
Guidelines for the Application of Hybrid Software Design Patterns

Michal Baczyk1 and Ricardo Pérez-Castillo2

1Alarcos Research Group, University of Castilla-La Mancha, Ciudad Real, Spain
2Alarcos Research Group, University of Castilla-La Mancha, Talavera de la Reina, Spain

Keywords: Quantum Software Engineering, Patterns, Design Patterns, Circuit Design, Quantum Algorithms.

Abstract: Quantum Software Engineering is increasingly leveraging design patterns to codify best practices for develop-
ing quantum algorithms and applications. In this work, we conduct an extensive review of academic sources
and open-source projects focused on quantum software design patterns. We identify dozens of recurring pat-
terns spanning quantum algorithm structure, state preparation, data encoding, hybrid quantum-classical work-
flows, variational algorithms, and execution strategies. We organize these patterns into a unified framework,
providing a guide detailing each pattern’s qubit and gate requirements, classical processing needs, and catego-
rization relevant from the application perspective. We observe a key trend of the expansion of pattern catalogs
to support hybrid variational algorithms and NISQ-era challenges (e.g., warm-starting, circuit cutting), and
the emergence of patterns to improve modularity, reusability, and interoperability of quantum software. Our
findings aim to guide practitioners in applying proven design solutions in quantum application development.

1 INTRODUCTION

Quantum computing promises exponential speedups
for certain classes of problems, but designing cor-
rect and efficient quantum programs remains chal-
lenging. As the field matures, there is an increasing
need for systematic software engineering principles
tailored to quantum computing (Piattini et al., 2020;
Serrano et al., 2022). The Talavera Manifesto for
Quantum Software Engineering highlights the impor-
tance of improving quantum software quality through
higher-level abstractions and best practices.

In practice, quantum software rarely exists in iso-
lation but is integrated with classical components,
forming hybrid quantum-classical systems. A well-
defined software architecture for such hybrid systems
fosters key benefits: it enables scalable integration of
emerging quantum hardware, supports modular and
reusable designs, and provides high-level abstractions
that simplify maintenance and evolution. Moreover,
it facilitates smooth interoperability among different
hardware providers (e.g., IBM, Rigetti, IonQ, QuEra,
etc.) and helps standardize best practices that promote
reliability and predictability in quantum software de-
velopment.

In classical software engineering, design patterns
have long been used to capture reusable solutions
to common design problems (Gamma et al., 1994;

Buschmann et al., 1996). Likewise, researchers have
begun identifying quantum software design pat-
terns: recurring strategies that arise in quantum algo-
rithm design and hybrid quantum-classical program-
ming (Leymann, 2019; Weigold et al., 2022). In
recent years, a nascent pattern language for quan-
tum computing has emerged (Weigold et al., 2021;
Jiménez-Fernández et al., 2023), documenting core
quantum algorithm patterns such as state initializa-
tion, oracles, and amplitude amplification (Bühler
et al., 2023; Truger et al., 2024), as well as data
encoding patterns (Weigold et al., 2022; Bühler
et al., 2023), patterns for variational and hybrid al-
gorithms (Weigold et al., 2021), and execution strate-
gies (Bühler et al., 2023; Georg et al., 2023; Bechtold
et al., 2023).

These patterns aim to improve reusability, main-
tainability, and interoperability in quantum software,
yet there are few guidelines on how to systematically
select and apply them. This gap hinders the effec-
tive design of hybrid quantum-classical software ar-
chitectures, undermining the realization of their ben-
efits. To address this, we conduct a review and
synthesis of quantum software design patterns re-
ported in academic literature and gleaned from real-
world implementations. Our analysis extends beyond
published research to open-source repositories (e.g.,
Qiskit, PennyLane), extracting practical insights into

Baczyk, M. and Pérez-Castillo, R.
Guidelines for the Application of Hybrid Software Design Patterns.
DOI: 10.5220/0013539500004525
In Proceedings of the 1st International Conference on Quantum Software (IQSOFT 2025), pages 105-111
ISBN: 978-989-758-761-0
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

105



how these patterns are employed in actual quantum
development workflows.

In this paper, we identify all relevant design
patterns for hybrid quantum-classical software sys-
tems and organize them into logical categories. Ta-
ble 1 provides a unified view of these patterns, detail-
ing their quantum resource requirements (number of
qubits and gates), classical pre-/post-processing, and
typical use cases. We exclude low-level error correc-
tion or mitigation patterns – we focus on higher-level
algorithmic and software-structural guidance.

Section 2 presents a comprehensive catalog of
quantum software design patterns, summarizing their
resource footprints, classical components, and known
limitations, as well as discussing how they address
key challenges in the current Noisy Intermediate-
Scale Quantum (NISQ) era. We then illustrate, in Sec-
tion 3, how modern frameworks such as Qiskit, Cirq,
PennyLane, and Amazon Braket implement these pat-
terns through abstractions for oracle creation, data en-
coding, and hybrid optimization loops. By consoli-
dating these insights, we aim to provide a clear set
of guidelines for selecting and applying design pat-
terns in the development of robust hybrid quantum-
classical software systems.

2 QUANTUM SOFTWARE
DESIGN PATTERNS AND
THEIR APPLICABILITY

Table 1 summarizes quantum software design pat-
terns. Each entry highlights:

• Name / Purpose: Brief description of the pattern
and the main algorithmic function.

• Resource Footprint: Number of qubits, types of
gates, and expected circuit depth.

• Classical Processing: Details on any pre-/post-
processing or real-time feedback loops.

• Topology Constraints: Special hardware con-
nectivity considerations.

• Typical Applications: Common use cases and al-
gorithmic settings.

• Limitations: Known challenges, such as high
gate counts or noise sensitivity.

• Reference: Key literature references for further
reading.

These patterns can be grouped into high-level cat-
egories. The Algorithm Core patterns address funda-
mental quantum operations like Initialization or Ora-
cle building, crucial to tasks such as search or decision

problems. Data Encoding patterns define how classi-
cal data is loaded into quantum states, impacting re-
source requirements and circuit depth. Hybrid Algo-
rithms focus on parameterized or iterative approaches
that integrate classical optimization. Software Module
patterns promote modular, maintainable code through
reusable components, while Execution and NISQ pat-
terns attend to real-world implementation details, es-
pecially under limited qubit counts and noisy condi-
tions.

2.1 Applicability in Hybrid
Quantum-Classical Workflows

The Classical Processing and Topology Constraints
columns in Table 1 are particularly relevant to hybrid
approaches. Patterns like Variational Quantum Al-
gorithm or Ad-hoc Hybrid emphasize iterative feed-
back loops and repeated measurements. Here, hard-
ware constraints and available classical computation
strongly influence pattern selection. For example,
Circuit Translator patterns are vital when match-
ing a logical circuit to the hardware coupling map or
when bridging different quantum frameworks.

2.2 Guidelines for Pattern Selection

In this subsection, we present guidelines for practi-
tioners to help them choose design patterns for hy-
brid quantum-classical applications. Our approach is
based upon the analysis patterns outlined in Table 1,
which incorporates both usual considerations (e.g.,
Resource Footprint, Classical Processing, Topology
Constraints) and increasingly important factors (e.g.,
Problem Addressed, Quantum-Classical Interaction
Type, Scalability Considerations). By considering all
those factors, we aim to help developers identify pat-
terns that align with their specific goals, hardware re-
sources, and software architecture.

Below we outline the step-by-step process.

1. Identify the Core Challenge and Relevant Pat-
tern Category:
Begin by clarifying the central problem the hy-
brid system is intended to solve. Whether the
goal involves data initialization (Amplitude En-
coding, Basis Encoding), processing functionality
(Oracle, Entanglement), or optimization (Varia-
tional Quantum Algorithm), identifying this fo-
cus narrows down which categories (e.g., Algo-
rithm Core, Data Encoding, Hybrid Algorithms)
are most useful.

2. Estimate the Resource Footprint and Com-
plexity:

IQSOFT 2025 - 1st International Conference on Quantum Software

106



Table 1: Quantum software design patterns: Core algorithmic patterns, data-encoding strategies, hybrid algorithms, modular
software components, and NISQ execution strategies.

Name / Purpose Resource Footprint Classical Processing Topology Constraints Typical Applications Limitations Reference

Algorithm Core

Initialization Requires qubits for the problem
size; no gates for the all-zero
state (default for many SDKs).
Minimal depth if standard.

No classical overhead unless
advanced prep is used (classi-
cal data might define angles).

Not sensitive to hardware
connectivity if no entan-
gling gates.

Fundamental for most quan-
tum algorithms (simulation,
cryptography, etc.).

Gate overhead grows for non-
trivial states; prone to prep er-
rors on noisy devices.

(Bühler et al.,
2023; Leymann,
2019)

Uniform Super-
position

Needs as many qubits as
the input size; typically one
Hadamard per qubit. Depth
about one plus overhead.

No big classical overhead; op-
tional control for adaptive se-
quences.

Single-qubit operations
only, weakly dependent on
connectivity.

Common in Grover’s search,
amplitude amplification.

Phase errors may accumulate;
precise single-qubit calibrations
needed.

(Bühler et al.,
2023; Weigold
et al., 2022)

Entanglement At least two qubits; uses con-
trolled gates (CNOT, CZ).
Depth depends on pairs.

Usually no classical over-
head. Possibly some coordi-
nation in hybrid programs.

Important if qubits are not
directly connected; may re-
quire gate routing.

Central in teleportation, su-
perdense coding, error cor-
rection, EPR pairs.

Sensitive to decoherence and
cross-talk; higher error rates.

(Leymann,
2019; Bühler
et al., 2023)

Oracle Qubits depend on the function;
custom multi-qubit gates or se-
quences. Depth follows func-
tion complexity.

Classical pre-processing to
build the reversible circuit.
Post-processing to check ora-
cle results.

Routing needed if connec-
tivity is limited. Multi-
controls might need ancil-
las.

Key for search, Boolean
function evaluations, etc.

Large oracles consume re-
sources; mapping from classical
logic can be complex.

(Georg et al.,
2023)

Uncompute Often uses ancillas; same gate
count as forward subcircuit in
reverse. Depth roughly doubled.

No extra classical overhead;
purely quantum. Possibly
some logic for subcircuit
choice.

Constraints mirror the
original subcircuit.

Clears ancilla qubits (restor-
ing them to zero). Common
in arithmetic, phase estima-
tion.

Doubles depth, increasing over-
all error.

(Bühler et al.,
2023)

Amplitude Am-
plification

Depends on scale; oracle plus
diffuser repeated. Gate count
and depth scale with iterations.

Optional measurement at the
end. Feedback loops in adap-
tive variants.

Limited by multi-qubit
gate connectivity.

Used in Grover’s search,
combinatorial optimization.

Iterations grow as square root of
problem size; gate errors accu-
mulate.

(Bechtold et al.,
2023)

Data Encoding

Basis Encoding Uses ⌈log2(k)⌉ qubits for k
states; may need bit-flip gates or
none if already binary. Very low
depth.

Classical data in binary. Min-
imal post-processing unless
partial qubit measurement.

Few connectivity de-
mands; mostly single-qubit
or simple controls.

For categorical states, clas-
sification, simpler quantum
tasks.

Inefficient for large k; misses
amplitude-based advantages.

(Weigold et al.,
2022)

Amplitude
Encoding

⌈log2(M)⌉ qubits for M-dim
data. Potentially O(M) gates for
arbitrary loads.

Classical pre-processing to
get angles or normalize data.
Post-processing to check fi-
delity.

Can be connectivity-heavy
if multi-qubit gates are
needed.

Used in Quantum Machine
Learning, Principal Compo-
nent Analysis, or amplitude-
based speedups.

Large data = big gate count;
noise sensitivity.

(Bühler et al.,
2023)

Angle Encoding One qubit per feature; single-
qubit rotations. Depth is how
many rotations.

Feature values mapped to an-
gles. Post-processing checks
final correlations.

Low connectivity demands
if no entangling layers.

Popular in near-term QML,
classifiers, variational cir-
cuits.

Limited features per qubit; rota-
tion errors matter.

(Bühler et al.,
2023; Georg
et al., 2023)

Quantum Ran-
dom Access
Memory Encod-
ing

Needs log2(M) address qubits +
data qubits. Multi-controls can
grow depth.

Classical data must be or-
ganized for random access.
Post-processing reads out
lines.

Complex routing if con-
nectivity is limited; multi-
controls.

Enables large-scale QML or
database queries in superpo-
sition.

Building true QRAM is hard;
multi-controlled gates raise er-
ror.

(Georg et al.,
2023)

Quantum Asso-
ciative Memory

Qubit count scales with pattern
dimension. Summation of basis
states. Depth varies by retrieval
method.

Might need classical query
for retrieval. Post-processing
identifies matched pattern.

Controlled gates might be
required; connectivity can
matter.

Used in pattern match-
ing, content-addressable
searches, some QML.

Scalability uncertain; large cir-
cuits can be error-prone.

(Weigold et al.,
2022)

Hybrid Algorithms

Variational
Quantum
Algorithm

Problem-dependent qubits;
param. circuit layers (single-
/two-qubit gates). Depth
depends on layer count.

Classical optimizers update
gate params after measure-
ments. Pre-/post- steps for
param setup routines.

Needs mid-circuit mea-
surement or repeated runs.
Entangling layers may
need good connectivity.

Foundational for near-term
heuristics: QML, chemistry,
optimization.

Sensitive to noise, barren
plateaus, slow or stuck classical
optimization.

(Weigold et al.,
2021)

Variational
Quantum
Eigensolver/
Quantum
Approximate
Optimization
Algorithm

Qubits match system/graph.
Param. ansatz with single-/two-
qubit gates. Depth grows with
layering.

Needs iterative classical opti-
mization. Post-processing ob-
tains final params/energies.

Connectivity shapes
ansatz. Distant qubits may
need swaps.

VQE for ground-state ener-
gies, Quantum Approximate
Optimization Algorithm for
combinatorial tasks.

Excess depth undermines ad-
vantage; more layers raise gate
errors.

(Weigold et al.,
2021)

Warm-starting Same qubit/gate needs as main
approach, plus minor overhead
for classical solutions.

A classical solver seeds initial
parameters; post-processing
is standard.

No extra constraints be-
yond regular variational
circuits.

Speeds up hybrid tasks
(portfolio, max-cut) with
classical seeds.

Depends on seed quality; may
fail if guess is poor.

(Truger et al.,
2024)

Software Module

Quantum Mod-
ule

Qubits/gates depend on module
function. Depth varies with rou-
tines.

Classical inputs set params;
post-processing reads states
or outcomes.

Depends on module. Many
entangling gates can be
connectivity-heavy.

Reusable quantum logic
(e.g. arithmetic, oracles,
transformations).

Large modules can be resource-
heavy; must integrate carefully.

(Bühler et al.,
2023)

Hybrid Module Any size, combining quantum
subcircuits + classical routines.
Depth includes quantum + clas-
sical overhead.

Typically has quantum-
classical loops, measurements
feed classical logic.

Quantum portion needs
connectivity. Classical part
may add latency.

Used for end-to-end hybrid
solutions, iterative or data-
driven workflows.

Complex debugging/tuning; re-
peated hardware calls can be
slow.

(Bühler et al.,
2023)

Circuit Transla-
tor

Rewrites circuits without direct
qubit use. Gate count depends
on decomposition.

Uses classical logic to opti-
mize or rewrite gates.

Must match hardware cou-
pling, so connectivity is
key.

Enables cross-framework or
cross-hardware circuit com-
patibility.

Poor translations can increase
depth or gates, reducing fidelity.

(Georg et al.,
2023)

Execution and Noisy Intermediate-Scale Quantum (NISQ)

Standalone Exe-
cution

Follows final compiled circuit’s
qubits/gates. Depth per chosen
algorithm.

Minimal overhead, typically
just job submission and result
retrieval.

Compile-time connectivity
handling, no dynamic
feedback.

For quick prototyping of
small circuits without ad-
vanced mitigation.

Constrained by hardware coher-
ence/fidelity; no built-in mitiga-
tion.

(Piattini et al.,
2020)

Ad-hoc Hybrid Same as circuit, plus overhead
for repeated loop runs.

Host code runs pre-/post-
each quantum run for param-
eter/data adjustments.

No extra constraints, but
repeated calls are time-
consuming.

Prototyping or small-scale
hybrid demos in research
settings.

Inefficient for large param
sweeps; lacks advanced re-
source management.

(Weigold et al.,
2021)

Pre-deployed Supports any qubit/gate scale,
subject to practical limits. Re-
peated instantiation.

Classical logic routes jobs,
collects results, handles
scheduling.

Connectivity matters for
distributed or cloud hard-
ware.

Used by cloud-based
enterprise solutions and
repeated/persistent quantum
jobs.

Scheduling/queue overhead
adds latency; limited real-time
control or debugging.

(Georg et al.,
2023)

Circuit Cutting Splits large circuits into subcir-
cuits. Each subcircuit fits local
qubit limit.

Combines subcircuit mea-
surement results for global
outcome.

Connectivity matters in-
side subcircuits; classical
stitching logic is key.

Distributes large computa-
tions for resource-limited
hardware.

Post-processing grows with
cuts; noise accumulates.

(Bechtold et al.,
2023)

Next, examine the Resource Footprint column for
an overview of the qubit count, gate depth, and

other hardware demands each pattern may intro-
duce. Patterns with sparse multi-qubit operations

Guidelines for the Application of Hybrid Software Design Patterns

107



(e.g., Angle Encoding) often suit near-term hard-
ware constraints, while resource-intensive ap-
proaches (e.g., Oracle, Quantum RAM) may re-
quire more complex routing and additional qubits.
Evaluating these needs in light of available re-
sources can avoid bottlenecks and impractical de-
signs.

3. Determine the Quantum-Classical Interaction
Style:
Consider how the quantum and classical com-
ponents will communicate. For instance, Stan-
dalone Execution assumes minimal back-and-
forth, whereas Variational Quantum Algorithm
and Hybrid Module patterns rely on frequent
quantum-classical feedback loops (e.g., parameter
updates, dynamic data processing). By matching
the quantum-classical interface implementations
to the system’s intended architecture, developers
can achieve the right level of efficiency.

4. Check Hardware Constraints (Topology,
Noise, Qubit Count):
Many design patterns are restricted by hard-
ware limitations. The Topology Constraints
column highlights how connectivity or noise
characteristics can influence pattern selection.
On hardware with linear qubit arrays or high
error rates, techniques like Circuit Cutting
(splitting a large circuit into smaller pieces) or
more straightforward patterns (Initialization,
Uniform Superposition) can offer practical
trade-offs. However, patterns involving complex
multi-qubit gates (Entanglement, Oracle) may
demand additional considerations, such as error
mitigation or deeper circuit scheduling.

5. Weigh Scalability and Performance Consider-
ations:
As quantum hardware and application needs
scale, certain patterns can become gate-intensive
or prone to noise accumulation (e.g., Amplitude
Encoding, QRAM Encoding). It is therefore im-
portant to assess how the pattern performs with
an increasing number of qubits or in repeated
quantum-classical optimization loops.

6. Review Examples and Known Limitations:
Analyzing the Typical Applications and Limita-
tions columns provides real-world insights into
each pattern’s strengths and pitfalls. As an exam-
ple, Uncompute is critical for cleaning up ancillas
but effectively doubles circuit depth, while Vari-
ational Quantum Eigensolver can target chem-
istry or optimization tasks but suffers from barren
plateaus if not carefully tuned. Published tutorials
(e.g., Qiskit’s VQE examples, PennyLane’s tem-

plate library) offer further perspectives on imple-
mentation nuances and best practices.

7. Plan for Modularity and Future Extensions:
Finally, we recommend that developers consider
a pattern’s potential for reuse and evolution.
Approaches like Quantum Module or Hybrid
Module enable a modular structure in which pa-
rameterized blocks or new classical routines can
be swapped in without re-inventing the core quan-
tum logic. When architectures must evolve to ac-
commodate new hardware or newly developed al-
gorithms, using encapsulated designs can simplify
transitions and protect long-term code stability.
By following these seven steps, practitioners can

systematically navigate the rich spectrum of patterns
in Table 1 and select solutions that balance hardware
realities, resource availability, and desired functional-
ity. This approach offers a structured path for building
quantum-classical workflows that are both efficient
and maintainable, helping developers avoid common
integration problems and accelerate the path from de-
sign to deployment.

3 REAL-WORLD
IMPLEMENTATIONS OF
QUANTUM SOFTWARE
DESIGN PATTERNS

Current quantum software frameworks (e.g.,
Qiskit (IBM, 2025), Cirq (Google, 2025), Penny-
Lane (Xanadu, 2025), Amazon Braket (AWS, 2025))
provide concrete examples of how these patterns
can be integrated in practice. Table 2 illustrates how
foundational patterns (Initialization, Oracle) and
hybrid strategies (Quantum-Classic Split) appear on
platforms.

A notable observation is that some patterns, such
as Initialization and Superposition, are almost uni-
versally required in quantum applications and are
therefore typically straightforward to implement. On
the other hand, certain patterns critical for demon-
strating quantum advantage, such as Entanglement,
can be introduced with only a few gates (e.g., form-
ing Bell or GHZ states) yet demand careful hardware
consideration when scaling. Meanwhile, Oracle pat-
terns are necessarily problem-specific and often pack-
aged as reusable modules, as exemplified by Qiskit’s
built-in logic oracles and Braket’s Grover implemen-
tation. These readily available components allow de-
velopers to insert custom functionality while retaining
established best practices for circuit composition and
execution.

IQSOFT 2025 - 1st International Conference on Quantum Software

108



Table 2: Examples of quantum design pattern implementations in major frameworks.

Design Pattern Example Implementation (Framework)
Initialization (State
Preparation)

Qiskit’s initialize() function prepares arbitrary basis states (e.g., setting an initial
state vector) (IBM, 2025). PennyLane provides an AmplitudeEmbedding template
to load classical data into a quantum state (Xanadu, 2025).

Uniform Superposi-
tion

Typically achieved by applying Hadamard gates to all qubits in a register. For in-
stance, Qiskit’s Grover algorithm applies H⊗n to n qubits to create an equal super-
position over 2n basis states (IBM, 2025).

Entanglement Entangling operations are implemented by multi-qubit gates. A two-qubit Bell state
is generated by first applying a Hadamard gate to one qubit, followed by a CNOT
gate on the other qubit. More generally, frameworks use a cascade of CNOTs (or
CZs) to create GHZ states (one H gate and a chain of CNOTs for n qubits) (Google,
2025). PennyLane offers predefined entangling-layer templates that apply such con-
trolled gates across qubit pairs (Xanadu, 2025).

Oracle (Black Box) Qiskit includes a PhaseOracle class for constructing oracle circuits from Boolean
logic expressions. Amazon Braket’s algorithm library provides a pre-built Grover’s
algorithm that accepts a problem oracle and iterates the oracle+diffusion pattern.
Cirq and PennyLane enable oracles by allowing custom unitary subcircuits to be
defined for a given problem.

Uncompute
(Cleanup)

Many algorithms explicitly “uncompute” temporary results to discard ancillary
qubits. In practice, this is done by inverting the subcircuit that produced the en-
tangled ancilla. For example, implementations of Shor’s algorithm uncompute the
modular exponentiation circuit to disentangle the output register before measurement
(restoring ancillas to |0⟩). Frameworks like Qiskit facilitate this via an automatic cir-
cuit inverse method (e.g., qc.inverse()).

Quantum-Classic
Split (Hybrid)

Hybrid variational algorithms intermix quantum circuits with classical optimization.
PennyLane intrinsically supports this pattern by feeding quantum circuit evaluations
into optimizers and providing gradient computation tools. Similarly, Qiskit’s VQE
and QAOA implementations run a quantum subroutine to evaluate an objective, then
update parameters classically in a loop. Amazon Braket also enables hybrid work-
flows through its SDK (often via PennyLane integration).

Another insight is the importance of uncomputa-
tion (cleanup of ancilla qubits). While initialization
and entanglement patterns are ubiquitous, uncompu-
tation is crucial in algorithms with workspace qubits
or “garbage” outputs, to avoid leaving residual en-
tanglement. However, an empirical study by Pérez-
Castillo et al.(2024) observed that developers some-
times neglect the uncompute step in practice(Pérez-
Castillo et al., 2024), which can lead to incorrect re-
sults if not handled. Tools and best practices are now
emerging to detect and enforce this pattern in quan-
tum programs (Pérez-Castillo et al., 2024).

Finally, the quantum-classical split (hybrid) pat-
tern has become central in the NISQ era, and all ma-
jor frameworks support it. High-level libraries for
variational algorithms (e.g., Qiskit’s algorithm run-
time modules and PennyLane’s optimization routines)
provide built-in loops that alternate quantum circuit
executions with classical computations, automating
the training of quantum models (Bergholm et al.,
2018). This integration enables complex workflows

like VQE with minimal user code, abstracting the op-
timization loop as part of the framework. Industry
use-cases, especially in quantum chemistry and fi-
nance, rely on such patterns; for example, Qiskit’s
chemistry module (now part of Qiskit Nature) uses
classical pre- and post-processing around quantum
subcircuits to solve molecular problems, exemplify-
ing a domain-specific classical-quantum interface.

Overall, these examples illustrate that quantum
software design patterns are not just theoretical pro-
posals from software engineering research, but are
actively informing the development of reusable li-
braries and tools. By encapsulating recurring so-
lutions—whether preparing a uniform superposition
or orchestrating a hybrid optimization loop—into
framework-level constructs, developers can program
at a higher level of abstraction. This leads to more
reliable and maintainable quantum software, echo-
ing the Talavera Manifesto’s call for principled quan-
tum software engineering (Piattini et al., 2020). Each
pattern in Table 2 thus represents a step toward a

Guidelines for the Application of Hybrid Software Design Patterns

109



standardized body of quantum software engineering
knowledge, bridging the gap between high-level al-
gorithm design and low-level circuit implementation.

4 CONCLUSION

In this paper, we have conducted an extensive review
of the quantum software design patterns proposed
in the literature and observed in open-source frame-
works. We identified a wide range of patterns that
address the unique challenges of quantum applica-
tion development, from foundational circuit-building
strategies to advanced hybrid paradigms integrating
classical optimization. By categorizing these pat-
terns according to their resource requirements, clas-
sical processing needs, and typical use cases, we pro-
vide a structured guide for developers to select, adapt,
and implement solutions that are both conceptually
clear and hardware-aware.

Importantly, we examined how these patterns are
already implemented in leading quantum SDKs such
as Qiskit, Cirq, PennyLane, and Amazon Braket,
illustrating real-world applicability. Our findings
indicate that many of these frameworks have be-
gun to incorporate design patterns as high-level ab-
stractions, thereby improving maintainability, re-
ducing duplicated effort, and helping developers
avoid common pitfalls. We also highlight emerging
trends—particularly around NISQ-era constraints and
hybrid algorithms by claiming further refinement and
expansion of existing design patterns.

Overall, this work aims to strengthen the foun-
dation of quantum software engineering by offering
both a practical catalog of proven design solutions and
evidence of their real-world adoption. As the field
evolves, continuous refinement of these patterns will
be essential to align with new hardware capabilities,
overcome scaling limitations, and foster best practices
that bridge quantum algorithm research with robust
software engineering principles.

ACKNOWLEDGMENTS

This work has been supported by projects SMOOTH
(PID2022-137944NB-I00), QU-ASAP (PDC2022-
133051-I00) funded by MCIU/ AEI/ 10.13039/
501100011033 and by the “European Union
NextGenerationEU/ PRTR”, and financial support
for the execution of applied research projects, within
the framework of the UCLM Own Research Plan,
co-financed at 85% by the European Regional Devel-
opment Fund (ERDF) UNION (2022-GRIN-34110).

REFERENCES

AWS (2025). Amazon braket documentation.
https://docs.aws.amazon.com/braket/. Accessed:
2025-02-07.

Bechtold, M., Barzen, J., Beisel, M., Leymann, F., and
Weder, B. (2023). Patterns for Quantum Circuit Cut-
ting. In Proceedings of the 30th Conference on Pat-
tern Languages of Programs (PLoP ’23). The Hillside
Group. in press.

Bergholm, V., Izaac, J., Schuld, M., Gogolin, C., et al.
(2018). Pennylane: Automatic differentiation of hy-
brid quantum-classical computations. arXiv preprint
arXiv:1811.04968.

Bühler, F., Barzen, J., Beisel, M., Georg, D., Leymann,
F., and Wild, K. (2023). Patterns for quantum soft-
ware development. In 15th International Conference
on Pervasive Patterns and Applications (PATTERNS).

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.,
and Stal, M. (1996). Pattern-Oriented Software Ar-
chitecture: A System of Patterns. Wiley.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., and
Booch, G. (1994). Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley.

Georg, D., Barzen, J., Beisel, M., Leymann, F., Obst, J.,
Vietz, D., Weder, B., and Yussupov, V. (2023). Execu-
tion Patterns for Quantum Applications. In Proceed-
ings of the 18th International Conference on Software
Technologies - ICSOFT, pages 258–268. SciTePress.

Google (2025). Cirq documentation. https://quantumai.go
ogle/cirq. Accessed: 2025-02-07.

IBM (2025). Qiskit: An open-source framework for quan-
tum computing – documentation. https://qiskit.org/d
ocumentation/. Accessed: 2025-02-07.

Jiménez-Fernández, S., Cruz-Lemus, J., and Piattini, M.
(2023). A systematic mapping study on quantum cir-
cuits design patterns. Proceedings of the 25th In-
ternational Conf. on Enterprise Information Systems
(ICEIS).

Leymann, F. (2019). Towards a pattern language for quan-
tum algorithms. In Quantum Technology and Opti-
mization Problems, volume 11413 of Lecture Notes
in Computer Science (LNCS), pages 218–230, Cham.
Springer International Publishing.

Pérez-Castillo, R., Fernández-Osuna, M., Piattini, M., and
Romero-Yáñez, E. (2024). A preliminary study of the
usage of design patterns in quantum software. In 5th
Int. Workshop on Quantum Software Engineering (Q-
SE 2024). In press.

Piattini, M., Peterssen Nodarse, G., Pérez-Castillo, R.,
Hevia Oliver, J. L., Serrano, M., Hernández González,
G., Guzmán, I., Andrés Paradela, C., Polo, M., Mu-
rina, E., Jiménez Navajas, L., Marqueño, J., Gallego,
R., Tura, J., Phillipson, F., Murillo, J., Niño, A., and
Rodrı́guez, M. (2020). The talavera manifesto for
quantum software engineering and programming.

Serrano, M. A., Pérez-Castillo, R., and Piattini, M. (2022).
Quantum Software Engineering. Springer Nature. ht
tps://link.springer.com/book/10.1007/978-3-031-053
24-5.

IQSOFT 2025 - 1st International Conference on Quantum Software

110



Truger, F., Barzen, J., Beisel, M., Leymann, F., and Yus-
supov, V. (2024). Warm-Starting Patterns for Quan-
tum Algorithms. In Proceedings of the 16th Interna-
tional Conf. on Pervasive Patterns and Applications
(PATTERNS 2024), pages 25–31. Xpert Publishing
Services (XPS).

Weigold, M., Barzen, J., Leymann, F., and Salm, M. (2022).
Data encoding patterns for quantum computing. In
Proceedings of the 27th Conf. on Pattern Languages
of Programs, PLoP ’20, USA. The Hillside Group.

Weigold, M., Barzen, J., Leymann, F., and Vietz, D. (2021).
Patterns for Hybrid Quantum Algorithms. In Pro-
ceedings of the 15th Symposium and Summer School
on Service-Oriented Computing (SummerSOC 2021),
pages 34–51. Springer International Publishing.

Xanadu (2025). Pennylane templates library (v0.40.0). http
s://docs.pennylane.ai/en/stable/introduction/templates
.html. Accessed: 2025-02-07.

Guidelines for the Application of Hybrid Software Design Patterns

111


