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Abstract: Anomaly detection in temporal series is a compelling area of research with applications in fields such as
finance, healthcare, and predictive maintenance. Recently, Quantum Machine Learning (QML) has emerged as
a promising approach to tackle such problems, leveraging the unique properties of quantum systems. Among
QML techniques, kernel-based methods have gained significant attention due to their ability to effectively
handle both supervised and unsupervised tasks. In the context of anomaly detection, unsupervised approaches
are particularly valuable as labeled data is often scarce. Nevertheless, temporal series data frequently exhibit
known seasonality, even in unsupervised settings. We propose a novel quantum kernel designed to incorporate
seasonality information into anomaly detection tasks. Our approach constructs a Hamiltonian matrix that
induces a unitary operator which period corresponds to the seasonality of the task under consideration. This
unitary operator is then used to encode the data into the quantum kernel, ensuring that values sampled at
instants equivalent under the period are treated consistently by the kernel. We evaluate the proposed method
on an anomaly detection task for temporal series, demonstrating that embedding seasonality directly into
the quantum kernel generation improves the overall performance of quantum kernel-based support vector
machines.

1 INTRODUCTION

In recent times, there has been a notable increase
in research activity surrounding Quantum Machine
Learning (QML) (Mishra et al., 2021; Peral-Garcı́a
et al., 2024; Wang and Liu, 2024), which has emerged
as a prominent topic within the field of Machine
Learning (ML). The continuous increasing in the ca-
pabilities of quantum computing, which has contin-
ued to expand in terms of computational power and
scalability (Kim et al., 2023), has also contributed to
the rising interest in this area.

A significant portion of ML and Deep Learning
approaches relies on the computation of loss func-
tions, which are then used to guide the optimiza-
tion process with algorithms such as gradient descent
(Ruder, 2017). This reliance has also extended to
much of QML algorithms, such as Quantum Neu-
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ral Networks (Jeswal and Chakraverty, 2018; Crooks,
2019), and, more in general, to variational quantum
algorithms (Cerezo et al., 2021a).

However, the initial enthusiasm surrounding QML
has been tempered by a series of studies demonstrat-
ing that computing loss functions on quantum com-
puter is, in most cases, unfeasible, due to the phe-
nomenon known as barren plateaus (Uvarov and Bia-
monte, 2021; Wang et al., 2021; Holmes et al., 2022;
Cerezo et al., 2021b).

Recently, a paradigm shift has been proposed
towards models within the CSIMQE class (Cerezo
et al., 2024), which require quantum hardware only
in the initial phase. This class of models represents a
promising direction for addressing some of the scala-
bility and hardware limitations of earlier approaches.

A significant category of models within the
CSIMQE framework is that of quantum kernels
(Schuld and Killoran, 2019; Schnabel and Roth,
2024). Since the initial demonstration of a quantum
advantage on a synthetic problem (Liu et al., 2021),
quantum kernels have been successfully applied to
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a range of tasks, including classification (Havlı́ček
et al., 2019) and anomaly detection (Belis et al., 2024;
Incudini et al., 2024). The model proposed in this
study is a quantum kernel designed for anomaly de-
tection in temporal series.

Other quantum models have also been developed
for temporal series analysis. One of the most popular
has been proposed in (Baker et al., 2024), in which
the authors provide a kernel-based quantum model to
address the task of classification of temporal series.
In this work, we address a similar task. However, the
solution we propose differs from prior work in three
critical ways.

First, our model is designed to operate effectively
in unsupervised settings, making it suitable for tasks
where labeled data is scarce.

Second, like many quantum kernel approaches,
our proposed model operates within the CSIMQE
class. In contrast, (Baker et al., 2024) requires gradi-
ent computation, which is potentially challenging to
implement efficiently on real quantum hardware.

Finally, the model allows for the integration of
prior knowledge about the periodicity of the task,
which is a critical factor in time-series analysis
(Yousif et al., 2024). This periodic information, of-
ten available even in unsupervised tasks, enhances the
model’s ability to capture essential temporal patterns
in the data.

The paper is structured as follows. In Section 2,
we introduce the theoretical background. Section 3
focuses on the proposed method for addressing the
anomaly detection task. We also outline the mathe-
matical foundations behind our approach.

Next, in Section 4, we describe the experimental
setup used to evaluate our proposal. The results of
our experiments are presented and discussed in Sec-
tion 5. Finally, in Section 6, we conclude the paper
and suggest potential directions for future work. The
source code used for the experiments is available at
this link1.

2 BACKGROUND

We provide the necessary background on kernel meth-
ods, Support Vector Machines (SVMs), quantum
computing, and quantum kernels. For an in-depth
discussion of kernel methods and SVMs, we refer
to (Shawe-Taylor and Sun, 2014). A comprehensive
introduction to quantum computing can be found in
(Nielsen and Chuang, 2010). For further details on

1https://github.com/Dan-LB/Periodic-Unitary-Encodin
g

quantum kernels, we refer to (Schnabel and Roth,
2024).

2.1 Kernel Methods and Support Vector
Machines

A kernel κ : X ×X →R, defined over an input domain
X , is a function that can be written as

κ(x,x′) = ⟨φ(x),φ(x′)⟩,
where φ is a mapping function that projects points
from the input space X into a higher-dimensional fea-
ture space equipped with an inner product ⟨·, ·⟩.

Kernels induce a notion of similarity between data
points, as they can extract meaningful patterns in
high-dimensional spaces. Typical examples of ker-
nel functions are the linear kernel, the sigmoid kernel,
and the RBF Gaussian kernel.

A function κ is a valid kernel if and only if it sat-
isfies Mercer’s conditions (Minh et al., 2006), which
state that the kernel must be symmetric and positive
semi-definite. These properties ensure that the ker-
nel corresponds to an inner product in some feature
space, making it suitable for a wide range of machine
learning algorithms.

Among machine learning algorithms based on
kernels, Support Vector Machines (SVMs) are one of
the most popular. In their simplest application, given
a labeled dataset D = {(xi,yi)}, where xi ∈Rn are fea-
ture vectors and yi ∈ {−1,1} are class labels, SVMs
aim to find a hyperplane that maximizes the margin
between the two classes in the feature space. The
hyperplane is defined as the set of points satisfying
wT x+b = 0, where w is the weight vector and b is the
bias term.

One-Class SVMs, first introduced in (Amer et al.,
2013), have been developed as a modification of
SVMs to address novelty detection tasks. In contrast
to standard SVMs, they can be used both for unsu-
pervised settings with low availability of labeled data
and for semi-supervised tasks to model the decision
boundary around normal data. For more information
on One-Class SVMs, we refer to (Alam et al., 2020).

2.2 Quantum Computing

The state of a quantum system is represented as a unit
vector in the space C2n

, where n corresponds to the
number of qubits of the system.

A general quantum state is expressed as:

|ψ⟩= ∑
h

ch |vh⟩ ,

where {|vh⟩} is a basis, typically assumed to be the
canonical basis.
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In a quantum system, computations are carried
out by evolving the state with unitary operators, of-
ten called unitaries. Unitaries can be represented as
matrices in C2n×2n

that satisfy the property
UU† =U†U = I, (1)

where † represents the complex conjugate and I cor-
responds to the identity matrix.

The action of a unitary operator U on a quantum
state |ψ⟩ is expressed as:∣∣ψ′〉=U |ψ⟩ ,
indicating that the state |ψ⟩ transitions to |ψ′⟩ after
applying U . When a unitary operator depends on a
parameter t, we denote it as U(t).

Hermitian operators are defined as matrices in
C2n×2n

that satisfy the property
H = H†. (2)

When H is hermitian, the operator defined as
U(t) := exp(−iHt), (3)

where t ∈ R and exp(·) is the matrix exponential, is a
unitary matrix, and is denoted as the unitary generated
(or induced) by H.

2.3 Quantum Kernels

Quantum kernels leverage the principles of quantum
computing to define similarity measures between data
points.

By encoding classical data into the Hilbert space
of a quantum system, quantum kernels can capture
complex patterns that may be difficult to model using
classical approaches (Liu et al., 2021).

The foundation of quantum kernels lies in the con-
cept of embedding classical data into quantum states
through a quantum feature map. For a classical input
x ∈ X , the quantum feature map is represented by a
unitary operation Uφ such that:

|φ(x)⟩=Uφ(x) |0⟩⊗n ,

where |0⟩⊗n is the initial state of the quantum system.
The corresponding kernel function can be defined as
the overlap between quantum states corresponding to
two data points x and x′

κ(x,x′) = |⟨φ(x)|φ(x′)⟩|2. (4)
In practice, the quantity defined by Eq 4 can be

computed by the (Buhrman et al., 2001).
Once the quantum kernel has been computed, the

same properties as classical kernel methods hold,
which allows to design a classical-quantum hybrid
SVM, where the model weights are computed clas-
sically.

In the following, we refer to this kind of models
as quantum SVMs, as defined in (Rebentrost et al.,
2014).

3 METHOD

In this section, we describe the proposed model for
collective anomaly detection in time series. The
model requires a minimal amount of quantum re-
sources to remain within the CSIMQE class and is
particularly well-suited for addressing unsupervised
tasks.

The core of the model is a quantum kernel de-
signed to measure similarity between time series. To
achieve this, we first construct a class of “small” ker-
nels, which measure similarity between the features
of a series at a given time step (or instant) t. Here-
after, we refer to these kernels as instantaneous ker-
nels, denoted by kt . These kernels are designed to
incorporate both temporal dependency and, when ap-
plicable, seasonality. The instantaneous kernels are
then combined to form the final kernel K, defined as:

K =
L

∑
t=1

αtkt , (5)

where the weights αt can be selected heuristically, or
in a Multiple Kernel Learning (MKL) fashion (Gönen
and Alpaydin, 2011).

In the following, we detail the components of our
proposed approach:

• Construction of instantaneous kernels that incor-
porate temporal and seasonal dependencies;

• Generation of periodic unitaries to account for
seasonality;

• Composition of the final kernel K and its key
properties.

3.1 Time-Related Properties

Before describing the three aforementioned compo-
nents, we provide an intuition for the concepts of tem-
poral dependency and seasonality that are integral to
our model.

3.1.1 Temporal Dependency

Temporal dependency refers to the ability of a kernel
to distinguish between values occurring at different
time steps within a time series. To illustrate, consider
instantaneous kernels kt that are independent of time,
where kt(xt ,yt) depends solely on the values at time
step t. If we construct a uniform combination of such
kernels as:

K =
1
L

L

∑
t=1

kt , (6)

then the kernel becomes invariant to any permutation
σL of the time steps {1, . . . ,L}. Formally:

K(x,y) = K(σL(x),σL(y)). (7)
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This invariance indicates that the kernel does not cap-
ture temporal relationships between features, effec-
tively losing the temporal component of the data.

In contrast, when kt explicitly incorporates t (e.g.,
through a time-dependent mapping), the temporal
structure is preserved. For example, if t ̸= t ′, then
kt(x,y) ̸= kt ′(x,y). Consequently, the kernel treats val-
ues at different time steps differently, retaining the
temporal dependency of the series.

However, if the weights αt in K = ∑
L
t=1 αtkt are

non-uniform, the kernel loses invariance to permuta-
tions of time steps, as certain steps are weighted more
heavily than others. In this case, the kernel remains
non-temporal unless temporal dependency is explic-
itly encoded in the instantaneous kernels.

3.1.2 Seasonality and Periodicity

While temporal dependency is crucial, there are sce-
narios where certain time steps should be treated simi-
larly. This arises in time series with seasonal patterns.
For instance, consider a series sampled hourly over
several days. A kernel with injective temporal depen-
dency would treat values at the same hour on differ-
ent days as entirely distinct. However, for tasks where
seasonality is significant, such as detecting daily pat-
terns, it is desirable for the kernel to evaluate these
values similarly.

We refer to this capability as considering the peri-
odicity of the data. Specifically, periodicity allows the
kernel to recognize and account for recurring patterns
in the series, such as daily or weekly cycles. This en-
sures that elements in the same part of a period are
evaluated equivalently, maintaining the seasonal con-
text of the data.

3.2 Instantaneous Kernels

The first step in our proposal involves constructing
a quantum kernel that incorporates temporal depen-
dency and can accommodate periodic (or “seasonal”)
information. We consider a set of time series X ,
where each element x ∈ X is a sequence of vectors
x1, . . . ,xL ∈RF , where F ≥ 1 corresponds to the num-
ber of features measured at each instant.

We assume that each time series x consist of the
same number of observations, L, and that observa-
tions from different series with the same index t are
measured at the same time. For simplicity, the time
axis is scaled such that the first sample x1 corresponds
to t = 0, while the final sample xL corresponds to
t = 1.

To construct the quantum kernel, classical data
must first be encoded into quantum states. Given that
each element x in X has the same length L, we encode

each xt independently using a fixed static feature map
U : RF → H2n . This map embeds the feature space
into the Hilbert space of a system of n qubits. To
introduce temporal dependency, we augment the en-
coding by applying a time-dependent transformation,
represented as t 7→ exp(−iHt), where H is a Hamil-
tonian matrix, similarly to the approach proposed in
(Baker et al., 2024).

The resulting mapping for the encoded data, in-
corporating both feature information and temporal de-
pendency, is defined as:

φ(xt , t) :=U(xt)exp(−iHt) |0⟩⊗n . (8)

This mapping allows the kernel to capture time-
dependent structures in the data while leveraging the
quantum state representation of the features.

In general, the feature map and the Hamiltonian
H can be chosen in various ways, depending on the
specific problem and computational requirements.

3.2.1 Feature Map Selection

Feature maps can often be selected heuristically or
by exploiting symmetries inherent to the problem
(Ragone et al., 2023). For instance, many quan-
tum kernel applications employ heuristically con-
structed kernels to model domain-specific patterns
(Belis et al., 2024). In other scenarios, such as Quan-
tum Neural Networks, feature maps (frequently re-
ferred to as encodings) are chosen according to de-
sired properties such as minimal circuit depth or noise
resilience. Examples of common encoding strategies
include parameterized rotations, basis encoding, and
amplitude encoding (Rath and Date, 2024).

3.2.2 Hamiltonian Design and Learning

The Hamiltonian H can either be explicitly designed
based on problem properties or learned as a param-
eterized model. In the latter case, H(θ) is con-
structed as a parametric Hamiltonian with a param-
eter vector θ, as demonstrated in (Baker et al., 2024).
This approach enables gradient-based optimization of
H obtained via parameter-shift-rule (Wierichs et al.,
2022). However, this method has two notable limita-
tions:

1. Trainability Issues: The computation of gradi-
ents may be infeasible in the presence of hardware
noise or limited measurement shots, potentially
leading to barren plateaus or vanishing gradients.

2. Supervised Setting Requirement: Learning the
Hamiltonian typically relies on a supervised set-
ting, which may not always be available in real-
world applications. For instance, anomaly detec-
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tion tasks often lack labeled data, making this ap-
proach less applicable.

Seasonality plays a crucial role in analyzing time se-
ries, even in unsupervised approaches. It refers to
recurring patterns within the data, such as daily cy-
cles influenced by night and day, weekly fluctuations
associated with operational schedules, or longer-term
trends driven by periodic events (Yousif et al., 2024).
These recurring patterns are essential for effectively
modeling temporal data and identifying anomalies
within their broader temporal context (Darban et al.,
2024).

In the following, we outline our proposed method
for incorporating seasonality into the instantaneous
kernel. By embedding seasonal information, the ker-
nel is better equipped to capture periodic structures
and evaluate similarities in time series data that ex-
hibit recurring behaviors.

3.3 Periodic Unitary Construction

To incorporate seasonality into the model, we con-
struct Hamiltonians that induce periodic unitaries
through the mapping U(t) = exp(−iHt). Consider a
time series of length L with a pattern repeated every
S time steps. We define P as the number of repetition
patterns within the time series, given by P = L/S (i.e.
the period of the time series).

For a given diagonal Hamiltonian matrix H, the
unitary operator U(t) is expressed as:

U(t) = diag
(

e−itλ1 , . . . ,e−itλN
)
, (9)

where (λ1, . . . ,λN) are the eigenvalues of H. For
t ∈ R, each component e−itλ can be rewritten as
cos(tλ) + isin(tλ), which has a period of 1/(2πλ).
Thus, U(t) is periodic if and only if there exists a
real number λ̄ such that all eigenvalues λ1, . . . ,λN
multiplied by λ̄ are rational or, equivalently, integers.
When the eigenvalues are coprime integers (not nec-
essarily pairwise co-prime), the period of U(t) is ex-
actly 2π.

Conveniently, the same property holds even when
the generating hamiltonian H is not diagonal. In par-
ticular, this can be proved by observing the characteri-
zation of period matrices as matrices with eigenvalues
satisfying λk = λ for a certain k (Benitez and Thome,
2006), and the fact that if λ is an eigenvalue of a ma-
trix A, then eλ is eigenvalue of exp(A).

To construct a generic Hamiltonian H that induces
periodic unitaries, we represent H as MDM−1, where
M is a unitary matrix and D is the diagonal matrix
of eigenvalues. The eigenvalues (λ1, . . . ,λN) are se-
lected as coprime integers. The periodic unitary is

then given by:

U(t) := exp(−2πiHPt). (10)

This construction ensures that the periodicity of U(t)
aligns with the seasonality of the dataset. An example
of the behavior of a periodic unitary constructed in
this way is given in Figure 1.
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Figure 1: Plot of the trace distance between U(t) and I,
where U is generated respectively by a random hamiltonian
(in orange), a hamiltonian with period 1 (in green), and a
hamiltonian with period 3 (in blue), for 2 (up) and 4 (down)
qubits. Periodic hamiltonians are generated starting from
integer eigenvalues uniformly sampled in {−15, . . . ,15}.

3.3.1 Optimization and Practical Considerations

While the eigenvalues and unitary M can theoreti-
cally be optimized, this process requires efficient gra-
dient computation and typically a supervised setting.
Such optimization may be impractical for anomaly
detection tasks, which are often unsupervised or semi-
supervised. Moreover, prior work (Baker et al., 2024)
has shown that random parameter selection in similar
kernels often performs comparably to optimized pa-
rameters, suggesting that optimization might not jus-
tify the additional complexity.

Randomly selected weights are commonly used
in other QML approaches, such as Quanvolutional
Neural Networks (Henderson et al., 2019). Addition-
ally, as discussed in (Mattern et al., 2021), evaluations
with trained and random parameters yield similar re-
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sults, indicating that parameter optimization may not
always provide significant benefits for QML models.

3.4 Resulting Kernel K

The final step involves selecting the coefficients of the
kernel K. This step determines how the instantaneous
kernels are combined to form the final kernel defined
in Equation 5. Two approaches can be employed to
select the coefficients αi: heuristic selection and opti-
mization using Multiple Kernel Learning (MKL).

3.4.1 Heuristic Selection

The simplest approach involves selecting the coeffi-
cients randomly or based on predefined properties.
For instance, using uniform weights αi = 1/L yields
an average kernel, which has been shown to perform
well in many contexts (Xu et al., 2013).

To incorporate periodicity, weights can be chosen
such that αi = αi+P, where P represents the period-
icity of the series. This ensures that values sampled
at intervals of P are evaluated equivalently. Formally,
for a translation of P steps, denoted as δP, the kernel
satisfies:

K(x,y) = K(δP(x),δP(y)). (11)

This invariance under translations is particularly use-
ful for tasks where the starting time step of the se-
ries is irrelevant. For example, in a time series with
weekly periodicity, the series may start on different
days of the week without affecting the analysis.

3.4.2 Optimization via Multiple Kernel
Learning

The second approach involves using MKL tech-
niques to optimize the coefficients αi based on a tar-
get property or function. A prominent example is
the EasyMKL algorithm (Aiolli and Donini, 2015),
which maximizes a specified metric between data
points. Specifically, it maximizes the distance be-
tween positive and negative examples with a unitary
norm vector holding the coefficients of the Kernel’s
combination.

A key advantage of this approach is that the opti-
mization process is entirely classical, requiring no ac-
cess to quantum resources once the kernels are com-
puted. As a result, the proposed kernel remains within
the CSIMQE class. However, it is important to note
that MKL techniques typically rely on supervised set-
tings, which may not be suitable for many anomaly
detection tasks.

4 EXPERIMENTAL DESIGN

To evaluate our proposed model, we addressed an
anomaly detection task for a time series with a given
periodicity. In particular, we considered the well-
known Taxi Request dataset2. This dataset contains
the number of taxi requests recorded by the NYC and
Limousine Commission from July 2014 to January
2015, and provides the aggregated count of passenger
at each 30 minutes interval. It presents 5 ”documented
anomalies”, corresponding to significant events dur-
ing the tested period: the NYC Marathon (November
2, 2014), Thanksgiving (November 27, 2014), Christ-
mas (December 25, 2014), New Year’s Day (January
1, 2015), and a severe New England blizzard (January
27, 2015). For this reason, it provides a good ground
truth for evaluating anomaly detection algorithms.

We preprocessed the dataset with the following
steps:

• First, we divided the series in windows of size cor-
responding to 7 days;

• For each window, we label it as “anomalous” if it
contains one of the five anomalous days.

4.1 Tested Models

We compare our proposed model with periodic uni-
tary encoding with other One-Class SVMs using sev-
eral classical kernels, As a first classical baseline, we
compare our model with periodic unitary encoding to
One-Class SVMs using several classical kernels that
do not take into account temporal properties. In par-
ticular, we evaluated classical SVMs built on linear,
polynomial, and Radial Basis Function kernels.

In addition, we evaluate a One-Class SVM model
based on the Dynamic Time Warping (DTW) (Berndt
and Clifford, 1994), a widely used distance for se-
quential pattern matching. The model implemented
uses as the kernel matrix the similarity values ob-
tained by inverting the distances, similarly to what
is done in (Shimodaira et al., 2001; Bahlmann et al.,
2002). However, is important to note that DTW is
not a Positive Definite Symmetric function, and thus
does not induce a proper kernel function (Lei and Sun,
2007).

As quantum models, we considered

• Quantum temporal kernel with Random Hamilto-
nian;

• Quantum temporal kernel with periodical unitary
of period 1 (1-P hamiltonian);

2Accessible at https://www.kaggle.com/datasets/julien
jta/nyc-taxi-traffic.
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• Quantum temporal kernel with periodical unitary
of period 7 (7-P hamiltonian), corresponding to a
period equal to one day.

The Random Hamiltonian model is used as baseline
to evaluate the 7-P model. The 1-P model is used to
determine if variations in the performances depend on
the periodicity component, or just on the differences
in the generation of the kernel.

4.2 Implementation Details

Each model is trained only on non-anomalous data
(corresponding to weeks with no anomalous days).
After the training, the remaining data is split in a
small validation set, used to select hypeparameters,
and on test set, used for the final evaluation. In details,
for each experiment, we first split the non-anomalous
data with a 0.7,0.3 ratio to obtain the train set. Vali-
dation and test sets are obtained with a split of 0.3,0.7
on the remaining samples, and contains both anoma-
lous and non-anomalous samples. Hyperparameters
selection (corresponding to the ν value and the thresh-
old value of the SVM) is performed by maximizing
the balanced accuracy of the model on the validation
set. This step does not require to recompute the ker-
nels, and can be done efficiently without using quan-
tum resources.

Quantum kernels are obtained with 2-qubits cir-
cuits, simulated in a noiseless environment with the
Qiskit library (Javadi-Abhari et al., 2024). Periodic
Hamiltonians are constructed starting from random
eigenvalues uniformly sampled in {−15, . . . ,15}. The
data encoding, corresponding to U(xt) in the Equation
8, is the angle encoding RX (xπ). Each experiment is
repeated 30 times.

5 RESULTS

5.1 Performance Metrics

We evaluate the models using well-known metrics
such as Precision, Recall, F1-Score, and Balanced
Accuracy. Average results with standard deviation are
given in Table 1, and plotted in Figure 2.

5.1.1 Quantum Models

Among the quantum models, the 7-period Hamilto-
nian demonstrates the best performance, achieving
a balanced accuracy of 81.56% and an F1-Score of
73.33%. This indicates its superior ability to differen-
tiate between normal and anomalous data. In com-
parison, the 1-period Hamiltonian and the random

Hamiltonian models exhibit similar performances,
with balanced accuracies of 75.6% and 76.1%, re-
spectively, and slightly lower F1-Scores around 61%
and 63%. The 7-period Hamiltonian obtained also the
highest Precision and Recall compared to other quan-
tum models.

5.1.2 Classical Models

Classical methods such as the linear kernel, poly-
nomial kernel, and radial basis function (RBF) ker-
nel treat time series as simple vectors with L ele-
ments, disregarding temporal dependencies. Among
these, the RBF kernel achieves the highest precision
(94.1%) and balanced accuracy (86.9%), indicating
its ability to make reliable predictions with fewer false
positives. The polynomial kernel follows with a bal-
anced accuracy of 73% and an F1-Score of 60.4%,
showing moderate performance. The linear kernel
achieves a balanced accuracy of 71.6%, which is
lower than the RBF but still competitive.

On the other hand, Dynamic Time Warping, a
method specifically designed to account for temporal
dynamics, achieves a balanced accuracy of 85% and
an F1-Score of 80.2%. Despite obtaining the highest
Recall between tested models (equal to 80%), other
metrics are lower then RBF.

5.2 Discussion

The results demonstrate the importance of incorporat-
ing temporal information into model design. In par-
ticular, the 7-period Hamiltonian model consistently
outperformed both the random Hamiltonian, and the
1-period models, highlighting the value of leveraging
periodic structures in time series data. Is it interesting
to note that, even if the generation of the hamiltonian
between the Random Hamiltonian and the 1-P model
is different, they perform in a similar manner, show-
ing that the increased performance on the 7-P model
depends on selecting the correct period.

The 7-P model obtains Precision and Balanced
Accuracy competitive to the ones obtained by the
DTW model, which is, in general, expensive to com-
pute (Wang et al., 2010). However, RBF has a bet-
ter overall performance, suggesting that this particular
task do not require necessarily temporal understand-
ing.

6 CONCLUSION

In this work, we tackled the problem of anomaly de-
tection for temporal series with some form of season-
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Table 1: Performance metrics of classical and quantum models on anomaly detection tasks. The table reports mean values
and standard deviations for Precision, Recall, F1 Score, and Balanced Accuracy.

Model Precision Recall F1 Score Balanced Accuracy
Linear Kernel 0.855 ± 0.275 0.478 ± 0.243 0.581 ± 0.218 0.716 ± 0.110
Polynomial Kernel 0.871 ± 0.268 0.500 ± 0.244 0.604 ± 0.222 0.730 ± 0.109
Dynamic Time Warping 0.882 ± 0.156 0.800 ± 0.241 0.802 ± 0.155 0.850 ± 0.111
Radial Basis Function 0.941 ± 0.122 0.778 ± 0.295 0.814 ± 0.222 0.869 ± 0.153
Random Hamiltonian 0.764 ± 0.376 0.589 ± 0.358 0.630 ± 0.329 0.761 ± 0.170
1-P Hamiltonian 0.721 ± 0.396 0.578 ± 0.381 0.610 ± 0.356 0.756 ± 0.185
7-P Hamiltonian 0.860 ± 0.272 0.678 ± 0.297 0.733 ± 0.263 0.816 ± 0.148
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Figure 2: Barplot of average Precision, Recall, F1-Score, and Balanced Accuracy of the considered models.

ality. We proposed a Periodic Unitary Encoding for
a quantum kernel model that leverages the seasonal-
ity of temporal series to provide a better classical data
representation. This unitary transformation is induced
by a Hamiltonian constructed from a set of coprime
eigenvalues.

Testing our method against an anomaly detection
task showed that, by leveraging the correct period of
the data, the quantum model obtained better results.
Nevertheless, a comparison of our results with those
obtained using RBF indicates that the latter achieves
superior performance. Given that RBF does not uti-
lize temporal correlation, we can suppose that the
task we addressed is not strongly dependent on time-
related information. Therefore it would be worth in-
vestigating if our approach outperforms other quan-
tum models also when addressing tasks that have a
deeper connection to time-related properties.

To conclude, it is interesting to note that the pro-
posed periodic unitary encoding has potential appli-
cations beyond anomaly detection, offering a flexible
approach for tasks where the quantum representation
of classical data must satisfy specific properties, such
as equivariance under translations (Bronstein et al.,
2017).

By introducing this method, we provide a step
forward in exploring how domain-specific knowledge
can inform quantum data encoding, contributing to
the advancement of Quantum Machine Learning in
practical and meaningful ways.
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