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Abstract: This paper presents a novel consensus-based adaptive genetic-optimized auction (CAGA) algorithm to solve

the dynamic task allocation (DTA) problem for a fleet of autonomous vehicles. The algorithm employs an

auction routine for task assignment and a genetic algorithm (GA) to optimize task prices subject to the price

update rule. The proposed algorithm is devised to achieve superior solutions in real-world applications. Hence,

uncertainty theory was adopted to model uncertainties in task positions to create a realistic environment. In

addition, Monte Carlo (MC) simulations are performed to effectively determine the degree of uncertainty.

Several test scenarios have been carried out using other market-based methods, and the results illustrate the

effectiveness of the algorithm.

1 INTRODUCTION

Autonomous vehicles (AUVs) have been extensively

researched and used in numerous fields over the past

decade due to their adaptable nature. Potential appli-

cations include mapping, reconnaissance, distributed

sensor networks, hazardous metal handling, search

and rescue operations, etc. Although their individ-

ual effectiveness has been proven, the deployment of

multiple AUVs provides even more potent and appro-

priate solutions. Hence, the term multi-agent systems

(MAS) has become a major topic as the significance

of the problem continues to grow.

The primary objective of MAS is to ensure that

agents in the fleet exhibit cooperative behaviors to

effectively perform tasks. Also, from a task as-

signment perspective, it means multiple robots are

tasked with achieving optimal assignments under cer-

tain constraints and maximizing their overall score.

To establish a structure where a fleet of autonomous

agents constantly perceives their surroundings and

takes actions with regard to their benefit, coordination

and cooperation among agents must be maintained.

Several research studies have been carried out in this

area, and the key points have been elaborated.

The centralized planners (Chen et al., 2024),

(Hwang et al., 2022) assume a single computational
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unit that controls and coordinates each agent in the

fleet by computing their cost and providing a com-

munication network throughout a fixed location. Due

to this centralized processing structure, the computa-

tional burden on agents is reduced, and they become

simpler to build. However, coordinating agents from

a stationary location restricts the workspace of the

entire fleet, which further limits the potential tasks

that the agents can handle and creates a single point

of failure in the system.

Decentralized methods (Peng et al., 2024),

(Zhang et al., 2024), (Ozturk et al., 2024b) have

been proposed to solve the problems of centralized

task allocation. This approach distributes the to-

tal computational load among agents rather than

gathering it in a single unit. Thus, agents perform

tasks based on their knowledge sets. Discarding

the central structure that forces the system to fixate

on a limited workspace has led to more robust and

scalable agent cooperation. Conversely, to converge

on an exact solution, agents should be able to share

their status and information set among themselves

through a particular network topology, which can

result in intensive communication overhead and local

optimality.

Market-based strategies are another well-known

approach researched in the task allocation problem

context (Ozturk et al., 2024a), (Wang et al., 2024).

The auction algorithm mimics the auction environ-

ment, specifically by simulating bidders and auction-
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eers. First, bidders bid on the tasks they want to be

assigned and calculate their maximum payoff. After-

ward, auctioneers collect these bids and announce the

highest bid as the contest winner.

Depending on how the problem is handled,

market-based methods can be divided into single-

item and combinatorial auctioning. Single-item auc-

tions perform task-wise operations at each iteration.

In contrast, combinatorial auctions present tasks as

bundles (task sets), and agents bid on these bun-

dles to minimize the path cost from their initial lo-

cation. Researchers have developed variants of these

approaches, including parallel single-item (PSI) and

sequential single-item (SSI) auctions. Unlike single-

item auction procedures, PSI performs auctions in a

parallelized manner, in which agents are allocated to

tasks via simultaneously performed auctions. Thus, it

accelerates the assignment process but leads to subop-

timal solutions. The SSI method, on the other hand, is

a strategy that combines both combinatorial and PSI

auctions to leverage their advantages. The method is

based on a series of single-item auctions, assuming

each agent is initially unallocated. To allocate tasks,

agents place bids reflecting the increase in their small-

est path cost that arises from winning the target they

bid on. The agent offering the overall smallest bid

is assigned to the corresponding target. Once agents

determine the winner by observing the bids from the

environment, the unassigned agents re-bid for the re-

maining tasks until all agents are assigned. Partic-

ularly in dynamic environments, SSI-based task up-

dates are highly motivated since environmental quan-

tities change drastically. Nonetheless, these auction

methods neither provide a framework for resolving

conflicting assignments nor guarantee optimal solu-

tions in specific scenarios. Therefore, an agreement

among the fleet should be consistently maintained to

overcome these issues.

Consensus-based algorithms (Herty et al., 2024),

(Bonandin and Herty, 2024) have thus gained promi-

nence in addressing multi-agent coordination chal-

lenges. However, these approaches often face diffi-

culties in achieving a common situational awareness

(SA) among agents, that is, agreement that the per-

ceived environment is the same for all of them. Al-

though it is applicable across various network topolo-

gies, their implementation demands significant com-

putational resources, and the convergence process can

be notably time-intensive.

To resolve these problems, the consensus-based

auction algorithm (CBAA) and, for multitask as-

signments, the consensus-based bundle algorithm

(CBBA) have been introduced by (Choi et al., 2009).

Both algorithms guarantee convergence on an agreed

SA while ensuring conflict-free assignments. In con-

trast to traditional consensus approaches, these al-

gorithms leverage a decentralized auction scheme in

decision-making. Also, instead of agents’ SA, they

struggle to achieve an agreement on winning bid lists.

Unfortunately, all of the methods discussed above

converge on a solution under the assumption of con-

stant states and neglect uncertainty. This shortcoming

implies they are unsuitable for real-world applications

where the environment and its dynamics vary contin-

uously.

This paper proposes a novel consensus-based

adaptive genetic-optimized auction (CAGA) algo-

rithm for dynamic task allocation of a multi-robot sys-

tem. The algorithm can also consider the uncertainty

in the environment and enable agents to make deci-

sions based on the scenario characteristics. Therefore,

the utilization of genetic algorithms (GA) is motivated

by their ability to handle complex, multi-dimensional

optimization problems where analytical solutions are

infeasible to implement. In this context, the incre-

mental constant (ε) serves as a critical parameter to

regulate the pace of optimization, ensuring both con-

vergence efficiency and computational feasibility.

The remainder of this paper is organized as fol-

lows: Section 2 investigates the related works pro-

posed by other authors. Section 3 introduces the prob-

lem definition and preliminaries. Section 4 presents

the proposed algorithm and its partitions. Section 5

illustrates the conducted simulations and provides test

results, while Section 6 discusses the outcomes sub-

ject to the scenarios. Finally, Section 7 concludes the

paper and gives valuable insights for future works.

2 RELATED WORKS

DTA has been investigated in detail, and various ef-

forts have been made to solve this problem because

of its importance. The proposed methods can be clas-

sified into two types: exact solutions and heuristics.

For heuristic methods, evolutionary-based ap-

proaches have mostly been utilized to solve the DTA.

(Yan and Di, 2023) investigated the multi-robot task

allocation problem and classified tasks as compul-

sory (must be completed) and functional (optional

but beneficial). They aimed to optimize task as-

signments to minimize time costs by focusing on a

novel hyper-heuristic algorithm. For this reason, re-

searchers introduced and enlarged low-level heuris-

tic (LLH) and high-level strategy (HLS) algorithms.

LLH scores functional tasks based on an influence

diffusion model, while HLS optimizes LLH param-

eters using a particle swarm optimization (PSO) al-
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gorithm. The proposed algorithm was compared

against classical greedy, metaheuristic, and SSI-based

approaches. It was shown that the proposed algorithm

is flexible and scalable. Nevertheless, it relies heav-

ily on parameter tuning and struggles with extremely

large or small robot groups, where simpler methods

may suffice. Furthermore, adding one more layer in-

creases the complexity of the implementation.

(Li et al., 2024) investigates task allocation chal-

lenges for heterogeneous unmanned aerial vehicles

(UAVs), particularly in resource constraints and dy-

namic task demands. The authors proposed a heuris-

tic allocation method grounded in the overlapping

coalition formation game framework (OCF) to en-

hance resource utilization and task utility. This frame-

work allows UAVs to operate under multiple condi-

tions simultaneously, while the heuristic allocation

method avoids repetitive and inefficient resource al-

locations. Moreover, the proposed task exit mecha-

nism allows UAVs to exit coalitions when their util-

ity contribution decreases. Although the algorithm

demonstrates flexibility and dynamically responds to

changes, the reliance on heuristic strategies results

in high computational demands and a dependency on

overly simplistic models, limiting its applicability in

real-world scenarios.

In (Bischoff et al., 2024), re-optimization meth-

ods are introduced to tackle time-extended multi-

robot task allocation problems involving task dele-

tion and insertion in dynamic environments. The pro-

posed optimization framework offers mechanisms to

adapt to situations where new tasks are added or exist-

ing tasks are removed. As a heuristic approach, they

present the cheapest maximum insertion cost heuristic

(CMI) for task insertion by balancing complexity and

performance. The introduced optimization heuristics

are both scalable and efficient. This method estab-

lishes upper bounds on solution quality while ensur-

ing predictability and reliability in dynamic systems.

However, CMI heuristics can overestimate insertion

costs, rendering the resulting bounds limited applica-

bility and potentially inadequate in reflecting actual

resource requirements.

Regarding exact solutions, these methods of DTA

tend to achieve better convergence. One of the most

commonly recognized strategies for solving DTA

problems is the market-based approach, which op-

erates mainly through auction routines. The study

presented by (Hossain et al., 2023) offers a parallel

task allocation framework using a multi-stage iter-

ative combinatorial auction mechanism, introducing

uncertainties in multi-robot environments. The pa-

per aims to improve the task allocation process by ex-

ploiting different metrics, including task preferences,

path collision avoidance, task prioritization, and ex-

ecution deadlines. The proposed method offers two

stages. In the initial stage, multiple rounds of bidding

occur, and the temporary winner is determined. After

that, a single round in which robots submit their fi-

nal bids based on updated task values is executed for

the final stage. The proposed mechanism is scalable

and comprehensive, but it relies on a centralized en-

tity, leading to a single point of failure in the system.

Furthermore, the practical implementation of uncer-

tain environments requires extensive fine-tuning.

3 PROBLEM DEFINITION

3.1 Task Allocation

In multi-robot task allocation (MRTA), there are m

agents and n tasks, which can be defined as

A , {a1,a2, . . . ,am}
T , {t1, t2, . . . , tn}

(1)

where A and T represent the sets of agents and

tasks, respectively. The goal is for agents to find

conflict-free assignments that maximize their payoff.

Conflict-free means each agent is assigned only one

task. The task assignment procedure continues until

all agents are allocated to the tasks.

The overall score function for a conventional auc-

tion procedure is introduced. It can be expressed as

max
m

∑
i=1

(

n

∑
j=1

(ci j − pi j)xi j

)

subject to

m

∑
i=1

xi j = 1, ∀ j ∈ T

n

∑
j=1

xi j = 1, ∀i ∈ A

xi j ∈ {0,1}, ∀(i, j) ∈ A ×T

(2)

where ci j is the benefit of agent ai if it is assigned task

t j and pi j is the price of task t j for agent ai. The xi j is

a binary decision variable, indicating that agent ai is

assigned task t j if xi j = 1 and 0 otherwise.

3.2 Auction Routine

Auction-based strategies are widely employed to

solve task assignment problems. These routines pro-

mote competition among bidders, which significantly

impacts the procedure’s completion time.
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Conventional auction schemes assume that agent

ai receives the maximum profit of ci j for task t j, where

ci j depicts the benefit of agent ai if it bids for task t j.

It can be concluded that agent ai will not bid for a task

if it does not benefit from it.

Suppose that agent ai pays the price p j for task t j;

then, the payoff can be calculated as ci j− p j. Thereby,

payoff functions of the agent and system can be at-

tained in Eqs.(3) and (4) as follows:

θi = maxt j∈T (ci j − p j), (3)

Θ =
m

∑
i=1

θi (4)

Here, T denotes the task set. In decentralized auc-

tion routines, if Eq.(3) is ensured for each agent in the

fleet, then the agents are satisfied with their decision,

and the global optimum is achieved. The system pay-

off Θ can be depicted as in Eq.(4).

If this is not the case, agents proceed to the next

round, where the price update rule is executed.

An agent can raise the price offered by another

agent to the extent that it becomes indifferent between

its optimal and suboptimal payoffs. In light of this

strategy, agents calculate their payoff for each task

and bid on the task to maximize their benefit.

The optimal payoff is calculated as in Eq.(5).

Where θi is the optimal payoff for the agent ai and

j∗ is the task number corresponding to the optimal

payoff.

θi = gi j∗ = maxt j∈T (ci j − p j) t j∗ ∈ T , (5)

After that, calculate the suboptimal payoff gi j∗1 for

agent ai:

gi j∗1 = maxt j
(ci j − p j) t j∗ ∈ T t j∗1 6= t j∗ , (6)

where j∗1 is the task corresponding to the subop-

timal payoff. By exploiting these equations, the next

round offer of agent ai can be introduced as

pi j∗ = d j∗ + gi j∗ − gi j∗1 + ε (7)

where d j∗ is the highest bid for task j∗ offered

in the previous round, and ε denotes the incremen-

tal constant, which significantly impacts the auction’s

course. In fact, it allows the system to converge on op-

timal solutions and overcome deadlocks (infinite iter-

ations), whereas poor ε selection leads to higher com-

putational resource consumption. Thus, it needs to be

adjusted according to the specific scenario. Section 4

further elucidates how this value is optimized through

a genetic algorithm (GA).

3.3 Communication Topology

The graph G = (N ,V ) is adopted to establish

a network topology between decentralized agents.

Namely, N is the set of nodes, and V is the set of

vertices. If there is a direct communication link be-

tween two agents, that is, (δ,η) ⊆ V , then these two

agents are adjacent. The number of agents in the net-

work is N , and the adjacency matrix C of G can be

defined as in Eq.(8).

cδ,η =

{

1, if (δ,η)⊆ V

0, if (δ,η)* V
(8)

cδ,η is the element of the adjacency matrix C, a

binary decision variable that denotes whether a link

exists between two nodes δ and η. When dealing

with uncertainties and executing the algorithm, it is

assumed that the graph is undirected and fully con-

nected.

3.4 Uncertainty Theory

When allocating tasks to agents, the severity of the

uncertainty directly affects the decision-making pro-

cess and, hence, how fast and effectively agents oper-

ate (ElGibreen and Youcef-Toumi, 2019).

Most conventional approaches do not consider

uncertainty and its possible effects on the assignment

procedure. Conversely, in cases where the environ-

ment is highly dynamic, task positions are not deter-

ministic, and measurements vary over time. In this

paper, uncertainty is introduced based on changes in

the environment and is used to determine the accuracy

of the agents’ sensor measurements.

Uncertainty can be introduced with an uncertainty

space (Liu and Liu, 2010), represented as (Γ,L,M )
where Γ is a non-empty set, L is σ− algebra over a

non-empty set Γ, and M {∧} is an uncertainty mea-

sure which indicates the level of belief that an event

∧ will occur. This space has a measurable function

defined as ξ that maps the quantities from uncertainty

space to real numbers.

The lognormal distribution is implemented to

model the uncertainty. Hence, ξ ∼ LOGN (e,σ) and

the uncertainty distribution is measured by M {ξ≤ x}
for x ≥ 0 in Eq.(9).

Φ(x) =

(

1+ exp

(

π(e− ln(x))√
3σ

))−1

(9)

On the other hand, finding the uncertainty

distribution is not helpful since determining the un-

known value of x is not possible in a dynamic environ-
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ment. Thus, the distribution must be reconstructed us-

ing the uncertainty theory’s operational properties. In

this case, the inverse uncertainty distribution Φ−1(α)
is obtained, and its uncertainty variable ξ has a regu-

lar distribution Φ(x), where α ∈ [0,1] is a confidence

constant. For ξ ∼ LOGN (e,σ), inverse uncertainty

distribution can be derived as

Φ−1(α) = exp(e)

(

α

1−α

)

√
3σ/π

(10)

Utilizing the Eqs.(9) and (10), the overall score

function can be formulated as

max
m

∑
i=1

(

n

∑
j=1

((

1/Φ−1(α)i j

)

− pi j

)

xi j

)

(11)

where Φ−1(α) is the inverse uncertainty distribution,

and it represents the uncertainty of task positions.

Eq.(11) is used when calculating payoffs.

4 METHODOLOGY

In this section, the proposed algorithm and its

modules are introduced. Additionally, their working

principles are elaborated.

4.1 Algorithm Framework

The proposed algorithm comprises two phases: First,

a predefined number of CBAA operations are exe-

cuted by agents in parallel, that is, each agent simul-

taneously performs a specific number of CBAA and

aims to maximize its own score. The properties of

locally executed CBAAs (level of possible task com-

binations, the amount of CBAA operations) are de-

termined by GA’s evolutionary parameters, including

population size, crossover, and mutation. For each

CBAA execution, agents randomly initialize different

ε values ranging from
[

5.10−6,5.10−4
]

and find the

best possible ε value by determining the overall max-

imum payoff (derived in Eq.(11)) among calculated

CBAA procedures. Ultimately, the final CBAA is car-

ried out with the best obtained ε values and allocates

tasks to agents.

As a toy example of the proposed algorithm, as-

sume that there are rooms where potential bidders are

interested in the products being auctioned. The prod-

ucts are offered for sale to bidders in accordance with

specific auction rules. Bidders submit bids on the

most desirable item, thereby maintaining the momen-

tum of the auction. The auctions are conducted in par-

allel sessions, with the same products being offered

at varying levels of aggressiveness in each session.

It is expected that the bidders maximize their profit,

and if this criterion is not met, the auction extends

for a predetermined number of days. At each auction,

Bidders prioritize maximizing their own interests, and

if the auction does not yield the desired profit, they

must re-bid on a subsequent day. Moreover, prior to

each auction, bidders conduct an internal assessment

of the upcoming session, analyzing past results to re-

fine their bidding strategies and optimize their offers

accordingly. Subsequently, the most profitable auc-

tion combinations are identified, and buyers are en-

couraged to submit optimized bids for the correspond-

ing products. Thus, by conducting multiple auctions,

the profits of the bidders will be optimized, and the

system will reach a state of equilibrium.

4.2 Monte Carlo Simulation

The Monte Carlo (MC) approach is adopted to deter-

mine the uncertain positions of the tasks and increase

adaptability in a dynamic environment. Primarily,

random distances between (0,150) were calculated,

and by using Eq.(9), several distance points were col-

lected to determine the LOGN (e,σ) uncertainty pat-

tern. Specifically, e and σ values are obtained over

1000 iterations, and the lognormal uncertainty distri-

bution is acquired.

When locating tasks to place bids, task positions

can be predicted by using the uncertainty theory.

Uncertainty space can be reconstructed as {T ,D,ξ},

where T is the tasks, D is the distances, and ξ is

the agent’s benefit function. The goal is to find the

uncertainty distribution of each task, in other words,

ξn ∼ LOGN (e,σ).
Subject to the task position ambiguity prob-

lem, suppose ξ1,ξ2, . . . ,ξn are independent uncer-

tain variables with a regular uncertainty distribution.

Φ1(x),Φ2(x), . . . ,Φn(x) and the inverse uncertainty

distribution for ξ = f (ξ1,ξ2 . . .ξn), where f : ℜn →
ℜ is strictly increasing function denoted in Eq.(12).

Thereby, agents have valuable insights and awareness

regarding their benefits before assigning tasks in a dy-

namic environment.

Ψ−1(α) = f (Φ−1
1 (α),Φ−1

2 (α), . . . ,Φ−1
n (α)) (12)

4.3 CAGA Algorithm

The CAGA algorithm is proposed to solve the de-

centralized dynamic task allocation problem of the

MAS. The algorithm is divided into two phases: the

optimization phase and the assignment phase. Ini-

tially, with random ε combinations, agents conduct
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parallel CBAA processes and compute their payoffs.

Further, GA optimizes the whole procedure by adjust-

ing the ε values.

input : agents Ai, population size P

output: assignment matrix H

initialize yt , generations Pg

for each agent ai do
initialize populations

end

for each generation do

for each solution P do

calculate fitness

share fitness values

end

while new population < P do

select first parent from P

select second parent from P

crossover first and second parent

mutate crossover-ed populations

add new solutions to the P
end

end

for each agent ai do

calculate global best solution

end

for each agent ai do
update parameters

end

Algorithm 1: Optimization Phase of CAGA Algorithm.

In the optimization phase, each agent initial-

izes parameters, including population size, crossover,

and mutation rate. Particularly, between the pop-

ulation members (each CBAA performed by each

agent), combinations with the best payoffs are stored,

and the remainder sizes are filled with the arith-

metic crossover of former populations. In addition,

by leveraging Gaussian distribution, populations ex-

Table 1: Symbol description of CAGA algorithm.

Symbol Description

zi The task list of agent i

wi The winning bid list of agent i

vi The valid task list for agent i

qi,Ji
The agent that currently assigned task Ji

P(·) It is the indicator function that is unity
if the argument is true and zero otherwise

G The communication topology

k Agent k is the neighbor of agent i

posed to crossover are mutated, and new epsilon com-

binations are obtained. After these operations, each

combination is reserved, and agents proceed to the as-

signment phase.

In the assignment phase, after determining the ε
that provides the highest system payoff, agents carry

out the original CBAA and assign themselves to tasks.

input : The agent set A the task set T , the

communication topology G and the

initial price pi j

output: system payoff

while iteration < max iteration do

for each agent ai do

zi(t) = zi(t − 1)
wi(t) = wi(t − 1)
if ∑ j zi j = 0 then

vi j = P(ci j > wi j(t)),∀ j ∈ T
if vi 6= 0 then

Ji = argmax j vi j · ci j

zi,Ji
(t) = 1

wi,Ji
(t) = ci,Ji

update the price pi j

end

end

send wi to k with gik(τ) = 1

receive wk from k with gik(τ) = 1

wi j(t) = maxkgik(τ) ·wk j(t),∀ j ∈ T
qi,Ji

= argmaxkgik(τ) ·wk,Ji
(t)

if qi,Ji
6= i then

zi,Ji
(t) = 0

end

end

end

Algorithm 2: Assignment Phase of CAGA Algorithm.

In addition, the MC simulations help them effec-

tively detect the exposed uncertainty and make deci-

sions accordingly.

5 SIMULATION RESULTS

This section provides a detailed description of the cru-

cial aspects of the simulation process and presents

various test scenarios. In fact, small-, medium-, and

large-scale applications are conducted, and the re-

sults are visualized to illustrate the adaptability of the

CAGA algorithm.
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5.1 Experimental Setup

The simulation setup introduces the preliminaries, in-

cluding initial configurations, MC operations, and

the evaluation metrics used for analysis. Initially,

agents and task positions are set, and then agents ex-

ecute the CAGA algorithm to determine assignments.

Once targets are identified, the simulation begins to

demonstrate scenarios at predefined scales. Due to

environmental uncertainty, agents must periodically

update their measurements for accurate task execu-

tion. Also, these updates should be synchronized to

ensure feasible bid assessment and task re-allocation

when necessary.

During simulations, the uncertainty degree is as-

sumed to increase proportionally with distance and

follow a lognormal distribution. The simulation en-

vironment adjusts the fleet’s measurement frequency

to improve assignment efficiency, considering the dis-

tance of the farthest agent from the task, as this agent

experiences the highest level of uncertainty. In con-

trast, the time step is adjusted inversely to the de-

gree of uncertainty, ensuring adaptive responsiveness.

This relationship can be expressed as

∆t =
C

max(γ)+κ
(13)

where ∆t represents time step, C signifies constant

scale factor defined as 1, γ denotes the set of uncer-

tainty degree (γ ∈ [0,1]) experienced by each agent

and κ depicts the increment to avoid division by zero.

For the purposes of illustration, consider a sce-

nario in which three agents (a1,a2,a3) are involved

in a given problem, with the agents positioned 10,

20, and 30 meters away from their designated tasks,

respectively. According to the simulation, the agent

positioned 30 meters away exhibits the highest de-

gree of uncertainty. To determine the furthest one,

agents share their degree of uncertainty with them-

selves. Later, they define the highest bid and use it to

calculate Eq.(13) while updating their status. As the

agents approach their assigned tasks, the uncertainty

decreases, thereby enhancing the agents’ confidence

in their measurements and decreasing the measure-

ment frequency. Conversely, in a scenario where the

agents are distant from the tasks, the uncertainty is

elevated, and the measurements are received at more

frequent intervals.

The CAGA algorithm introduces an MC simu-

lation to capture uncertainty characteristics at var-

ious levels of uncertainty. This way, agents will

have more information about their workspace. Be-

fore performing assignments, agents are informed of

the presented uncertainty (LOGN (3.6,0.6)) with the

historical data collected from MC operations in a

100× 100 workspace.
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Figure 1: Lognormal uncertainty distribution function.

Figure 1 visualizes the uncertainty distribution

adopted in this paper. By using this knowledge,

agents have the capability to analyze the environment

and make decisions more accurately.

Carry out MC simulations

while system progress < t do

for current positions do

calculate Euclidean distance Di j

if Di j < 10−6 then

nullify the uncertainty

coeff = 0

end

else
calculate measured distance

calculate measured target
end

calculate new positions

calculate ∆t value

end

end
Algorithm 3: Simulation steps.

5.2 Results

Simulations for scales of 3 × 3, 5 × 5, and 10 × 10

were carried out, and the task assignments performed

by the CAGA algorithm have been visualized. The

proposed algorithm’s performance metrics were col-

lected using the same model created in Python.

For the simulations, the initial agent and task po-

sitions for small-, medium-, and large-scale appli-

cations were randomly defined within a 100 × 100
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T1 T2 T3
(a)

A1

A2

A3

33.72 81.53 42.55

43.31 97.25 44.16

47.46 67.61 47.56

3x3

T1 T2 T3 T4 T5
(b)

A1

A2

A3

A4

A5

33.72 81.53 42.55 37.96 26.39

43.31 97.25 44.16 42.94 29.41

47.46 67.61 47.56 85.58 69.73

44.83 90.26 52.41 40.44 36.20

26.27 35.26 34.02 78.29 57.02

5x5

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
(c)

A1
A2
A3
A4
A5
A6
A7
A8
A9

A10

33.72 81.53 42.55 37.96 26.39 61.14 12.96 31.27 38.56 54.79

43.31 97.25 44.16 42.94 29.41 69.91 29.43 50.86 32.37 43.77

47.46 67.61 47.56 85.58 69.73 25.22 40.19 24.28 82.48 52.58

44.83 90.26 52.41 40.44 36.20 57.01 22.87 34.97 46.48 58.08

26.27 35.26 34.02 78.29 57.02 62.45 36.72 26.76 70.68 62.84

52.56 70.21 43.59 100.57 79.39 37.82 52.60 44.27 90.08 42.15

15.78 55.61 25.48 61.05 40.03 55.56 15.42 17.07 53.63 50.06

34.04 75.38 19.69 78.43 54.27 56.08 36.52 44.56 61.56 17.94

22.03 69.71 27.68 53.35 33.60 53.27 6.08 22.38 46.36 43.53

37.89 80.80 46.07 45.76 22.92 102.16 46.02 64.69 22.67 70.68

10x10

Figure 2: Initial payoff matrices for conducted scenarios.

workspace. The initial payoff matrices, which are

shown in Figure 2, were derived by calculating the

Euclidean distance between the agent-task pairs and

30
100

40

 T3

80

50

Z
 (

m
)

80

60

Y (m)

60

CAGA Algorithm Task Assignment - 3 X 3 Scenario

60

 T1
 T2

70

X (m)

4040

 A2

 A3

20
20 0

 A1

Agents
Tasks
Checkpoints
Assignments
Initial Assignments

Figure 3: The CAGA algorithm performance for 3 × 3.

Table 2: Positions on XYZ (in meters) for 3 × 3 Scenario.

Agent Positions Task Positions Sensor Outputs

[54 23 65] [47 54 54] [32.1 72.2 40.51]

[75 21 53] [52 55 37] [38.5 76.1 41.4]

[17 23 34] [2 85 57] [42.2 58.6 42.8]

adding a LOGN (3.6,0.6) uncertainty noise to these

values. After that, at each checkpoint of the simu-

lation, sensor outputs were obtained from the corre-

sponding positions of the agents (To improve read-

ability, only the first sensor measurement output is

provided for each agent). These values are presented

in Tables 2, 3, and 4, respectively.

The simulation mechanism devised for the scenar-

ios is as follows: Agents and task locations are ini-

tialized for each procedure, and tasks are allocated by

leveraging the CAGA algorithm subject to the payoff

matrices in Figure 2. The simulation is divided into
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Figure 4: The CAGA algorithm performance for 5 × 5.

Table 3: Positions on XYZ (in meters) for 5 × 5 Scenario.

Agent Positions Task Positions Sensor Outputs

[54 23 65] [71 41 74] [70.3 40.2 73.6]

[75 21 53] [52 55 37] [53.6 52.6 38.1]

[17 23 34] [2 85 57] [4.27 75.6 53.5]

[53 11 65] [76 23 96] [74.3 22.1 93.8]

[21 56 51] [47 54 54] [45.8 54.9 53.8]

five time intervals, each containing a checkpoint. This

structure allows agents to simultaneously update their

measurements, refine their positions, and potentially

reallocate tasks. At each checkpoint, they recalcu-

late their payoffs to each task and, if a higher payoff

exists, reallocate to another task by re-executing the

CAGA algorithm. Since agents synchronously reach

checkpoints and adjust their progression rates accord-

ing to the agent most affected by the uncertainty, task

conflicts will not arise.
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Figure 5: The CAGA algorithm performance for 10 × 10.

Table 4: Positions on XYZ (in meters) for 10 × 10 Scenario.

Agent Positions Task Positions Sensor Outputs

[54 23 65] [71 41 74] [84.2 40.9 74.4]

[75 21 53] [52 55 37] [54.2 51.6 38.5]

[17 23 34] [25 30 56] [24.6 29.6 55]

[53 11 65] [76 23 96] [74.6 22.2 94.1]

[21 56 51] [2 85 57] [3.69 82.4 56.4]

[22 35 12] [15 0 24] [15.4 1.98 23.3]

[37 42 53] [47 54 54] [46.7 53.7 53.9]

[53 41 23] [64 32 12] [63.5 32.3 12.4]

[47 32 52] [48 32 58] [47.9 32 57.8]

[78 63 74] [86 42 75] [71.2 41.8 74]

A small-scale application was initially conducted,

with results visualized in Figure 3. Due to uncertainty

and sensor errors, agents deviated from their trajecto-

ries. At each checkpoint, they reassessed their po-

sitions and, if necessary, reallocated tasks. Notably,

at the second and third checkpoints, agents 2 and 3

switched tasks, but by the final checkpoint, updated

payoffs led them to reallocate to their initial tasks.

This behavior distinctly illustrates the proposed algo-

rithm’s resilience to uncertainty.

In medium-scale applications, as depicted in Fig-

ure 4, agents effectively navigated environmental un-

certainty while maintaining their initial allocation

paths, in contrast to the deviations observed in small-

scale scenarios.

Ultimately, the CAGA algorithm was tested in a

10 × 10 scenario, with results presented in Figure 5

and Table 4. The simulation outcomes demonstrate

that agents successfully maintained their initial task

assignments while effectively adapting to uncertain-

ties. Throughout the execution, they remained within

their designated measurement corridors, ensuring sta-

ble and reliable task completion.

Interestingly, during the execution of the simula-

tion scenarios, the uncertainty inherent in the envi-

ronment does not significantly divert the agents from

their trajectories. In contrast, results clearly show

that the MC approach introduces adaptability to the

CAGA algorithm, allowing agents to manage uncer-

tainty effectively within dynamic environments.

6 DISCUSSION

The CAGA algorithm was compared with CBAA

and other market-based approaches across differ-

ent scenarios both in terms of computational time

and total payoff. Particularly, the proposed optimal

market-based (OMB) (Liu and Shell, 2013) and im-

proved market-based (IDMB) (Trigui et al., 2014) ap-

proaches were performed, and results are shown in

Table 5 and 6. All simulations were implemented in

Python 3.12.7 and tested on a system with a 4-core

4.2 GHz i7-7700K CPU and 16 GB of memory.

Table 5: The payoff comparison of the algorithms. The
boldface values are the best average for each algorithm.

Scenarios Algorithms

CAGA CBAA OMB IDMB

3 × 3 6.71 6.71 6.71 6.71

5 × 5 13.82 13.82 13.2 13.80

7 × 7 29.13 28.37 25.5 22.61

10 × 10 50.59 49.82 49.6 43.22

15 × 15 75.689 74.74 71.87 72.81

20 × 20 125.86 111.4 106.5 109.72

25 × 25 182.32 143.8 126.4 127.4

30 × 30 209.09 169.1 157.8 148.07

35 × 35 248.06 247.7 227.7 209.8

40 × 40 279.42 281.6 265.8 244.5

In the proposed algorithm, the assignments are de-

rived from the last checkpoint of the simulations. On

the other hand, since other algorithms do not utilize

checkpoints, assignments are made directly based on

the initial cost matrix. After that, cost matrices with

uncertainties have been used to perform all assign-

ments. Finally, cost matrices without uncertainty have

been used to calculate payoffs to ensure a consistent

evaluation of payoffs.

The payoff and runtime performances of the algo-

rithms, as presented in Tables 5 and 6, were tested in

25 trials, and the arithmetic mean of the results was

used for comparison. The results are calculated using
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100 λ−1, where λ denotes the cost matrix. The ma-

trix elements are derived based on the Euclidean dis-

tance between the positions of the agents and tasks.

To prevent extremely small values and enhance the

accuracy of the results, the inverse of the cost ma-

trix is scaled by a factor of 100. According to the re-

sults, the proposed algorithm demonstrates superior-

ity for small- and medium-scale applications regard-

ing system payoff in an uncertain environment. It ex-

pands the search space and identifies possible solu-

tions available to agents.

Table 6: The computational time comparison of the algo-
rithms (in milliseconds). The boldface values are the best
average for each algorithm.

Scenarios Algorithms

CAGA CBAA OMB IDMB

3 × 3 8.89 0.97 0.09 0.03

5 × 5 9.76 0.99 0.17 0.24

7 × 7 11.95 1.89 0.42 0.30

10 × 10 13.16 1.99 0.44 0.38

15 × 15 18.02 4.98 0.79 0.71

20 × 20 22.92 8.97 0.86 0.92

25 × 25 30.78 17.97 1.15 1.65

30 × 30 40.84 35.90 2.06 2.80

35 × 35 66.41 55.82 3.36 3.69

40 × 40 83.79 73.80 3.84 4.32

However, as the operational scale increases, the

CAGA algorithm struggles with the growing num-

ber of uncertain conditions in the system, which ul-

timately leads to computational overhead. Table 6 il-

lustrates the computational times of each algorithm

across various applications. The results highlight the

efficiency of the OMB algorithm, whereas the CAGA

algorithm demonstrates relatively poor performance.

Nevertheless, the CAGA algorithm accounts for un-

certainty and can be easily adjusted for application

scenarios where optimality precedes time sensitivity.

7 CONCLUSION

In this paper, the decentralized dynamic task

allocation problem of MAS was introduced and

solved with the proposed CAGA algorithm. The pro-

posed algorithm was compared with several market-

based methods and the well-known consensus-based

decentralized task assignment algorithm CBAA, and

the results are discussed. According to the sim-

ulations conducted in different operational sizes, it

has been demonstrated that the proposed algorithm

provides valuable outputs in terms of system pay-

off in an uncertain environment, although it sacri-

fices computational time to find more optimal solu-

tions. Unlike CBAA or other conventional task al-

location algorithms, the CAGA algorithm introduces

adaptability and feasibility for real-world applica-

tions. In future works, plans are to use uncertainty

synergistically while tackling the formation flight and

task allocation problems and creating realistic en-

vironments much more analogous to real-world ap-

plications. Beyond the current uncertainty handling

framework of the algorithm, incorporating additional

checkpoints could enable more precise task assign-

ments for agents. This enhancement can potentially

improve efficiency, particularly in environments with

high levels of uncertainty. Moreover, the failures

that may arise due to the high communication bur-

den of the system can be investigated, and the lim-

ited communication problem can be used jointly in

the task assignment scenario. Also, an algorithm with

higher efficiency and performance can be created by

adapting the genetic parameters used in the proposed

algorithm to the specific problem. Future research

could explore trajectory planning problems for agents

under uncertainty in conjunction with task assign-

ments. Enhancing agents’ adaptability and sensitiv-

ity in reaching tasks may lead to more efficient and

robust decision-making in dynamic environments.
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