
QCRAFT Quantum Developer Interface: A Tool for Continuous
Deployment of Quantum Circuits

Javier Romero-Alvarez a, Jaime Alvarado-Valiente b, Enrique Moguel c,
Jose Garcia-Alonso d and Juan M. Murillo e

Quercus Software Engineering Group, Universidad de Extremadura,
Av. de la Universidad s/n, 10003, Cáceres, Spain

Keywords: Quantum Computing, Quantum Software Engineering, Quantum Circuits, Quantum Services, Quantum Web
Interface.

Abstract: Quantum computing is evolving quickly, with increasing demand for accessible tools to design, execute, and
analyze quantum circuits. However, the lack of standardization and interoperability between different quantum
platforms, such as the IBM Quantum Platform and Amazon Braket, presents challenges including a depen-
dence on the platforms. This work introduces the QCRAFT Quantum Developer Interface, a web interface for
the Continuous Deployment and execution of quantum circuits in the form of services. By integrating tools
like Quirk for circuit design and Docker containers for environment consistency, this tool enables developers
to design quantum circuits, store them in databases, and execute them on various quantum platforms with
minimal adjustments. This process simplifies and automates quantum deployment workflows, offering an ac-
cessible and modular solution for quantum researchers and developers.

1 INTRODUCTION

Quantum computing, an emerging field based on the
principles of quantum mechanics, is set to revolu-
tionize the way we tackle complex computing prob-
lems. Theoretically, it can perform computations that
would otherwise take classical computers an imprac-
tical time (Zhao, 2020).

Therefore, leading technology companies such as
IBM, Google, Microsoft, and Amazon have recog-
nized the transformative potential of quantum com-
puting and are making substantial investments in both
hardware and cloud-based quantum computing ser-
vices (AbuGhanem, 2025; Arute et al., 2019). IBM,
for instance, has developed an ambitious roadmap
to increase the number of qubits available in its
quantum processors over the coming years, with the
aim of making quantum computing widely accessi-
ble and practical for a wider user base1. These com-

a https://orcid.org/0000-0002-3162-1446
b https://orcid.org/0000-0003-0140-7788
c https://orcid.org/0000-0002-4096-1282
d https://orcid.org/0000-0002-6819-0299
e https://orcid.org/0000-0003-4961-4030
1https://research.ibm.com/blog/ibm-quantum-roadmap

panies have also created cloud platforms, such as
IBM Quantum Platform2 and Amazon Braket3, that
allow researchers and developers worldwide to ex-
periment with quantum computing without needing
their own quantum hardware. However, the diver-
sity of programming languages and frameworks used
on these platforms results in a fragmented environ-
ment, which complicates the development and de-
ployment of quantum applications (Alvarado-Valiente
et al., 2023b).

At the core of quantum computing is the con-
cept of quantum circuits. Unlike classical circuits,
they exploit superposition and entanglement to pro-
cess multiple solutions simultaneously, which makes
them especially powerful for Bounded-error Quan-
tum Polynomial time (BQP) class problems, includ-
ing cryptography (Shor, 1994) and optimization (Chi-
cano et al., 2025).

However, the design and deployment of quantum
circuits remain complex and challenging. Quantum
computing platforms are highly specialized and often
rely on unique programming languages and tools. For
example, IBM’s Qiskit SDK and Amazon’s Braket

2https://quantum.ibm.com
3https://aws.amazon.com/braket

Romero-Alvarez, J., Alvarado-Valiente, J., Moguel, E., Garcia-Alonso, J. and Murillo, J. M.
QCRAFT Quantum Developer Interface: A Tool for Continuous Deployment of Quantum Circuits.
DOI: 10.5220/0013533200004525
In Proceedings of the 1st International Conference on Quantum Software (IQSOFT 2025), pages 89-96
ISBN: 978-989-758-761-0
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

89



SDK each use proprietary approaches to quantum cir-
cuit design and execution (Abraham et al., 2019). In
this context, deployment refers to the process of defin-
ing quantum circuits as services and making them
available for execution on quantum hardware. Conse-
quently, developers need to adapt their quantum cir-
cuits to work with different platform-specific tools,
which limits interoperability and creates inefficien-
cies. Furthermore, the field lacks standardized devel-
opment environments for circuit design, debugging,
and deployment, making it difficult to reuse quantum
circuits across platforms or share them within the re-
search community (Moguel et al., 2022). This frag-
mentation poses a significant barrier to entry and hin-
ders collaborative progress in quantum computing.

To address these challenges, this work aims to an-
swer the following research questions:

1. How can we design a unified framework that facil-
itates the seamless development, deployment, and
management of quantum circuits across different
quantum platforms?

2. How can modularity, cross-platform compatibil-
ity, and environment consistency be integrated
effectively to improve the accessibility and ab-
straction of quantum software development work-
flows?

The need for standardized, cross-platform solu-
tions has become apparent as more researchers and
developers seek efficient ways to leverage quantum
computing resources from various platforms. An
ideal solution would simplify the quantum develop-
ment workflow by enabling quantum circuits to be
designed, stored, executed, and managed within a sin-
gle, cohesive environment, thus minimizing compati-
bility issues and streamlining the deployment process
(Murillo et al., 2025).

To do this, we propose the QCRAFT (Quantum
Circuit Research and Framework Toolbox) Quantum
Developer Interface, a tool that enables developers to
design, store, deploy, and execute quantum circuits
seamlessly across different quantum computing plat-
forms, such as Amazon Web Services (AWS) and
IBM, in the form of services.

With features such as cross-platform compatibil-
ity, automated deployment through Docker4, secure
credential management, and visual circuit design inte-
grating Quirk5, this tool offers a practical solution for
Continuous Deployment (CD) and execution of quan-
tum circuits as services.

4https://www.docker.com
5https://algassert.com/quirk

2 BACKGROUND

2.1 Programming Tools for Quantum
Circuits

With the growth of quantum computing, several pro-
gramming tools and platforms have emerged to fa-
cilitate the development, testing, and deployment of
quantum circuits.

These tools often cater to the unique requirements
of quantum algorithms and hardware constraints, of-
fering specialized functionalities to support quantum
software development. Various research efforts have
proposed architectures specifically tailored for pro-
gramming quantum systems, recognizing the need for
structured development environments similar to those
available in classical computing.

For example, a systematic review by (Khan et al.,
2023) explores software architectures in quantum
computing, providing a framework to design and im-
plement quantum systems with a focus on modularity,
reusability, and adaptability. Their research under-
scores the necessity of dedicated quantum program-
ming environments that address the challenges associ-
ated with hardware-specific requirements and compu-
tational constraints, which are characteristic of quan-
tum circuits. This type of architecture is essential for
managing complex quantum workflows and enabling
collaboration across development teams.

In terms of programming methods, some research
has been directed toward designing quantum circuits
under specific hardware constraints. (Hirata et al.,
2011) proposed a method to transform quantum cir-
cuits into a linear nearest-neighbor architecture, op-
timizing them for physical implementations that im-
pose spatial constraints on qubits. This approach is
especially useful in quantum devices where interac-
tions between qubits are restricted by proximity, such
as certain superconducting qubit systems. Although
limited to specific types of quantum hardware, this
method represents an important step toward more ef-
ficient and adaptable quantum circuit design.

In addition to contributing to the field, (Hevia
et al., 2022) introduced QuantumPath, a quantum
software development platform that aims to stream-
line the creation, management, and deployment of
quantum applications across different quantum hard-
ware back-ends. QuantumPath supports a range of
quantum programming languages and provides an In-
tegrated Development Environment (IDE) with built-
in tools for circuit design, testing, and deployment.
Moreover, it addresses the complexities of managing
multi-language quantum software projects, support-
ing developers in creating reusable and modular code

IQSOFT 2025 - 1st International Conference on Quantum Software

90



components.
Another relevant approach to the development

of quantum programming tools is Classiq (Minerbi,
2022), a platform that focuses on the automatic gen-
eration of quantum circuits using high-level synthesis
techniques. Classiq highlights by integrating differ-
ent quantum platforms and providing advanced tools,
such as visualizations at multiple levels of abstraction.

Moreover, (Stirbu et al., 2024) present a frame-
work that uses Kubernetes to manage hybrid appli-
cations that combine quantum and classical compo-
nents.

In comparison to these works, QCRAFT Quan-
tum Developer Interface differentiates itself by offer-
ing a unique Docker integration, encapsulating each
quantum circuit as a separate service within a Docker
container, unlike other work such as the Kubernetes
work that encapsulates entire resources. This ensures
that specific dependencies and configurations remain
constant across different environments. Moreover,
the proposal focuses on the implementation of Con-
tinuous Deployment workflows to quantum services,
which allows automating the lifecycle of the develop-
ment and deployment of quantum circuits as services.

Among the many tools available, the quantum cir-
cuit simulator selected in this work has been Quirk,
as it is an open-source tool. Quirk provides a drag-
and-drop interface that simplifies the process of cre-
ating and manipulating quantum circuits. This ease
of use makes it accessible to both novice and expe-
rienced developers, facilitating experimentation with
quantum gates and measurements. The accessibility
of Quirk has established as a widely-used tool for
prototyping and education in the quantum computing
community (Serrano et al., 2022). Its flexibility and
visual representation of quantum operations make it
ideal for developers who are exploring quantum al-
gorithms without needing extensive knowledge of the
underlying hardware. For this reason, in this work
Quirk has been adapted to enable developers to make
a visual design of quantum circuits.

2.2 CI/CD in Quantum Computing

As quantum computing matures, the demand for
efficient deployment and management solutions in
this domain has grown, making the adoption of
DevOps methodologies highly relevant (Alvarado-
Valiente et al., 2023a).

DevOps, an approach that combines “develop-
ment” and “operations”, is geared toward automat-
ing and streamlining the software lifecycle, enabling
Continuous Integration (CI), Continuous Deployment
(CD), and rapid feedback loops. In conventional soft-

ware engineering, these practices improve collabo-
ration, accelerate release cycles, and ensure consis-
tent deployment across environments. Applying these
practices to quantum computing could provide similar
benefits, addressing the unique challenges associated
with managing and deploying quantum circuits in di-
verse hardware architectures (Murillo et al., 2025).

By implementing DevOps practices, developers
can manage the deployment lifecycle of quantum cir-
cuits more efficiently, ensuring consistency across
platforms (Gheorghe-Pop et al., 2020). Tools such as
Docker for environment consistency, and CI/CD plat-
forms like Jenkins or GitHub Actions can be instru-
mental in achieving this goal (Romero-Álvarez et al.,
2023).

In a quantum context, CI/CD principles such as
automated testing, version control, and environment
standardization are essential for creating a stable and
scalable development pipeline (Dı́az et al., 2025).
Quantum computing requires careful handling of de-
ployment environments, as different platforms im-
pose specific requirements regarding qubit configura-
tions, gate sets, and performance constraints.

In this context, research in quantum computing
has increasingly focused on adapting classical De-
vOps practices, such as CI/CD and environment con-
sistency, to meet the unique requirements of quantum
applications (Romero-Alvarez et al., 2023). For ex-
ample, the work by (Kourtis et al., 2024) proposes
a comprehensive framework for quantum DevOps,
which extends traditional DevOps practices to accom-
modate the unique requirements of quantum comput-
ing. Their framework incorporates the use of Qrisp6,
a high-level programming language that allows de-
velopers to create quantum circuits without dealing
with low-level details, such as manipulating qubits
and quantum gates. This simplifies the coding pro-
cess and improves accessibility for programmers.

Another study by (Nguyen et al., 2024), proposes
the Quantum Function-as-a-Service (QFaaS) frame-
work, which presents a quantum software lifecycle
that includes seven stages for quantum function devel-
opment, facilitating the integration of DevOps prac-
tices into the quantum programming workflow. In ad-
dition, it implements a strategy for automatically se-
lecting the most suitable back-end for executing quan-
tum computing parts, thus optimizing performance
and efficiency.

In contrast to these approaches, which focus on
a serverless model for deploying quantum functions,
the QCRAFT Quantum Developer Interface advances
quantum DevOps by providing a fully integrated plat-
form specifically designed to support the CD and

6https://qrisp.eu

QCRAFT Quantum Developer Interface: A Tool for Continuous Deployment of Quantum Circuits

91



Figure 1: CD Architecture of QCRAFT Quantum Developer Interface.

cross-platform execution of quantum circuits. It cen-
ters on cross-compatibility and modularity, enabling
developers to seamlessly switch between hardware
providers such as IBM Quantum Platform and Ama-
zon Braket without modifying their circuits. Further-
more, the tool uses Docker for containerization to en-
sure environment consistency across platforms.

3 QCRAFT QUANTUM
DEVELOPER INTERFACE

QCRAFT Quantum Developer Interface provides an
intuitive interface in which developers can design
quantum circuits visually through Quirk, a drag-and-
drop circuit builder. Quirk allows developers to ex-
periment with quantum gates and qubits, making it
accessible to developers of varying expertise levels.
The tool also integrates with cloud-based quantum
platforms, specifically, AWS and IBM, supporting
seamless transitions between hardware environments.
This integration eliminates the need for manual ad-
justments or recoding circuits, ensuring interoperabil-
ity and efficient cross-platform compatibility.

To improve replicability, all code and data used in
this work are available in a public Zenodo repository7.

The CD architecture of the tool can be seen in Fig-
ure 1, where two components can be distinguished:
front-end (red) and back-end (yellow).

Starting with the front-end, this is the part of the
tool with which users will directly interact, accessing
it through any web browser. In this case, it is mainly

7https://doi.org/10.5281/zenodo.14745283

composed of two parts: IDEQuantum and Quirk. ID-
EQuantum comprises all the functionalities available
to the user, except the design of the quantum circuit,
which is exclusively managed by the Quirk compo-
nent. The functionalities available to the user in ID-
EQuantum include the complete management of cir-
cuits, their execution, the visualization of obtained re-
sults, the management of credentials, and the deploy-
ment of circuits as services, as can be seen in Figure 1.
These functionalities will be explained in more detail
in the following sections.

The back-end is responsible for processing all re-
quests based on the operations performed by the users
on the front-end. This back-end includes an API as its
main component, containing all the methods required
to ensure the proper functioning of the different fea-
tures. Moreover, it integrates connections with the
specific SDKs of AWS and IBM, allowing the exe-
cution of designed circuits.

The back-end also provides the essential services
needed to complete the functionalities of the tool.
Specifically, it offers a real-time translation service
of circuits generated in Quirk to code compatible
with the different AWS and IBM frameworks, such as
Qiskit, QASM or Amazon Braket code, called the Q-
Trans Service (Alvarado-Valiente et al., 2024). There-
fore, it acts as a translator, adapting the quantum cir-
cuits to the specific set of gates and the topology of
each hardware platform. This enables users to view
or copy the code implementation of the circuits they
have designed, and, within the tool, to execute those
circuits on each platform or deploy them as services.
Furthermore, it supplies the necessary infrastructure
to deploy circuits as services, encapsulating them in
Docker containers to ensure isolation and control.

IQSOFT 2025 - 1st International Conference on Quantum Software

92



Figure 2: Screenshot of QCRAFT Quantum Developer Interface. Circuit design view.

3.1 Integration and Adaptation of
Quirk in the Web Application

The Quirk tool has some limitations such as the lack
of translation into executable code, user management,
or a suitable way of storing the designed circuits, be-
ing the URL of the circuit or a JSON file the only way
to do it.

To this end, the first adaptation implemented in
the tool was to add a new button, called the Trans-
late circuit, which redirects the user to the interface of
the IDEQuantum component. This component, once
it has received the circuit, connects to the translation
service of the external server and displays the code of
the circuit to the user for each platform.

This allows the IDEQuantum component to pro-
cess the circuit and store it in the user profile, which
led to the second adaptation that has been made to
the Quirk tool, to allow the editing of a previously
designed and stored circuit. To do this, the tool was
adapted to allow the opposite flow, receiving a circuit
from IDEQuantum, viewing it, editing it, and return-
ing it for updating.

To this end, a new button, called Edit Circuit, has
been added, which allows that once the circuit has
been received and edited by Quirk, it can be returned
to the IDEQuantum. These modifications, which al-
low the creation and edition of circuits, are completed
by IDEQuantum, where from its interface it is pos-
sible to see the visualization of the circuits in Quirk,
and also to launch the edition, execution, or elimina-
tion of each one of them, as can be seen in Figure 2.

3.2 Security and Credential
Management

The QCRAFT Quantum Developer Interface also ad-
dresses security through a credential management
system that securely handles the credentials of AWS
and IBM, as shown in Figure 3.

Figure 3: Security credentials example.

Security protocols are integrated into the deploy-
ment pipeline to ensure that user credentials are
stored, accessed, and managed safely. This is essen-
tial for CD, where deployment workflows must main-
tain strict security standards, particularly when inter-
facing with external platforms.

These credentials can be specified in the profile
menu of the user and can be used to launch the differ-
ent executions in the simulators or Quantum Process-
ing Units (QPUs) available on each platform.

QCRAFT Quantum Developer Interface: A Tool for Continuous Deployment of Quantum Circuits

93



3.3 Execution and Results

From the tool, once the user has designed the circuits
and configured his credentials, the execution of the
circuits on the available simulators and QPUs can be
performed.

Figure 4: Interface for visualization of the circuit code at
the time of its execution.

To do it, as can be seen in Figure 4, the user has
the option to select a platform, the device on which
he wants to launch the execution, and the number of
shots.

Figure 5: List of the results of a circuit after execution.

Additionally, for each platform, there is a real-
time cost estimate of the execution price that takes
into account the number of shots to be executed or the
estimated execution time.

When the user has executed a circuit, the option is
enabled to view the results of the different executions
that have been executed. To do so, the user accesses
a window that splits the executions by provider, as
can be seen in Figure 5. In this window, once one of
the available providers is selected, a list of launched
executions appears, allowing the user to visualize the
results graphically. In case it is still in queue or has
failed, it offers this information at the moment.

The graphical visualization (Figure 6) of the re-
sults obtained in the execution shows the distribution
of the results according to the number of shots.

Figure 6: Graphic view of a circuit already executed.

3.4 Continuous Deployment of
Quantum Services

The CD architecture allows developers to automate
the design-to-deployment pipeline for quantum cir-
cuits. Once a circuit is designed, it can be automat-
ically pushed through a CI/CD pipeline. This process
minimizes manual intervention, allowing for faster,
more reliable deployment and execution of quantum
circuits across supported platforms.

Using Docker containers, the tool provides a mod-
ular infrastructure for deploying these quantum cir-
cuits in the form of services. The Docker encapsu-
lates the environment of each circuit, managing de-
pendencies and configurations to prevent compatibil-
ity issues when transitioning from one quantum plat-
form to another. This modularity improves the consis-
tency of the environment, enabling easier debugging
and facilitating the automated deployment of quan-
tum services on quantum platform. To launch the CD
of a circuit as a quantum service, the user has avail-
able a button, called Deploy service, in the same win-
dow of normal execution. Once deployed, the end-
point where the service is available is displayed on
the screen, ready to be consumed or integrated by the
user.

IQSOFT 2025 - 1st International Conference on Quantum Software

94



3.5 Use Case and Connection with AWS
and IBM

As a use case for the tool, connections have been
made to the two aforementioned cloud platforms,
AWS and IBM. The connection to AWS is made
through the use of its SDK, which allows the use of
on-demand simulators and QPUs provided by Ama-
zon Braket. AWS offers several simulators, includ-
ing the free local Amazon Braket SDK simulator and
three on-demand simulators: State Vector 1 (SV1),
Density Matrix 1 (DM1), and Tensor Network 1
(TN1). Each of these simulators has specific features
that allow for the execution and testing of quantum
circuits with different capabilities and performance
levels. The cost of using these on-demand simula-
tors is based on the duration of each simulation task,
billed per minute in one-millisecond increments, with
a minimum billing duration of 3 seconds per simula-
tion. In addition, AWS also offers hybrid jobs that
allow simulators to be integrated into the same con-
tainer as the application code, which can affect the
duration of the use of the hybrid job instance.

To run circuits on the real QPUs that are offered
by Amazon Braket, it is necessary to provide the ap-
propriate credentials, as explained above, and the cost
is calculated based on the number of shots and the se-
lected QPU. On the one hand, for simulators, costs
are based on the duration of each simulation task,
billed per minute in one-millisecond increments, with
a minimum billing duration of 3 seconds. On the other
hand, using an on-demand QPU implies per-shot and
per-task rates. The cost per shot depends on the QPU
selected, and the use of error mitigation may require
a minimum of 2500 shots per task.

Finally, the connection to IBM is done in the same
way as with AWS, by implementing their connec-
tion using their Qiskit SDK. With this, developers can
choose to run their circuits on local simulators or real
QPUs, and the system will automatically manage the
credentials and tokens needed to authenticate and per-
form the executions. Finally, the cost is calculated
based on the computational resources used and the
hardware access time, that is, the actual QPU usage
time, measured in seconds of “execution time”. For
both cases, the estimated cost to execute the circuit is
presented. This allows users to make informed deci-
sions on the use of resources and cost management.

4 CONCLUSION

The QCRAFT Quantum Developer Interface repre-
sents a significant advancement in CD practices for

quantum computing, providing a comprehensive solu-
tion for quantum circuit deployment. By integrating
tools, such us Quirk and Docker, this tool addresses
the complexities of designing, storing, and executing
quantum circuits across different hardware platforms
(AWS and IBM) making quantum technology more
accessible and efficient for developers.

One of the most outstanding conclusions is the
demonstration that the integration of visual tools,
such as Quirk, with quantum execution platforms
can significantly simplify the development process in
computing. It has been observed that the ability to de-
sign quantum circuits in an intuitive and visual way,
and then execute them in real hardware in the form of
services facilitates a better understanding and at the
same time a great organization since both circuits and
results can be stored.

Furthermore, the research questions posed at
the beginning have been successfully addressed.
QCRAFT demonstrates how a unified framework can
streamline the development and deployment of quan-
tum circuits across diverse platforms, reduces frag-
mentation through cross-platform compatibility and
environment consistency, and provides a modular and
scalable solution to improve accessibility in quantum
software workflows. Moreover, thanks to its modular
structure, it is easy to integrate with other quantum
platforms, highlighting its interoperability.

Future improvements to this tool could include op-
timizing execution times and defining credential man-
agement protocols, which will further improve de-
ployment efficiency. Enhanced integration of DevOps
with tools like Jenkins could also be explored to pro-
vide more extensive automation options.

A significant future enhancement would be the
facilitation of collaboration between different users.
Implementing a system that allows multiple users to
work together on the design of quantum circuits in
real time would be highly beneficial. This could
include features such as shared circuit editing, in-
tegrated communication, and collaborative project
management, which promote a more dynamic work-
ing environment.

ACKNOWLEDGEMENTS

This work has been partially funded by the European
Union “Next GenerationEU /PRTR”, by the Ministry
of Science, Innovation and Universities (TED2021-
130913B-I00, and PDC2022-133465-I00). By
QSERV project (PID2021-1240454OB-C31) funded
by the Spanish Ministry of Science and Innovation
and ERDF; by the Regional Ministry of Economy,

QCRAFT Quantum Developer Interface: A Tool for Continuous Deployment of Quantum Circuits

95



Science and Digital Agenda of the Regional Gov-
ernment of Extremadura (GR21133); and by Eu-
ropean Union under the Agreement - 101083667
of the Project “TECH4E -Tech4effiency EDlH” re-
garding the Call: DIGITAL-2021-EDlH-01. Also,
supported by grant PRE2022-102070 financed by
MCIN/AEI/10.13039/501100011033, “FEDER/EU”,
and FSE+.

REFERENCES

Abraham, H., Akhalwaya, I. Y., Aleksandrowicz, G., et al.
(2019). Qiskit: An Open-source Framework for Quan-
tum Computing. Available: https://doi.org/10.5281/
zenodo.2562110.

AbuGhanem, M. (2025). Ibm quantum computers: Evolu-
tion, performance, and future directions. The Journal
of Supercomputing, 81(5):687.

Alvarado-Valiente, J., Romero-Álvarez, J., Moguel, E., and
Garcı́a-Alonso, J. (2023a). Quantum web services
orchestration and management using devops tech-
niques. In International Conference on Web Engineer-
ing, pages 389–394. Springer.

Alvarado-Valiente, J., Romero-Álvarez, J., Moguel, E.,
Garcı́a-Alonso, J., and Murillo, J. M. (2023b). Tech-
nological diversity of quantum computing providers:
a comparative study and a proposal for api gateway
integration. Software Quality Journal, pages 1–21.

Alvarado-Valiente, J., Romero-Álvarez, J., Moguel, E.,
Garcı́a-Alonso, J., and Murillo, J. M. (2024). Orches-
tration for quantum services: The power of load bal-
ancing across multiple service providers. Science of
Computer Programming, 237:103139.

Arute, F., Arya, K., Babbush, R., et al. (2019). Quan-
tum supremacy using a programmable superconduct-
ing processor. Nature, 574(7779):505–510.

Chicano, F., Luque, G., Dahi, Z. A., and Gil-Merino, R.
(2025). Combinatorial optimization with quantum
computers. Engineering Optimization, pages 1–26.

Dı́az, A., Alvarado-Valiente, J., Romero-Álvarez, J.,
Moguel, E., Garcia-Alonso, J., Rodrı́guez, M.,
Garcı́a-Rodrı́guez, I., and Murillo, J. M. (2025). Ser-
vice engineering for quantum computing: Ensuring
high-quality quantum services. Information and Soft-
ware Technology, 179:107643.

Gheorghe-Pop, I.-D., Tcholtchev, N., Ritter, T., and
Hauswirth, M. (2020). Quantum devops: Towards
reliable and applicable nisq quantum computing. In
2020 IEEE Globecom Workshops (GC Wkshps, pages
1–6. IEEE.

Hevia, J. L., Peterssen, G., and Piattini, M. (2022). Quan-
tumpath: A quantum software development platform.
Software: Practice and Experience, 52(6):1517–
1530.

Hirata, Y., Nakanishi, M., Yamashita, S., and Nakashima,
Y. (2011). An efficient conversion of quantum circuits
to a linear nearest neighbor architecture. Quantum In-
formation & Computation, 11(1):142–166.

Khan, A. A., Ahmad, A., Waseem, M., Liang, P., Fah-
mideh, M., and Mikkonen, T. (2023). Software archi-
tecture for quantum computing systems—a systematic
review. Journal of Systems and Software, 201:111682.

Kourtis, M. A., Tcholtchev, N., Gheorghe-Pop, I.-D.,
Becker, C. K.-U., Xylouris, G., Markakis, E., Petric,
M., Seidel, R., and Bock, S. (2024). Towards contin-
uous development for quantum programming in de-
centralized iot environments. Procedia Computer Sci-
ence, 238:7–14.

Minerbi, N. (2022). Quantum software development with
classiq. In Quantum Software Engineering, pages
269–280. Springer.

Moguel, E., Rojo, J., Valencia, D., Berrocal, J., Garcia-
Alonso, J., and Murillo, J. M. (2022). Quantum
service-oriented computing: current landscape and
challenges. Software Quality Journal, 30(4):983–
1002.

Murillo, J. M., Garcia-Alonso, J., Moguel, E., Barzen, J.,
Leymann, F., Ali, S., Yue, T., Arcaini, P., Pérez-
Castillo, R., Garcı́a Rodrı́guez de Guzmán, I., et al.
(2025). Quantum software engineering: Roadmap and
challenges ahead. ACM Transactions on Software En-
gineering and Methodology.

Nguyen, H. T., Usman, M., and Buyya, R. (2024). Qfaas: A
serverless function-as-a-service framework for quan-
tum computing. Future Generation Computer Sys-
tems, 154:281–300.

Romero-Álvarez, J., Alvarado-Valiente, J., Moguel, E.,
Garcia-Alonso, J., and Murillo, J. M. (2023). Enabling
continuous deployment techniques for quantum ser-
vices. Software: Practice and Experience.

Romero-Alvarez, J., Alvarado-Valiente, J., Moguel, E.,
Garcia-Alonso, J., and Murillo, J. M. (2023). A work-
flow for the continuous deployment of quantum ser-
vices. In 2023 IEEE International Conference on Soft-
ware Services Engineering (SSE), pages 1–8. IEEE.

Serrano, M. A., Cruz-Lemus, J. A., Perez-Castillo, R.,
and Piattini, M. (2022). Quantum software compo-
nents and platforms: Overview and quality assess-
ment. ACM Computing Surveys, 55(8):1–31.

Shor, P. W. (1994). Algorithms for quantum computation:
Discrete logarithms and factoring. In Proceedings
35th Annual Symposium on Foundations of Computer
Science, pages 124–134. IEEE.

Stirbu, V., Kinanen, O., Haghparast, M., and Mikkonen,
T. (2024). Qubernetes: Towards a unified cloud-
native execution platform for hybrid classic-quantum
computing. Information and Software Technology,
175:107529.

Zhao, J. (2020). Quantum software engineer-
ing: Landscapes and horizons. arXiv preprint
arXiv:2007.07047.

IQSOFT 2025 - 1st International Conference on Quantum Software

96


