
Indexed Concatenation Notation: A Novel Way to Summarize Networks
and Other Complex Systems

Kenneth Caviness1 a, Colton Davis1 b, Derek Renck1 c, Charles Sarr2, Scot Anderson3 d,

Heaven Robles4 e and Rhys Sharpe3 f,
1School of Engineering and Physics, Southern Adventist University, Taylor Circle, Collegedale, U.S.A.

2Laurelbrook Academy, Campus Drive, Dayton, U.S.A.
3School of Computing, Southern Adventist University, Taylor Circle, Collegedale, U.S.A.

4Biology and Allied Health Department, Southern Adventist University, Taylor Circle, Collegedale, U.S.A.

Keywords: Graph Identification, Concatentation, Indexed Concatenation, Lossless Compression, Edge Difference Set

List.

Abstract: The indexed concatenation notation presented in this paper extends the concept of concatenation in a way

similar to the extension of addition to the indexed sum, allowing compact representations of strings, lists,

matrices, etc., having internal repetitive or describable structure. In particular, it allows the edge difference

set list of any graphical network with a visible pattern to be summarized in an extremely compact and lossless

way. Examples highlight the information compression of the technique and showcase its ability to represent

complicated, infinite patterns in closed form.

1 INTRODUCTION

Graph theory provides mathematicians and computer

scientists with many tools for the study of networks,

but none compactly identify a large or infinite net-

work. That situation has now changed: the Indexed

Concatenation Notation (ICN) allows any network

with a visible pattern to be “reduced” to form an ex-

tremely compact summary, which could then serve,

for example, as a “dictionary entry” in a list of net-

works studied.

The notation defined here owes much to the in-

dexed sum, product, union and notations already

widely used in mathematics; it is a modern reincar-

nation of an idea N. G. de Bruijn jotted down in

1977 (de Bruijn, 1977). Although our direct moti-

vation comes originally from graph theory, concate-

nation has deep roots in programming languages and

in computer science in general. As far back as the

early 70s, the theory of concatenation included not

a https://orcid.org/0009-0008-5240-6260
b https://orcid.org/0000-0003-4348-7923
c https://orcid.org/0009-0002-7564-2123
d https://orcid.org/0009-0009-5053-555X
e https://orcid.org/0009-0008-5434-7444
f https://orcid.org/0009-0001-9671-3763

only strings, but lists as well (Campbell, 1971). Al-

most all programming languages include concatena-

tion operators, but C can perform this operation in

at least five different ways, using either functions or

more primitive manipulations (WsCubeTech, 2025).

Concatenation forms a fundamental operation in the

theory of computation, where it is essential in the un-

derstanding of different types of languages from regu-

lar expressions to Turing machines (Sipser, 2012; Ma-

heshwari and Smid, 2024).

The proposed extension of concatenation to allow

indexing strengthens the notation, which can then be

used with strings, lists, sequences, etc.

The ICN can be considered a new form of lossless

information compression for strings, lists, sequences,

and networks.

2 MOTIVATION

In our work over several years, we have consistently

encountered networks having some obvious visual

pattern. One such example is shown in Figure 1.

Only a small part of the infinite two-dimensional

network is shown, with the first vertex of the graph in-

dicated by the small black arrow at the bottom right.

Caviness, K., Davis, C., Renck, D., Sarr, C., Anderson, S., Robles, H. and Sharpe, R.
Indexed Concatenation Notation: A Novel Way to Summarize Networks and Other Complex Systems.
DOI: 10.5220/0013514700003970
In Proceedings of the 15th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2025), pages 39-50
ISBN: 978-989-758-759-7; ISSN: 2184-2841
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

39

Figure 1: An infinite two-dimensional network with a consistent internal pattern.

Table 1: The first edges of the network shown in Figure 1.

1 → 2 1 → 2 1 → 3 1 → 3 2 → 4

2 → 4 3 → 5 3 → 7 4 → 5 4 → 9

5 → 6 5 → 6 6 → 7 6 → 16 7 → 8

7 → 17 9 → 10 9 → 10 9 → 11 9 → 11

The graph grows without bound, extending indefi-

nitely up and left. (See outlined arrows.) The small

inset shows the first 60 vertices and edges between

them, with vertex numbers indicating the order in

which they were added to the graph as it was con-

structed.

Although the layout is arbitrary, the graph has

clear patterns along its growing edges and in its in-

terior. Visually, the lower edge of the graph is made

up of alternating pentagons and heptagons, with one

quadrilateral sitting on each pentagon. Each polygon

is made of single and double edges, always in the

same positions. The interior of the graph is single-

edged quadrilaterals only, but the right-most one on

each row has a missing right side.

But such descriptions are not definitive and might

apply equally well to many other networks. Similarly,

graph-theoretic properties such as order and size (both

infinite here), connectivity, vertex degrees, density,

girth, radius, diameter, height, etc., do not uniquely

identify a graph. It is frustrating to repeatedly come

across similar-seeming graphs that, on closer inspec-

tion, turn out to be different. A graph is uniquely de-

fined by its set of vertices and its set of edges, and

the only reliable identification comes from consider-

ing those sets. We looked for ways to summarize this

data, without any loss of information. The first few di-

rected edges of our example graph, sorted by vertices

connected, are as shown in Table 1.

Any pattern visible to human eyes in the graph

above is hidden in this edge list, but the simple opera-

tion of first grouping edges according to their starting

vertex and then taking the differences of starting and

ending vertex numbers for each edge suddenly reveals

new vistas for the pattern seeker.

No information is lost in this process, since each

set, Si, completely specifies the edges originating at

vertex i. The same information is in both the list of

edges (grouped by originating vertex) and the edge

difference set list (EDSL). Table 2 demonstrates how

an EDSL is formed.

Table 2: Network edges and the corresponding EDSL.

Edges: EDSL:

{1 → 2,1 → 2,1 → 3,1 → 3} {1,1,2,2}
{2 → 4,2 → 4} {2,2}
{3 → 5,3 → 7} {2,4}
{4 → 5,4 → 9} {1,5}
{5 → 6,5 → 6} {1,1}
{6 → 7,6 → 16} {1,10}
{7 → 8,7 → 17} {1,10}

{} {}
{9 → 10,9 → 10,9 → 11,9 → 11} {1,1,2,2}

.

The EDSL of a network having some intrinsic pat-

tern frequently includes subsequences of exact dupli-

cate sets, providing an obvious first step toward re-

duction to a summary. When we see, for instance,

2 adjacent copies of {1,10}, 4 adjacent copies of

{1,12}, 6 copies of {1,14}, 8 copies of {1,16}, and so

on, we temporarily represent these duplicate subse-

quences by e
2[{1,10}], e 4[{1,12}], e 6[{1,14}],

e
8[{1,16}], etc. (More on the notation shortly.)

Compressing those allows us to notice other similar

cases, and soon we have the first reduction of this

graph’s EDSL:

SIMULTECH 2025 - 15th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

40

{{1,1,2,2},{2,2},{2,4},{1,5},{1,1},
2

e [{1,10}],{},{1,1,2,2},{2,2},{2,4},

{1,7},{1,1},
4

e [{1,12}],{},{1,1,2,2},{2,2},

{2,4},{1,9},{1,1},
6

e [{1,14}],{},{1,1,2,2},

{2,2},{2,4},{1,11},{1,1},
8

e [{1,16}],{}, . . .
}

(1)

In this case no further reduction can be achieved

based on exact duplicates of adjacent sets or exact

duplicates of subsequences, but each 7-element row

(subsequence) above has a common pattern, with only

3 numbers changing in each row. In the first row,

these numbers are 5, 2, and 10; in the kth row, they

are 2k+ 3, 2k, and 2k+ 8. Before moving on to the

details of the Indexed Concatenation Notation, glance

at the fully reduced form of this EDSL in all its glory.

{

∞

e
k=1

[

{1,1,2,2},
2

e
j=1

[{2,2 j}],

{1,2k+ 3},{1,1},
2k

e
i=1

[{1,2k+ 8}],{}
]} (2)

Note the index variables, i, j and k, which have

been introduced. Just as one would expect by anal-

ogy to an indexed summation, i, j and k take on the

initial value of 1 and are incremented until the speci-

fied final values are reached: here, 2k, 2, and infinity,

respectively. Assuming the pattern has been well es-

tablished and will continue indefinitely, we have suc-

ceeded in summarizing the entire infinite network’s

EDSL in two scant lines!

3 NOTATION AND PRECEDENTS

We define the operators both for standard and indexed

concatenation, explaining the background of the cur-

rent indexed concatenation notation.

3.1 Binary (Infix) Operator

There is no generally accepted binary operator for

concatenation. Different programming languages im-

plement different operators for strings, such as S1+S2

in C++, Java, Pascal, and Python; S1.S2 in PHP and

Perl; S1 ∗ S2 in Julia; S1||S2 in SQL; S1&S2 in Ada,

BASIC, and .NET; S1 ∼ S2 in D; S1//S2 in Fortran;

S1ˆS2 in F#; S1..S2 in Lua; S1,S2 in Smalltalk and

APL; and S1 <> S2 in Wolfram Mathematica. In our

opinion, each of these options has significant draw-

backs, each having widely varying meanings in other

contexts. Nor would the situation be improved by

importing the function composition operator used in

mathematics: f1 ◦ f2.

Several languages, including Haskell, Zig, and Er-

lang use two consecutive plus signs (++) for concate-

nation, and in the case of Haskell, the shifted over-

strike (Unicode 10746, hex 29FA): ++. This symbol

overcomes many of the drawbacks of the others. We

propose to use it as the binary or infix version of con-

catenation. For example, we write

{1,2,3}++{5,4,3}++{7}= {1,2,3,5,4,3,7} (3)

3.2 Indexed Operator

Consider other familiar notations, such as sum, prod-

uct, and union, both simple (binary, two-argument)

and indexed operators:

3

∑
i=1

ai = a1 + a2 + a3 (4)

3

∏
i=1

ai = a1 ·a2 ·a3 = a1a2a3 (5)

3⋃

i=1

Si = S1 ∪S2 ∪S3 (6)

Some examples with numbers:

4

∑
i=1

i = 1+ 2+ 3+ 4= 10 (7)

3

∏
i=1

i = 1 ·2 ·3= (1)(2)(3) = 6 (8)

4⋃

i=1

{

i, i2
}

= {1,1}∪{2,4}∪{3,9}∪{4,16}

= {1,2,3,4,9,16}
(9)

Each indexed operator is defined as an extension

of the corresponding binary operator: +→ ∑, · → ∏,

∪→ ⋃
. The sum and product use different symbols

for the two, while the indexed union of sets reuses the

binary operator symbol for the indexed case, as does

the intersection.

Having a choice of precedents to follow, we opt

for the following for indexed concatenation:

3

e
i=1

Si = S1 ++S2 ++S3 (10)

Indexed Concatenation Notation: A Novel Way to Summarize Networks and Other Complex Systems

41

We settled on the euro symbol, which exists

widely, but not in this context, so no misunderstand-

ing should occur. Visually, it resembles a “C” for

“Concatenate”, and also resembles our choice for the

infix concatenation operator, ++, selected from the

Haskell computer language.

We begin by closely following the indexed union,

defining the indexed concatenation in terms of the

simple operator. Crucially, unlike indexed union, con-

catenation does not eliminate duplicates nor sort the

resulting list. For example,

4

e
i=1

{i, i2}= {1,1}++{2,4}++{3,9}

++{4,16}= {1,1,2,4,3,9,4,16}
(11)

Similar work has been attempted previously.

Nicolaas Govert “Dick” de Bruijn, a Dutch math-

ematician noted for his contributions to analysis,

number theory, combinatorics and logic, published a

memorandum describing a notation for both simple

and indexed concatenation (de Bruijn, 1977). While

we have based our ICN on the more familiar sum-

mation notation, de Bruijn’s approach is slightly less

intuitive. He uses a three-sided box over each item

to be concatenated, forming what he terms comb no-

tation. His definitions are solidly rooted in set theory

and include a recursive definition for the indexed con-

catenation operator. But their time had, apparently,

not yet come. “This one’s for you, Dick!”

4 DEFINITIONS

We define the concatenation operator as applying to

strings, sequences, lists (shown here as sets, but with

no presumed sorting or removal of duplicates), and

any other similar objects (Table 3). Notice that the

concatenation of two strings results in a string, that

of two lists gives a list, etc. In all cases this can be

thought of as retaining the outer delimiters (those be-

fore a1 and after bn) while the inner delimiters, those

adjacent to the concatenation symbol (”++ “, }++ {,

or] ++ [), disappear with it. The use of curly braces

{} for lists aligns well with common usage for sets

in mathematics, where sequences are often shown

without delimiters, and occasionally with parenthe-

ses (Rehmann, 2020). The square brackets [] used

above for sequences is another nod to the Haskell lan-

guage, but we treat this as a vanishing delimiter (see

below).

Indexed concatenation (of any n objects Si of the

same type) is now defined as a generalization of the

binary operator:

n

e
i=1

Si = S1 ++S2 ++ . . .Sn (12)

Of course, any index may be used, or if not essen-

tial for defining the process, it can be omitted. If the

initial value is omitted, a desired default (generally 1

or 0) should be specified. We saw examples of this in

the Motivation section.

5 SIMPLE EXAMPLES

We provide multiple examples of the capabilities of

indexed concatenation when applied to lists, matrices,

and other datatypes. In each case indexed concatena-

tions shows promising potential to concisely summa-

rize repeated patterns.

5.1 Strings

Concatenation of strings works exactly as expected:

3

e “ABC” = “ABC”++“ABC”++ “ABC”

= “ABCABCABC”

(13)

Overloading the “+” operator to advance the char-

acter a certain number of steps in a given alphabet

(such as adding an int to a char in C-like languages),

allows this nested example:

3

e
i=0

2

e
j=0

(“A”+ i+ j) = “ABC”++“BCD”

++“CDE”++“DEF” = “ABCBCDCDEDEF”

(14)

5.2 Integers and Digits

The notation might even extend to concatenating the

digits of numbers, when the argument is neither a list

nor a sequence, but an integer: the concatenation of

integers should be an integer.

5

e
i=1

i2 = 1++4++9++16++25 = 1491625 (15)

That would be in contrast to using [], indicating a

sequence to be summarized:

5

e
i=1

[i2] = [1]++[4]++[9]++[16]++[25]

= [1,4,9,16,25]

(16)

SIMULTECH 2025 - 15th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

42

Table 3: Operation of infix concatenation on various datatypes.

Strings: “a1a2 . . .am” ++ “b1b2 . . .bn” = “a1a2 . . .amb1b2 . . .bn”

Lists: {a1,a2, . . . ,am} ++ {b1,b2, . . . ,bn}= {a1,a2, . . . ,am,b1,b2, . . . ,bn}
Sequences: [a1,a2, . . . ,am] ++ [b1,b2, . . . ,bn] = [a1,a2, . . . ,am,b1,b2, . . . ,bn]

Table 4: Examples of using indexed concatenation with digits.

Fraction Decimal Overline Notation Indexed Concatenation

1
3

0.333 . . . 0.3 0.e
∞ 3

1
7

0.142857142857 . . . 0.142857 0.e
∞(142857)

200
111

1.801801801 1.801 1.e
∞(801)

0.010010001 . . . 0.e
∞
i=1

((

e
i
j=1 0

)

1
)

Table 4 provides several examples of compress-

ing digits with indexed concatenation. We note here

that the common overline notation looks much sim-

pler, and probably should be retained except in cases

such as the last example, which is an irrational num-

ber.

5.3 Lists and Sequences

We now turn to indexed concatenation of lists and se-

quences. Some examples:

3

e
i=1

{

i, i2
}

= {1,1}++{2,4}++{3,9}

= {1,1,2,4,3,9}
(17)

5

e
i=1

{i,10− i}= {1,9}++{2,8}++{3,7}

++{4,6}++{5,5}= {1,9,2,8,3,7,4,6,5,5}
(18)

Again, the concatenation of lists is a list, without

adding nested levels of the list structure. Of course,

to make a list with sublists, we can nest the lists that

serve as input to the concatenation operator. A con-

catenation of lists with one level of sublists is a list

with one level of sublists:

3

e
i=1

{{

i, i2
}}

= {{1,1}}++{{2,4}}

++{{3,9}}= {{1,1},{2,4},{3,9}}
(19)

With sequences, the only difference is that all se-

quence delimiters that remain after the concatena-

tion will vanish if inside another structure, so subse-

quences expand back out without adding additional

levels of nesting. (Outer sequence delimiters remain,

so the following is a sequence, not a list.)

3

e
i=1

3

e
j=1

[ji] =
3

e
i=1

[i,2i,3i] = [1,2,3]

++[2,4,6]++[3,6,9] = [1,2,3,2,4,6,3,6,9]

(20)

But invoking the disappearance of our sequence-

delimiter when inside some other object, one can con-

catenate subsequences in an outer list:

{

3

e
j=1

3

e
j=1

[ji]

}

= {[1,2,3,2,4,6,3,6,9]}

= {1,2,3,2,4,6,3,6,9}
(21)

These can be nested to any level desired. So we

have two ways to represent a list of integers having an

internal pattern. For example,

{1,1,1,1,1,2,2,2,2,1,1,1,1,1,2,2,2,2,1,

1,1,1,1,2,2,2,2}→
{

5

e [1],
4

e [2],
5

e [1],

4

e [2],
5

e [1],
4

e [2]

}

→
{

3

e

[

5

e [1],
4

e [2]

]}

(22)

Indexed Concatenation Notation: A Novel Way to Summarize Networks and Other Complex Systems

43

{1,1,1,1,1,2,2,2,2,1,1,1,1,1,2,2,2,2,1,

1,1,1,1,2,2,2,2}→ {1,1,1,1,1}++{2,2,2,2}
{1,1,1,1,1}++{2,2,2,2}++{1,1,1,1,1}

++{2,2,2,2}→
5

e {1}++
4

e {2}

++
5

e {1}++
4

e {2}++
5

e {1}++
4

e {2}

→
3

e

(

5

e {1}++
4

e {2}
)

(23)

The above examples have primarily involved in-

creasing values, increasing number of values, or both.

However, because any formula based on the concate-

nation indices can be used, this notation can also rep-

resent sequences involving descending numbers of el-

ements and descending values.

10

e
i=1

{

210−i
}

= {512,256,128,64,32,16,8,4,2,1}

(24)

3

e
n=0

{

3−n

e
i=0

{3− i− n}
}

= {{3,2,1,0},{2,1,0},{1,0},{0}}
(25)

We can even produce Pascal’s Triangle, grouped

by rows, to any desired row. (Again, replacing the

inner, {}, by the disappearing subsequence delimiters,

[], would produce a single list.)

5

e
n=0

{

n

e
k=0

{

n!

k!(n− k)!

}

}

= {{1},{1,1},{1,2,1},{1,3,3,1},
{1,4,6,4,1},{1,5,10,10,5,1}}

(26)

5.4 Matrices

A generalized matrix (ai j), with 1 ≤ i ≤ m, 1 ≤ j ≤ n,

can be written in IC notation as a concatenated list of

concatenated lists:









a11 a12 · · · an

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn









=
m

e
i=1

{

n

e
j=1

{

ai j

}

}

(27)

If the matrix has some additional structure, that

could also be shown explicitly in the IC form. For

example, in the matrix mechanics representation of

quantum physics, the annihilation operator â, which

lowers the quantum state |n〉 to |n − 1〉 for a one-

dimensional harmonic oscillator, is given in the en-

ergy eigenbasis by an infinite matrix whose pattern

that can be explained in words: “All diagonal ele-

ments are zero. The entries
√

n appear in the first

subdiagonal above the diagonal. All other elements

are 0.” Yes, that is clear. But how much better to give

a mathematically precise definition in IC notation!



























0
√

1 0 0 0 0 0 . . .

0 0
√

2 0 0 0 0 . . .

0 0 0
√

3 0 0 0 . . .

0 0 0 0
√

4 0 0 . . .

0 0 0 0 0
√

5 0 . . .

0 0 0 0 0 0
√

6 . . .
0 0 0 0 0 0 0 . . .
...

...
...

...
...

...
...

. . .



























=
∞

e
k=1

{{

k

e [0],
√

k,
∞

e [0]

}}

(28)

Very concise. Similarly, the infinite matrix repre-

sentations of the creation operator (â†), the position

(x̄), and momentum (p̂) operators, can all be written

in nested IC form.

6 CANTOR’S ENUMERATION OF

ALL FRACTIONS & THE

FAILURE OF SET-BUILDER

NOTATION

Finally, let’s consider an example that will resonate

with mathematicians: the IC notation construction

of the first enumeration of the rationals, published

in (Cantor, 1874). Georg Cantor, the father of trans-

finite mathematics, published his proof of the count-

ability of the rationals in 1874, over 150 years ago.

One might presume that in the intervening time some-

one would have come up with a concise, mathemati-

cally precise way to describe the process. Sadly, that

SIMULTECH 2025 - 15th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

44

1/1

1/2

2/1

1/3

3/1

1/4

4/1

1/5

5/1

⋮

⋯

5/2 ⋯

5/3 ⋯

5/4 ⋯

5/5 ⋯

⋮ ⋮ ⋮ ⋮ ⋱
Figure 2: A traversal producing Cantor’s enumeration of
fractions.

expectation would be incorrect. Words to describe

Cantor’s method are easy:

1. Imagine an infinite table in which the first element

of the first row is 1
1
, and then moving one column

to the right always increases the numerator by 1,

while moving one row down increases the denom-

inator by 1.

2. Following any (infinite) row or column would

mean never getting to the next one; instead, we

traverse the array one (finite) diagonal at a time,

starting from the upper left corner. Note that for

all elements n
d

on a given diagonal, n + d is a

constant, and in fact, on diagonal number diag,

n+ d = diag+ 1.

Cantor actually used a “snake-like” traversal,

winding back-and-forth on alternate diagonals, but for

our purposes a “trace and retrace” pattern is prefer-

able.

Figure 2 first appeared in (Caviness, 2011), and

the code to generate it was updated in (Nachbar,

2023).

The following IC constructs the diagonals in the

order Cantor visits them, but traverses each diago-

nal from left-to-right (by increasing numerator), as

shown by the small blue arrows, before advancing to

the next diagonal (longer red arrows). We do this by

two nested IC objects, the outer specifying the diag-

onal diag, the inner giving the nth element on the di-

agonal. If the nested list structure is not desired, the

inner set of curly braces could be replaced by the dis-

appearing square brackets, generating sequences that

are simply spliced into a single list.

{{

1

1

}

,

{

1

2
,

2

1

}

,

{

1

3
,

2

2
,

3

1

}

,

{

1

4
,

2

3
,

3

2
,

4

1

}

,

{

1

5
,

2

4
,

3

3
,

4

2
,

5

1

}

. . .

}

→
∞

e
diag=1

{

diag

e
n=1

{

n

1+ diag− n

}

}

(29)

This enumeration cannot be easily produced by

conventional mathematical notation, such as using

set-builder notation. For example,

{

p

q

∣

∣ p,q ∈ Z
+

}

(30)

produces all fractions, but loses Cantor’s diagonal or-

dering.

{

n

diag− n+ 1

∣

∣ diag ∈ Z
+,n ∈ {1, . . . ,diag}

}

(31)

again produces all fractions, but assumes the user will

not sort the resulting list (i.e., non-standard treatment

for sets), and has no interest in grouping entries by di-

agonal. The Indexed Concatenation form practically

writes itself, while set-builder notation requires sig-

nificant mathematical gymnastics to produce the same

result.

7 A MULTIPLY-NESTED

EXAMPLE

One of the authors (Davis) created many infinite net-

works having some visual symmetry and patterned

structure, identified vertices and edges for the begin-

ning of each graph (again following some clear, re-

peating pattern), constructed its EDSL and then re-

duced it. One interesting case consists of nested,

growing, interconnected pentagons, as shown in Fig-

ure 3.

The answer found, which completely defines this

structure out to the 8th pentagon, was this interesting

triply nested structure.

{

8

e
n=1

[

{1,5n+ 4,5n+ 5},
4

e
k=1

[

n

e
i=1

[{1}],{1,k+ 5n+ 5}
]

,
n−1

e
j=1

[{1}],{}
]} (32)

Indexed Concatenation Notation: A Novel Way to Summarize Networks and Other Complex Systems

45

Figure 3: A multidimensional network with a triply nested
concatenation.

Expanding the outer IC levels shows an fascinat-

ing feature of the IC notation. Although by con-

struction all graph edges connect lower numbered ver-

tices to higher numbered ones, so the EDSL contains

only positive numbers, a 0 appeared in the final IC

for n = 1, but only as the ending value for the in-

dex: e
0
j=1[{1}]. Further examples showed that a 0

or even a negative ending value is perfectly legal for

an indexed concatenation: That subsequence is sim-

ply omitted from the fully expanded list. Similarly,

e
1
i=1[{1}] only expands out to a single copy of {1}.

{

{1,9,10},
1

e
i=1

[{1}],{1,11},
1

e
i=1

[{1}],{1,12},

1

e
i=1

[{1}],{1,13},
1

e
i=1

[{1}],{1,14},
0

e
j=1

[{1}],{},

{1,14,15},
2

e
i=1

[{1}],{1,16},
2

e
i=1

[{1}],{1,17},

2

e
i=1

[{1}],{1,18},
2

e
i=1

[{1}],{1,19},
1

e
j=1

[{1}],{},

{1,19,20},
3

e
i=1

[{1}],{1,21},
3

e
i=1

[{1}],{1,22},

3

e
i=1

[{1}],{1,23},
3

e
i=1

[{1}],{1,24},

2

e
j=1

[{1}],{}, . . .
}

(33)

Clearly, once a pattern is detected, it is worth try-

ing to extend it backwards in the list: it may apply

even where not initially noticed. For reference, the

fully expanded EDSL begins in this way:
{{1,9,10},{1},{1,11},{1},{1,12},{1},{1,13},

{1},{1,14},{},{1,14,15},{1},{1},{1,16},
{1},{1},{1,17},{1},{1},{1,18},{1},{1},

{1,19},{1},{},{1,19,20},{1},{1},{1},{1,21},
{1},{1},{1},{1,22},{1},{1},{1},{1,23},

{1},{1},{1},{1,24},{1},{1},{},{1,24,25},
{1},{1},{1},{1},{1,26},{1},{1},{1},{1},
{1,27},{1},{1},{1},{1},{1,28},{1},{1},

{1},{1},{1,29},{1},{1},{1},{},{1,29,30}, . . .}
(34)

8 A SELECTION OF NETWORKS

Here is a small collection of different networks we

have successfully compressed, each shown together

with its compressed edge difference set list (EDSL)

in indexed concatenation form (IC). Many of these in-

clude nested concatenations. All of the networks can

be extended by increasing the end value of the index

variable in the outer indexed concatenation. Replac-

ing the end value by ∞ results in an infinite network,

without adding any complexity to the IC form shown.

Figures 4 and 5 showcase the examples selected,

together with their concatenated EDSLs. Figure 4

consists of examples of networks that can extend in-

definitely in one dimension, whether or not a close

view appears one- or two-dimensional. (Cases that

are locally three-dimensional have also been found.)

Figure 5 shows several higher-dimensional networks

along with their EDSLs. Most of these visually ap-

pear to be two-dimensional (expanding in two direc-

tions), and all include at least two levels of indexed

concatenation, one nested inside the other, although

such nesting does not guarantee two-dimensionality,

as can be seen from Figure 4.

One example (Figure 5d) is clearly three-

dimensional (expanding in three directions as the

outer index increases), and is summarized by a three-

level nesting of indexed concatenations. Yet others

we have investigated are too dense to “fit” in three di-

mensions. Figure 5f provides an example of this last

type, which we refer to as growing “exponentially.”

At this point we have no clear connection between IC

nesting and the “growth dimensionality” of the graph

represented.

In each of these cases, a complex geometric pat-

tern is captured mathematically by indexed concate-

nation.

SIMULTECH 2025 - 15th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

46

1 2 3 4 5 6 7 8 9 10 11

(a)
{

e
10[{1}]

}

1 2 3 4 5 6 7 8 9 10

(b)
{

e
5[{1},{}]

}

1

2

3

4

5

6

7

8

9

10

11

12

(c)
{

e
10[{1,2}]

}

1

3

4

2

5

6

7

8

9

10

11

12
13

14

15
16

17

18
19

20

21

22

23

24

25

26

27

28

29

(d)
{

e
9[{2,3},{3},{1,2}]

}

1 23

5

6

8

9

47 10 1112

14

15

17

18

1316 19 2021

23

24

26

27

2225

(e)
{

e
3
[

e
3
k=1[{2k−1,2k}],e 2 [{1,2},
e

2[{}]
]]}

1
3

2

5 4
7

6

10

8

9

12

11 14

13

17

15

16 19

18 21

20

24

22

23

26 25

28 27

31

(f)
{

e
4[{2,2,2},{1,3,3},{2},{1,1,3},

{2},{1,1,1},{3}]}

1

3
4

2

6

7

5

9

10

8

12

13

11
15

16

14

18

19

17
21

22

20

24

25

23

(g)
{

e
8[{2,3},{1,2},{}]

}

(h)
{

e
7
[

{1,6,8},{},
{

e
4[2]
}

,

e
2
[{

1,e
3[3]
}

,{}
]]}

(i)
{

e
25
n=0

[

e
7
k=1[{1,18−2k}],e 9

k=8[{1,1}]
]}

(j)
{

e
13
[

e
2[{1,7,8}],e 2[{1,1,7}],{7},{},{}

]}

(k)
{

e
18
n=0

[

e
4
k=1[{1,12−2k}],e 7

k=5[{1,1}]
]}

Figure 4: A selection of networks and their concatenated EDSLs.

Indexed Concatenation Notation: A Novel Way to Summarize Networks and Other Complex Systems

47

(a)
{

e
10
i=1 [{1,1,1},{1,1, i+1},

e
i−1[{1,1, i+2}],{i+2, i+3}

]}

(b)
{

e
12
k=1

[

{2k−1,2k+1},e k[{1,1},{1,2k}]
]}

(c)
{

e
8
k=1

[

e
k−1[{},{1,1,2,2k}],

{},{2k,2(k+1)}]}
(d)
{

e
5
n=1

[

e
n
i=1

[

e
i
[{

z = 1
2 n(n+1),

z+ i,z+ i+1}]]]}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

(e)
{

e
9
k=1

[

e
k[{k,k+1}]

]}

(f)
{

e
10
k=1

[

{

2k −1,2k,2k +1
}

,e
2k+1

[{

2k +1
}]

,{1},e 2k−1
j=1

[{

1, j+2k −1, j+2k
}]

]}

Figure 5: A selection of higher-dimensional networks and their EDSLs.

SIMULTECH 2025 - 15th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

48

Figure 6: A two-dimensional network with multiple possi-
ble summarizations.

One network may have multiple possible summa-

rizations, as is demonstrated in Figure 6. This net-

work’s EDSL could be concatenated as either

{

7

e
n=1

[{1,2,3},{3n+ 1,3n+2},{1,2},

{3n− 1,3n+ 1},
n−1

e

[

2

e [{1,2}],{3n,3n+ 1}
]

,

{3n+ 2,3n+ 3},{1,2,3},{3n+3,3n+4},{1,2},

{3n+ 1,3n+ 3},
n−1

e

[

2

e [{1,2}],{3n+ 2,

3n+ 3}],
m

e {1,2},{1,3n+ 6},{3n+2,3n+3}
]}

(35)

or, alternatively, as

{

7

e
n=1

[

1

e
m=0

[{1,2,3},{2m+ 3n+1,2m+3n+ 2},

{1,2},{2m+ 3n−1,2m+3n+ 1},
n−1

e

[

2

e [{1,2}],{2m+ 3n,2m+3n+1}
]

,

m

e [{1,2},{1,3n+ 6}],{3n+2,3n+3}
]]}

(36)

9 CONCLUSIONS

Throughout the history of mathematics and science,

good notation has contributed to increased under-

standing, greater insights, and more rapid and suc-

cessful advancement in the field under study. Ex-

amples include the decimal system (replacing previ-

ous use of Roman numerals and dependence on frac-

tions), Leibnitz’ representation of the derivative of y

with respect to x as
dy
dx

, vector notation to conveniently

describe relationships in three-dimensional space, the

4-vector notation in Special Relativity to include the

time coordinate, and the summation convention used

in tensor calculus and General Relativity. Good nota-

tion facilitates good work.

The Indexed Concatenation Notation, following

the lead of other indexed operators, allows compact

representations of strings, lists, sequences, integer

lists, matrices, and other similar expressions, exam-

ples of which we have considered above. It capital-

izes on repetitions, periodicities and other patterns to

compress information into a reduced form. It may

be hoped that such notation summarizing internal pat-

terns may not only serve as a new means of informa-

tion compression, but also contribute to simpler and

more insightful use of the data.

10 PROSPECTS

Where do we go from here?

1. Fine-tune automated manipulation of IC notation.

Our code to partially or completely expand out

Indexed Concatenation lists and sequences works

for any finite nesting level. However, we have en-

countered two main shortcomings:

(a) The reverse direction is harder; our algorithm

currently identifies and reduces 70% of the

sample cases attempted.

(b) Treatment of strings and integers has not yet

been implemented in either direction.

2. Publish a follow-up paper showcasing the algo-

rithm itself once the code is further refined.

3. Construct and/or find other interesting graphs to

reduce.

4. Construct an algorithm to generate an IC sum-

mary of the complete list of the edges of a graph

from its EDSL (edge differences set list).

5. What else it might be used for?

(a) Musical scores of various music genres?

(b) Summarizing DNA sequences?

Our research team is actively pursuing these op-

tions, in particular the application of the IC notation

to music and bioinformatics and the refinment of a

network summarization algorithm.

Indexed Concatenation Notation: A Novel Way to Summarize Networks and Other Complex Systems

49

ACKNOWLEDGEMENTS

The authors acknowledge the generous support of the

Academic Research Committee of Southern Adven-

tist University for funding this project and related

work which led to it.

REFERENCES

Campbell, J. (1971). Comparative survey of programming
languages. COMPUTING AS A LANGUAGE, pages
391–484.

Cantor, G. (1874). Über eine Eigenschaft des Inbegriffes
aller reellen algebraischen Zahlen. Journal für die
reine und angewandte Mathematik, 77:258–262.

Caviness, K. (2011). Indexing strings and rulesets. The
Mathematica Journal, 13.

de Bruijn, N. G. (1977). Notation for concatenation. Tech-
nical report, Technische Hogeschool Eindhoven.

Maheshwari, U. and Smid, M. (2024). Introduction to The-
ory of Computation. School of Computer Science,
Carleton University.

Nachbar, R. (2023). Reply to changed meth-
ods for displaying graphs (networks).
https://community.wolfram.com/groups/-
/m/t/2862755?p p auth=iQ7ZaUTu.

Rehmann, U. (2020). Sequence. https:
//encyclopediaofmath.org/in-dex.php?title=
Sequence&oldid=48671.

Sipser, M. (2012). Introduction to the Theory of Computa-
tion. Cengage Learning, 3rd edition.

WsCubeTech (2025). C program to concatenate two strings
(5 ways). https://www.wscubetech.com/resources/c-
programming/programs/concatenate-two-strings.

SIMULTECH 2025 - 15th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

50

