swap Test serves as a concise,
powerful gauge for circuit-to-circuit or circuit-to-state
equivalences.

3.1.1 Reconstructing and Comparing States

Beyond comparing two circuits, AssertsQ also evalu-
ates a circuit’s output against a known reference state
vector. In such cases, one must prepare the target (ref-
erence) state vector as a second quantum system. In-
ternally, Qiskit’s amplitude-based approach as intro-
ducedinits initialize method(Iten et al., 2016) can
create a circuit that produces the target state vector
from |0). This target system is then brought into the
Swap Test framework. Measuring how often the an-
cilla remains in |0) indicates whether the final circuit
output matches the reference state’s amplitudes. Cru-
cially, this method does not necessitate direct tomog-
raphy, making it more scalable to multi-qubit states.

3.2 Measurement-Based Validation:
Total Variation Distance (TVD)

While the Swap Test reveals quantum overlaps, many
practical algorithms are ultimately concerned with
measurement outcomes. Moreover, in large multi-
qubit circuits, duplicating circuit size might not be
able due to the hardware capabilities.For these sce-
narios, AssertsQ provides a measurement-based val-
idation that compares classical probability distribu-
tions through the TVD. Each circuit is executed to
produce a bitstring distribution in the computational
basis. Given two distributions P and Q, the TVD is
defined as

TVD(P.Q) = 1 ¥ |P(0) - 0(w)],

where o ranges over all possible bitstrings. A TVD
near zero signifies that both circuits produce near-
identical distributions, whereas a larger TVD indi-
cates significant discrepancies in measurement out-
comes (Hashim et al., 2023). This approach excels
in scenarios where the classical output is the main fig-
ure of merit, such as sampling-based or combinational
quantum algorithms (Madsen et al., 2022).

3.3 Noise Handling and Tolerance
Near-term quantum devices—commonly referred to

as Noisy Intermediate-Scale Quantum (NISQ) hard-
ware—exhibit gate, readout, and decoherence errors

52

that can obscure correct circuit behavior(Khan et al.,
2024). Consequently, AssertsQ introduces tolerance
thresholds in both the Swap Test and TVD calcula-
tions, providing a buffer against minor fluctuations. If
the computed overlap (or distribution similarity) re-
mains within the specified tolerance, the circuits or
states are considered “equivalent” for practical pur-
poses. At the same time, developers can opt for
stricter thresholds when using higher-fidelity simula-
tors or hardware calibrations.

Additionally, the tool accounts for three primary
execution environments:

¢ Noiseless Simulation: Provides an ideal baseline,
ignoring all hardware imperfections.

¢ Noisy Simulation: Incorporates realistic error
models, thus approximating a real device’s per-
formance.

* Real Hardware: Executes the assertion on an ac-
tual quantum processor for definitive, real-world
verification.

In all cases, careful transpilation ensures that the log-
ical gates are mapped effectively to the device’s phys-
ical qubits, factoring in connectivity constraints and
gate availability. This interplay of error modeling, tol-
erance tuning, and backend selection yields a compre-
hensive strategy that mitigates noise while remaining
flexible enough to handle evolving hardware condi-
tions.

3.4 Experimental Setup for Tool
Validation

To validate AssertsQ, we designed a set of ex-
periments targeting canonical quantum algorithms
of varying complexity: Greenberger-Horne-Zeilinger
state (GHZ), quantum Fourier transform (QFT) and
Grover search. Each algorithm was tested at two
scales (5 and 10 qubits) to observe how circuit depth
influences verification outcomes (see Section 5).

In both perfect and noisy simulation modes, GHZ
circuits generate a maximally entangled state through
a single Hadamard followed by a chain of CNOTs,
while QFT circuits apply phase shifts and Hadamard
gates in a pattern crucial for phase-estimation tasks.
Grover’s algorithm, meanwhile, demonstrates ampli-
tude amplification and oracle-based state marking.
For the noisy simulations, we employed a noise model
generated from the calibrations of ibm_sherbrooke',
mimicking realistic two-qubit gate error rates (e.g.,
~3.51 x 1073) as well as single-qubit and readout er-
ror parameters. Such a model allows us to emulate the

I'This calibrations where retrieved from 3 Feb 2025 to 6
Feb 2025.

performance constraints of this 127-qubit device, cap-
turing the influences of gate infidelity and crosstalk
without requiring direct hardware access.

By comparing outcomes from noiseless vs. noisy
simulations, and evaluating metrics such as fidelity
(from the Swap Test) and TVD (from measurement-
based checks), we benchmark both the robustness and
granularity of our assertion methods. This layered ex-
perimental design reveals how AssertsQ behaves un-
der increasing levels of circuit complexity and noise,
highlighting its capacity to catch meaningful errors
and degrade gracefully in the face of hardware im-
perfections. Lastly, these experiments are transpiled
using the qiskit pass manager with a default optimiza-
tion level of 3 and launched with 1024 shots.

4 IMPLEMENTATION

This section provides details on how AssertsQ is
structured at the code level, illustrates typical us-
age scenarios, and demonstrates how developers can
incorporate its capabilities into their existing Qiskit
workflows. The implementation comprises a set of
classes and functions that collectively offer circuit as-
sertion functionalities based on both the Swap Test
and measurement-based comparisons.

4.1 Code Overview

The core functionality of AssertsQ resides in
the Assertions class. This class includes
three primary methods for circuit validation:
assert_equals, assert_equals_state, and
assert_equals_measure. Each method addresses
a different aspect of quantum circuit verification.
The first two employ the Swap Test to measure
circuit or state similarity, while the third applies a
measurement-based approach, computing the TVD
to determine equivalence of output distributions. All
methods share a similar structure: they accept the
circuits (or a circuit and target state), a tolerance
parameter, and an AssertionOptions object that
encapsulates backend selection, noise configuration,
and custom transpilation pass managers. By default,
the code sets up specialized quantum registers
(including an ancilla qubit for the Swap Test) and
composes a dedicated circuit to execute the test
logic. Once the circuit is transpiled and submitted
to a chosen backend via SamplerV2, the returned
measurement data is interpreted to produce a fidelity
metric or a distribution-based comparison result.

An auxiliary class, AssertionOptions which
validates user-specified settings such as whether to

AssertsQ: A Quantum Assertion Tool for Quantum Software Debugging

run on simulated or real quantum hardware, whether
noise modeling should be enabled, and which pass
manager to invoke. If the user supplies invalid creden-
tials or an incompatible configuration, the class raises
appropriate errors or warnings. When the user does
not specify a backend, it can attempt to automatically
select an available device. This design ensures a clear
separation between the high-level assertion logic and
lower-level infrastructure concerns, including authen-
tication and hardware interaction.

4.2 Simulation, Noise Modeling, and
Hardware Execution

AssertsQ manages both ideal and noisy simulations
through Qiskit Aer, providing a seamless way to test
quantum circuits under realistic error conditions. In
the default noiseless mode, it employs the standard
Aer simulator to generate perfect results, establishing
a baseline for fidelity and distribution checks. When
noisy simulation is requested, AssertsQ loads an er-
ror model derived from calibration data (for example,
gate and readout infidelities) using Qiskit Aer’s noise
modeling features. This allows developers to gauge
algorithm performance under conditions that approx-
imate actual hardware runs.

If real device execution is required, AssertsQ
makes use of QiskitRuntimeService to authenticate
with IBM Quantum backends. By switching its con-
figuration to a non-simulator setting, AssertsQ re-
trieves the specified hardware or automatically se-
lects one based on availability. The same transpila-
tion routines and assertion methods apply: the code
compiles the circuit for the chosen quantum device,
submits a job via Qiskit’s runtime, and interprets the
measurement outcomes to yield fidelity metrics or to-
tal variation distance comparisons. This unified ap-
proach enables developers to validate circuits consis-
tently across simulation and real-device runs, directly
from the same assertion framework.

4.3 Sample Usage

In this subsection, we illustrate how AssertsQ can be
seamlessly integrated into a typical Qiskit workflow
to validate quantum circuit correctness using a Bell
state as example see Figure 1.

q: D @

-
c: =

2 0 1

Figure 1: Bell state circuit.

53

IQSOFT 2025 - 1st International Conference on Quantum Software

To begin, a developer imports the re-
quired classes—namely, Assertions and
AssertionOptions—and constructs one or more
quantum circuits using Qiskit’s standard API. For
example, two Bell state circuits can be generated,
and subsequently compared via AssertsQ’s built-
in methods. When invoking the assert_equals
method , the framework automatically composes
an ancillary circuit that embeds the swap test. This
process involves appending an ancilla qubit, applying
Hadamard gates, and executing controlled-swap op-
erations on the qubits of the circuits under evaluation.
The resulting measurement of the ancilla, combined
with a user-defined tolerance parameter, produces a
similarity score that confirms whether the circuits are
functionally equivalent,as seen in Figure 2.

circuit_ao : @
circuit_ay : D
circuit by : @
circuit_by : $
ancilla : @ H
result : /1

Figure 2: Bell state Assert Equals.

In another scenario , a circuit’s final state is com-
pared against a known target state vector through the
assert_equals_state method. In this case, As-
sertsQ augments the original circuit by initializing a
separate register to represent the reference state prior
to performing the swap test. This approach enables a
precise quantification of the overlap between the cir-
cuit’s output and the intended state, yielding a fidelity
measure that asserts correctness, as seen in Figure 3.

qo0 - @ rL T

qi - D

|
target : |

0 1
j ly) (0.7071,0,0,0.7071) |
I

target :

(it} fi1}- A

0

|
[l
ancilla : :

result : 7
Figure 3: Bell state Assert Equals State.

For instances where the primary focus
is on the final measurement outcomes, the
assert_equals_measure method is employed.
Here, see figure 4 , AssertsQ appends measurement
operations to both distinct input circuits, collects the
resultant bitstring counts, and computes the TVD
between the corresponding probability distributions.
Throughout these examples, the user benefits from

the option to enable verbose flag output, which prints

54

q: qoifky(—n/Z)T@i
a1 o—| @ —{R(—n/2)

0 1 C:

Figure 4: Comparing two distinct circuits with Assert
Equals Measure.

intermediate metrics and final similarity scores. This
feature proves invaluable for debugging purposes, as
it provides immediate insight into the performance of
the circuit assertions and facilitates iterative refine-
ment.

4.4 Workflow Integration

Developers can seamlessly integrate AssertsQ into
their standard Qiskit-based workflows. After build-
ing or modifying a quantum circuit, they invoke
the desired assertion method, passing in the relevant
AssertionOptions configuration. Under the hood,
the code composes and transpiles an augmented cir-
cuit that embeds the Swap Test or measurement in-
structions. By leveraging Qiskit’s SamplerV2, it sup-
ports both local simulators and remote quantum de-
vices. The execution results are returned in a struc-
tured form, which AssertsQ analyzes to produce a
definitive pass/fail statement along with a numerical
similarity or distance metric. If an assertion fails due
to exceeding the specified tolerance, developers im-
mediately receive an exception with a detailed mes-
sage describing the discrepancy, enabling rapid feed-
back loops for circuit debugging.

This integrated process reduces the burden of writ-
ing custom verification scripts and leverages estab-
lished quantum programming paradigms. By au-
tomating tasks such as circuit compilation, backend
orchestration, and result interpretation, AssertsQ en-
sures that development teams can focus on algorithm
design and performance optimization, confident that
any functional regressions or unintended circuit trans-
formations will be detected promptly.

S TOOL VALIDATION

5.1 Results

This section presents the main findings from running
AssertsQ on three representative quantum algorithms
(GHZ, QFT, and Grover) at different qubit scales (5
and 10) as presented in Section 3 As explained in the
methodology, each circuit was tested in both noise-
less and noisy simulation modes (ibm_sherbrooke-
inspired model).

Table 1: Results for assert_equals with GHZ, QFT, and
Grover Circuits.

Circuit Qubits Noiseless Fidelity Noisy Fidelity

GHZ 5 1.0 0.4785
GHZ 10 1.0 0.1406
QFT 5 1.0 0.3633
QFT 10 1.0 0.04297
Grover 5 1.0 0.1269
Grover 10 1.0 0.0039

Table 1 reports the fidelity of GHZ, QFT, and
Grover circuits when tested with assert_equals.
The ideal (noiseless) scenario yields fidelity 1.0
across all circuits, confirming perfect overlap. Un-
der simulated noise however, fidelity degrades sig-
nificantly, especially for circuits with deeper gate se-
quences such as Grover of 10 qubits and QFT of 10
qubits.

Table 2: Results for assert_equals_measure with GHZ,
QFT, and Grover Circuits.

Circuit Qubits Noiseless TVD Noisy TVD
GHZ 5 0.0185 0.0361
GHZ 10 0.0263 0.0830
QFT 5 0.0996 0.1035
QFT 10 0.5332 0.5313
Grover 5 0.1201 0.0664
Grover 10 0.5292 0.5244

A measurement-based comparison ~ via
TVD (AssertsQ) was performed with the
assert_equals_measure method. Table 2 shows
how GHZ, QFT, and Grover circuits produce output
distributions that remain close under ideal conditions
but diverge in the presence of noise. For higher qubit
counts, deeper gate depths lead to larger TVD values.

Table 3: Results for assert_equals_state with GHZ,
QFT, and Grover Circuits.

Circuit Qubits Noiseless Fidelity Noisy Fidelity

GHZ 5 1.0 0.3184
GHZ 10 1.0 Incomplete
QFT 5 1.0 0.2461
QFT 10 1.0 0.0039
Grover 5 1.0 0.2051
Grover 10 1.0 0.0332

Lastly, assert_equals_state was used to check
whether a circuit’s final state matched a known ref-
erence state. Table 3 reveals that noiseless fidelity
remains at 1.0, whereas, as expected, noisy fidelity
deteriorates sharply as the number of qubits and cir-

AssertsQ: A Quantum Assertion Tool for Quantum Software Debugging

cuit depth increase (for instance, QFT with 10 qubits
drops near 0.0039). The assert_equals_state
noisy simulated experiment for GHZ with 10 qubits
was not fully executed due to our local hardware lim-
itations due to the large depth of the proper experi-
ment, more info about the hardware conducted for the
experiments see 6.

Table 4: Circuit depths before and after transpilation for all
the techniques presented in this paper. (a) assert_equals,
(b) assert_equals_state, (c) assert_equals_measure.

Circuit Qubits Before After (a) After (b) After (c)

GHZ 5 5 223 454 25
GHZ 10 10 491 7095 33
Grover 5 13 893 770 493
Grover 10 13 7748 7689 6895
QFT 5 34 409 395 109
QFT 10 74 902 6543 423

To highlight the relationship between circuit
depth and noise impact Table 4 track both the
original depth (before embedding the swap test
or measurement blocks) and the transpiled depth.
For techniques requiring extra gates (for example,
assert_equals_state needs reference-state initial-
ization plus controlled swaps), the depth can multiply
exponentially.

Figures 5, 6, and 7 provide a deeper look at how
fidelity and total variation distance (TVD) vary with
circuit depth and qubit count. In Figure 5, we ob-
serve that GHZ maintains comparatively higher fi-
delity than QFT and Grover when the circuit involves
fewer qubits, but all three sharply decline at 10 qubits
under noisy conditions. Figure 6 captures the signifi-
cant jump in transpiled circuit depth (shown on a log
scale) once additional gates for state assertion or mea-
surement are introduced. GHZ, for instance, shows
a notable increase in depth when asserting its state
vector against a reference state vector, whereas direct
measurement remains less expansive in gate count.
Finally, Figure 7 illustrates how each technique’s fi-
delity (top two plots) drops as circuit size grows, par-
ticularly for QFT and Grover at 10 qubits, and how
the measurement-based TVD (bottom plot) escalates
above 0.5 for larger circuits. Collectively, these plots
mirror the tabulated results: circuits that are deeper or
have more qubits become more susceptible to noise,
and the choice of verification method (swap test, state
assertion, or direct measurement) can greatly affect
both circuit overhead and accuracy.

5.2 Discussion

The experimental results obtained from validating As-
sertsQ across the GHZ, QFT, and Grover algorithms

55

IQSOFT 2025 - 1st International Conference on Quantum Software

Noisy Simulation Fidelity Comparison

Grover-10 - ::;Z Esstemon
Grover-5
QFT-10
QFT-5
GHZ-10
GHZ-5
00 01 02 03 0.4 0s

. Fidelity (Noisy Simulation)

Figure 5: Fidelity Degradation with qubit count under noisy
conditions for Swap Test vs. State Assertion Methods. The
notation works as follows: algorithm-number of qubits
tested” (e.g. GHZ-10 means GHZ for 10 qubits).

Transpiled Circuit Depth Comparison - Log Scale

Grover-10
Grover-5
QFT-10

QFT-5

GHZ-10
Swap Test

Il State Assertion
I Direct Measurement

GHZ-5

162 ul)i 164
Circuit Depth (log scale)

Figure 6: Transpiled Circuit Depth Comparison for the
3 studied methods: Direct Measurement, Swap Test, and
State-Assertion Method. The notation works as follows:
”algorithm-number of qubits tested” (e.g. GHZ-10 means
GHZ for 10 qubits).

under both noiseless and noisy conditions reveal crit-
ical insights into the framework’s performance and
its susceptibility to key quantum circuit parameters:
circuit depth and the number of qubits. These find-
ings, as summarized in Tablesl, 2, 3, and 4, along-
side Figures5, 6, and 7, underscore the interplay be-
tween quantum circuit complexity, noise effects, and
the choice of assertion method. Below, we provide a
detailed analysis of the results and explain the under-
lying reasons for their observed trends.

In the noiseless simulation environment, all as-
sertion methods consistently achieve perfect fidelity
(1.0) or near-zero TVD across all tested algorithms
and qubit scales. This is evident in Tables 1, 3, and
2 for the ideal cases. The perfect fidelity reflects the
absence of noise, allowing the quantum states or out-
put distributions to align precisely with their expected
counterparts.

Under noisy conditions, the performace of As-
sertsQ degrades significantly, with fidelity decreasing

56

Swap Test Fidelity Degradation

0.5 1
—e— GHZ
—.— QFT
] Grover
<, 031
=
3
= 02
0.1
0.0
‘ T
’ 10
Number of Qubits
State Assertion Fidelity Degradation
0.30 e S
. - OFT
Grover
0.25 -
~
~
5. 0.201 .o .
£ -~
o ~
g 0151 e
[\\\
0.10 4 e
S
N
by
0.05 - ‘\\\
~
~
~
0.00 iy
: T
- 10
Number of Qubits
Direct Measurement TVD Increase
- GHZ 3
o 0.5 ke QFT .
g Tk Grover
T
#0471
o
S 03]
2
(]
& o2
go
s
1
'9 e A
T
‘ T
’ 10

Number of Qubits
Figure 7: Fidelity and TVD Trends vs. Qubit Count.

and TVD increasing as circuit depth grows. This trend
is most pronounced in algorithms with inherently
deeper circuits, such as QFT and Grover, compared
to the relatively shallow GHZ circuit. The primary
reason for this degradation is the accumulation of er-
rors for deeper cicuits. Each quantum gate introduces
a small probability error, such as gate infidelity or de-
coherence in noisy environments. As circuit depth
increases, the number of gates grows, amplyfing the
cumulative error. For example, QFT involves a series
of Hadamard and controlled-phase gates scaling with
O(n?), while Grover"s algorithm applies multiple iter-
ations of the Grover operator, each adding gates pro-
portional to the qubit count. In contrast, GHZ’s depth
scales linearly with n due to its single Hadamard fol-
lowed by a CNOT chain, resulting in fewer opportuni-
ties for error accumulation. This depth-dependent er-

ror propagation explains why GHZ maintains higher
fidelity under noise compared to QFT and Grover, as
visualized in Figure 5.

The number of qubits further exacerbates
performance degradation under noise. For
swap test-based methods (assert_equals and
assert_equals_state), requires 2n + 1 qubits,
where 7 is the number of qubits in the original circuit,
plus one ancilla qubit. This doubling arises because,
as stated before, the swap test compares two n-qubit
states using controlled swap operations mediated by
the ancilla. As n increases from 5 to 10, the total
system size grows from 11 to 21 qubits, respectively.

As for assert_equals_measure avoids the swap
test, using only n qubits and appending measure-
ments, resulting in shallower circuits (e.g. 34 for
10-qubit GHZ), relying solely on classical post-
processing. However, its TVD metric (Table2)
captures only classical output distributions, missing
quantum state details and yielding higher TVD values
(e.g. 0.62 for 10-qubit QFT) under noise. Quantifying
the precise level of improvement offered by a new tool
within the evolving field of Quantum Software Engi-
neering (QSE) is inherently complex, as noted by re-
viewers. However, the assertion framework presented
here introduces tangible benefits to the development
and verification workflow for quantum circuits.

We propose a tiered strategy for quantum cir-
cuit verification that accommodates varying hard-
ware constraints, debugging goals, and developmen-
tal phases. Measurement-based verification (‘as-
sert_equals_measure‘) serves as a practical starting
point for rapid prototyping on NISQ devices or when
usage quotas are limited, as demonstrated by the 34-
gate requirement for verifying a 10-qubit QFT com-
pared to the 1297 gates needed for swap-test-based
approaches. Although this method is less sensitive
to the full quantum state, it enables quick iterations
for early-stage development. By contrast, the swap-
test-based approach (‘assert_equals®) strikes a mid-
dle ground, detecting subtler phase-sensitive errors
such as those arising in QAOA and VQE while re-
quiring 2n+1 qubits. This increased resource cost is
justified by its ability to uncover mistakes that the
measurement-based method might overlook. For ap-
plications needing the highest possible fidelity, ex-
act state verification (‘assert_equals_state‘) delivers
the strictest validation and is invaluable for final cir-
cuit confirmation and error-correcting code develop-
ment. However, due to its steep computational ex-
pense, it is most appropriate for circuits with up to
around ten qubits. By beginning with measurement-
based checks, then adopting the swap test for phase-
sensitive debugging, and ultimately employing exact

AssertsQ: A Quantum Assertion Tool for Quantum Software Debugging

state verification for final or mission-critical analyses,
developers can balance resource expenditure with ver-
ification accuracy throughout the lifecycle of quantum
application design.

Beyond its core validation capabilities, AssertsQ
delivers critical advances to quantum software en-
gineering by automating verification tasks—such as
swap tests or custom comparison circuits—that would
otherwise require ad hoc approaches, thereby sub-
stantially reducing verification time. Additionally,
its standardized assertion interface fosters consistency
and reusability across diverse algorithms (e.g., GHZ,
QFT, Grover’s), enabling a more systematic, test-
driven workflow that integrates seamlessly with con-
tinuous integration pipelines. Finally, the frame-
work’s configurable tolerance thresholds align with
NISQ-era hardware realities, allowing developers
to incrementally adjust these thresholds based on
hardware-specific noise and thus facilitate nuanced
error analysis beyond binary pass/fail outcomes. This
capability is especially beneficial when moving algo-
rithms from ideal simulations to noisy devices, re-
moving the need for separate noise analysis tools.

In addition to this, as discussed while noise
does affect the fidelity of the assertions, particularly
for deeper circuits, AssertsQ provides mechanisms
such as adjustable tolerances and multiple verification
methods to accommodate these challenges. In indus-
trial settings, where quantum software development
often involves iterative testing on simulators before
hardware deployment, AssertsQ can play a crucial
role in verifying circuit correctness at various stages.
Furthermore, for smaller-scale circuits or those with
manageable depths, the tool maintains sufficient fi-
delity to detect errors effectively. Thus, we contend
that AssertsQ with slight improvements has indeed
potential to be industrially applicable, offering a prac-
tical solution for quantum software debugging in the
current NISQ era.

AssertsQ provides distinctive contributions to
quantum circuit validation compared to existing
frameworks AssertsQ offers a resource-efficient and
integrated solution for quantum circuit validation. By
using the swap test, it validates circuits with only
2n+1 qubits—far more scalable than measurement-
intensive tomography (Yuen, 2023). Unlike frame-
works limited to either state fidelity (Vadali et al.,
2024) or distribution checks (Maciejewski et al.,
2023), AssertsQ unifies both, crucial for detecting
phase errors that TVD-based methods alone would
miss. Its noise-aware design features configurable
thresholds, balancing theoretical rigor with NISQ-
era feasibility. Furthermore, direct integration with
Qiskit’s transpilation pipeline lowers the adoption

57

IQSOFT 2025 - 1st International Conference on Quantum Software

barrier, making AssertsQ a practical and scalable
toolkit for quantum software verification.

In conclusion, AssertsQ effectively verifies quan-
tum circuits in ideal conditions but reveals the chal-
lenges of noise, circuit depth, and qubit scaling in re-
alistic settings. Its swap test-based methods, requiring
2n + 1 qubits,offer a compact alternative to tomog-
raphy, yet their efficacy diminishes for large, deep
circuits on NISQ devices whereas the measurement-
based assertion offers a lighter alternative for verify-
ing output distributions, though it sacrifices quantum
state specificity.

These insights inform quantum software develop-
ment by highlighting trade-offs between verification
accuracy and practical feasibility, paving the way for
future refinements in quantum debugging tools.

6 CONCLUSION

The development of AssertsQ demonstrates that au-
tomated, swap-test-based quantum assertions can be
both practical and adaptable for a wide range of
circuit verification tasks. By seamlessly integrat-
ing with Qiskit and supporting multiple verifica-
tion modes—including direct circuit-to-circuit com-
parison, state overlap checks, and measurement-
based distribution comparisons—AssertsQ simplifies
the process of diagnosing and correcting circuit-level
errors. The framework’s reliance on either real or sim-
ulated backends, coupled with adjustable tolerance
thresholds, accommodates both noisy intermediate-
scale quantum devices and idealized simulation envi-
ronments. Thus, aiding the circuit verification process
and accelerating the development of new and accurate
quantum software.

Experimental results show that each verification
approach has distinct trade-offs in terms of circuit
depth, susceptibility to noise, and granularity of
the diagnostic information provided. Measurement-
based checks via TVD are comparatively simpler but
can overlook subtle state overlaps, while swap-test-
based assertions offer deeper insight at the expense of
additional qubits and gates. These extra resources be-
come especially significant for multi-qubit or highly
entangled circuits, where transpilation and noise ac-
cumulation pose notable challenges. Nonetheless, the
ability of AssertsQ to capture discrepancies in both
simulated and real-world conditions underscores its
potential value in current and forthcoming quantum
applications.

Although AssertsQ currently relies heavily on
simulations, rigorous testing on real quantum hard-
ware (e.g., IBM Quantum) is essential to confirm

58

its noise resilience and empirically align simulation
results with physical behavior. Extending cross-
platform support to frameworks like Cirq and Ama-
zon Braket will further broaden its applicability by
accommodating different circuit representations and
backends. Robust diagnostics also motivate the cre-
ation of assertion coverage metrics—akin to classi-
cal code coverage—to guide where and how often
quantum assertions should be placed for maximum
effect and therefore being capable of knowing how
much these assertions could improve quantum com-
puting software development. Coupling these metrics
with IDE integration (e.g., VS Code) would enable
live fidelity visualization, assertion breakpoints, and
automated diagnostics within a familiar development
workflow.

Since many assertions depend on ancillary qubits,
minimizing their overhead and vulnerability to noise
is critical; strategies such as probabilistic error cancel-
lation (PEC), extrapolation, advanced transpiler opti-
mizations, and careful qubit mapping can help pre-
serve circuit fidelity. Finally, scaling to larger cir-
cuits (beyond 50 qubits) calls for approaches like par-
tial tomography, circuit cutting, and adaptive proto-
cols informed by calibration data or machine learn-
ing. These collective enhancements will strengthen
AssertsQ as a robust debugging platform for near-
term quantum systems and establish a foundation for
enduring verification methodologies.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the partial
financial support by Ministry of Science (project
QSERV-UD, PID2021-1240540B-C33). Addition-
ally, Mr. Danel Arias thanks the Basque-Q strategy
of Basque Government for partially funding his doc-
toral research at the University of Deusto, within the
Deusto for Knowledge - D4K team on applied arti-
ficial intelligence and quantum computing technolo-
gies.

REFERENCES

Abreu, R., Fernandes, J. P, Llana, L., and Tavares, G.
(2022). Metamorphic testing of oracle quantum pro-
grams. In Proceedings of the 3rd International Work-
shop on Quantum Software Engineering, pages 16—
23.

Arias, D., Garcia Rodriguez de Guzmdn, 1., Rodriguez, M.,
Terres, E. B., Sanz, B., Gaviria de la Puerta, J., Pastor,
L., Zubillaga, A., and Garcia Bringas, P. (2023). Let’s
do it right the first time: Survey on security concerns

in the way to quantum software engineering. Neuro-
computing, 538:126199.

Arias, D., Sanz, B., de la Puerta, J. G., Pastor, 1., and
Bringas, P. G. (2022). A repeated mistake is a choice:
Considering security issues and risks in quantum com-
puting from scratch. In 14th International Confer-
ence on Computational Intelligence in Security for In-
formation Systems and 12th International Conference
on European Transnational Educational (CISIS 2021
and ICEUTE 2021) 14, pages 156-166. Springer.

Cincio, L., Subagi, Y., Sornborger, A. T., and Coles, P. J.
(2018). Learning the quantum algorithm for state
overlap. New Journal of Physics, 20(11):113022.

Dahlhauser, M. L. and Humble, T. S. (2024). Benchmarking
characterization methods for noisy quantum circuits.
Physical Review A, 109(4):042620.

Fortunato, D., Campos, J., and Abreu, R. (2022). Muta-
tion testing of quantum programs: A case study with
qiskit. IEEE Transactions on Quantum Engineering,
3:1-17.

Foulds, S., Kendon, V., and Spiller, T. (2021). The
controlled swap test for determining quantum en-
tanglement. Quantum Science and Technology,
6(3):035002.

Garcia de la Barrera Amo, A., Serrano, M. A., Garcia
Rodriguez de Guzmadn, I., Polo, M., and Piattini,
M. (2022). Automatic generation of test circuits
for the verification of quantum deterministic algo-
rithms. In Proceedings of the Ist International Work-
shop on Quantum Programming for Software Engi-
neering, pages 1-6.

Garcia-Escartin, J. C. and Chamorro-Posada, P. (2013).
Swap test and hong-ou-mandel effect are equivalent.
Physical Review A—Atomic, Molecular, and Optical
Physics, 87(5):052330.

Guo, Y. and Yang, S. (2024). Scalable quantum state tomog-
raphy with locally purified density operators and local
measurements. arXiv preprint arXiv:2307.16381.

Hashim, A., Seritan, S., Proctor, T., Rudinger, K., Goss, N.,
Naik, R. K., Kreikebaum, J. M., Santiago, D. I., and
Siddiqi, I. (2023). Benchmarking quantum logic op-
erations relative to thresholds for fault tolerance. npj
Quantum Information, 9(1):109.

Hoag, E., Zhu, M., and Decker, S. (2019). qdb: Inserted
tomography for breakpoint debugging in.

Iten, R., Colbeck, R., Kukuljan, I., Home, J., and Chri-
standl, M. (2016). Quantum circuits for isometries.
Physical Review A, 93(3):032318.

Kang, C. G., Lee, J., and Oh, H. (2024). Statistical testing
of quantum programs via fixed-point amplitude am-
plification. Proceedings of the ACM on Programming
Languages, 8(OOPSLA2):140-164.

Khan, M. U., Kamran, M. A., Khan, W. R., Ibrahim, M. M.,
Ali, M. U., and Lee, S. W. (2024). Error mitigation in
the nisq era: Applying measurement error mitigation
techniques to enhance quantum circuit performance.
Mathematics, 12(14):2235.

Li, G., Zhou, L., Yu, N., Ding, Y., Ying, M., and Xie, Y.
(2019). Proq: Projection-based runtime assertions for

AssertsQ: A Quantum Assertion Tool for Quantum Software Debugging

debugging on a quantum computer. arXiv preprint
arXiv:1911.12855.

Maciejewski, F. B., Puchala, Z., and Oszmaniec, M. (2023).
Operational quantum average-case distances. Quan-
tum, 7:1106.

Madsen, L. S., Laudenbach, F., Askarani, M. F., Rortais,
F., Vincent, T., Bulmer, J. F., Miatto, F. M., Neuhaus,
L., Helt, L. G., Collins, M. J., et al. (2022). Quantum
computational advantage with a programmable pho-
tonic processor. Nature, 606(7912):75-81.

Memon, Q. A., Al Ahmad, M., and Pecht, M. (2024). Quan-
tum computing: navigating the future of computation,
challenges, and technological breakthroughs. Quan-
tum Reports, 6(4):627-663.

Metwalli, S. A. F. M. (2024). A suite for testing and debug-
ging quantum programs.

Mundada, P., Zhang, G., Hazard, T., and Houck, A. (2019).
Suppression of qubit crosstalk in a tunable coupling
superconducting circuit. Physical Review Applied,
12(5):054023.

Paltenghi, M. and Pradel, M. (2023). Morphq: Metamor-
phic testing of the giskit quantum computing plat-
form. In 2023 IEEE/ACM 45th International Confer-
ence on Software Engineering (ICSE), pages 2413—
2424. IEEE.

Paltenghi, M. and Pradel, M. (2024). A survey on test-
ing and analysis of quantum software. arXiv preprint
arXiv:2410.00650.

Piattini, M., Peterssen, G., and Pérez-Castillo, R. (2021).
Quantum computing: A new software engineering
golden age. ACM SIGSOFT Software Engineering
Notes, 45(3):12-14.

Pontolillo, G. J. and Mousavi, M. R. (2024). Delta debug-
ging for property-based regression testing of quantum
programs. In Proceedings of the 5th ACM/IEEE Inter-
national Workshop on Quantum Software Engineer-
ing, pages 1-8.

Ramalho, N. C., Amario de Souza, H., and Lordello Chaim,
M. (2024). Testing and debugging quantum programs:
The road to 2030. ACM Transactions on Software En-
gineering and Methodology.

Usandizaga, E. M., Yue, T., Arcaini, P, and Alj, S. (2023).
Which quantum circuit mutants shall be used? an em-
pirical evaluation of quantum circuit mutations. arXiv
preprint arXiv:2311.16913.

Vadali, A., Kshirsagar, R., Shyamsundar, P., and Perdue,
G. N. (2024). Quantum circuit fidelity estimation us-
ing machine learning. Quantum Machine Intelligence,
6(1):1.

Wang, X., Yu, T., Arcaini, P, Yue, T., and Ali, S. (2022).
Mutation-based test generation for quantum programs
with multi-objective search. In Proceedings of the ge-
netic and evolutionary computation conference, pages
1345-1353.

Yuen, H. (2023). An improved sample complexity lower
bound for (fidelity) quantum state tomography. Quan-
tum, 7:890.

59

IQSOFT 2025 - 1st International Conference on Quantum Software

APPENDIX

Mathematical Derivation of the Swap
Test Similarity

In this subsection the derivation that underpins the
functionality of methods like assert_equals and
assert_equals_state in AssertsQ is presented. The
measured probability Py (see below) is translated to
a numerical similarity or fidelity metric, thereby en-
abling automated verification of circuit or state equiv-
alence. The following derivation is based on the state
of art (Garcia-Escartin and Chamorro-Posada, 2013)
and (Foulds et al., 2021).

Definition 1 (Quantum States). Let |y) and |¢)
be two quantum states defined on an n-qubit Hilbert
space, and let the ancilla qubit be initialized in the
state |0).

Problem Statement. The objective of the Swap Test
is to estimate the squared overlap (or similarity) be-
tween these two states (|y) and |¢)) by measuring a
single ancilla qubit:

(v | 0))?

Proposition 1 (Swap Test Fidelity). After applying a
sequence of operations to the system, the probability
Py of measuring the ancilla in state |0) is related to the
squared overlap of [y) and |¢) by:

[(w]0)> =2pR 1.

Proof. We apply the Swap Test circuit and track the
system step by step.

1. Initial state
|O>ancilla ® |\|f> & |¢>

2. Hadamard on the Ancilla.
The Hadamard transform acts as follows:

H‘O> ancilla = (‘O>ancilla + | 1>ancilla) .

V2

The system state becomes:
1
E (|O>ancilla+ |1>ancilla) ® |\|f> & M))

3. Controlled-SWAP Operation.
The controlled-SWAP swaps |y) and |¢) only if
the ancilla is in |1), producing:
1

75 1 Ohacita)10} + | e))

60

4. Second Hadamard on the Ancilla.
Applying H again:

Z5(0+m). Hn=—2=(0-1).

Expanding this transformation:

H|0) =

2 10V ancine (9)16) + 0)19) -+ [Dancina (910} — 10})]

5. Measurement of the Ancilla.
The probability of measuring |0)aneiria i given by
the squared norm of its coefficient:

1
Po= [1wlo) + 0w
Using the identity:
)+ 311> = x| 2) + ([¥) +2Refx [y).
Note that:

2

(ly)=(0[¢)=1
Thus:

P = (24 2Rety o)) = TRV,

6. Final Expression.
For pure states, it holds that:

=2 (1+]twl9).

Solving for | {y | q>>\2:

(| 0)|* =2Py— 1.
O

Hardware Used for the Experiments

All the experiments described in this paper were car-
ried out on a system running Microsoft Windows 10
Pro. The system was an HP ZBook Firefly 16 inch
G10 Mobile Workstation PC, equipped with a 13th
Gen Intel(R) Core(TM) i7-1365U processor at 1.8
GHz, featuring 10 physical cores and 12 logical pro-
cessor and 32.0 GB of RAM.

Code Availability

The code used to implement the tool in this work
is available at the AssertsQ GitHub repository?.
The repository includes all relevant scripts neces-
sary to replicate the results presented in this pa-
per. For questions regarding the code or its appli-
cation, please contact the corresponding author at
javi.ibarra@deusto.es.

ZRepository available in
DeustoTech/AssertsQ.

https://github.com/

