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Abstract: This paper addresses the critical challenges associated with error management in multiphysics simulations,
particularly regarding the sensitivity of these systems to parameter selection, which can lead to convergence
failures and anomalies in simulation outputs. We propose a comprehensive analytical framework that sys-
tematically identifies the relationships between simulation parameters and governing equations, enabling the
analysis of resulting anomalies. The framework classifies these anomalies, providing insights that inform
the selection of appropriate unsupervised machine-learning algorithms for effective anomaly detection. To
demonstrate the applicability of this approach, we apply the framework to a heat conjugate transfer (HCT)
problem, integrating the heat transfer and Navier-Stokes equations. By thoroughly investigating parameter-
driven anomalies, our framework enhances the reliability, convergence, and fidelity of multiphysics simula-
tions, ultimately contributing to the robustness and accuracy of simulation outcomes.

1 INTRODUCTION

Multiphysics simulations are integral to a broad range
of scientific and engineering applications, provid-
ing detailed insights into complex systems that in-
volve interactions between multiple physical phe-
nomena. Traditional modelling approaches, includ-
ing numerical methods, analytical techniques, and
equivalent circuit models, are widely employed in
this field. Numerical methods such as the Finite
Element Method (FEM) and Finite Volume Method
(FVM) are renowned for their accuracy and robust-
ness. However, their reliance on significant computa-
tional power, memory, and time resources poses con-
siderable challenges, especially when simulating in-
tricate or large-scale systems (Rinaldi, 2001; Peter
H. Aaen and Balanis, 2006). In contrast, analyti-
cal methods are computationally efficient and precise
but are typically restricted to simple geometries, lim-
iting their applicability to more complex structures
(Zhang, 2021). Similarly, equivalent circuit methods
simplify computational complexity but are inefficient
for novel devices requiring iterative adjustment (Jun-
quan Chen and Xu, 2012).

The use of multiphysics simulations inherently in-
volves managing various sources of error. Errors in
these simulations can stem from modelling assump-
tions, numerical discretization, and finite-precision

arithmetic, and they can significantly affect the ac-
curacy and reliability of the results (Oberkampf and
Trucano, 2002). Addressing these errors is critical,
particularly in high-consequence applications where
even small inaccuracies can have substantial impacts.
Modelling errors arise from incomplete representa-
tions of the physical system, round-off errors result
from limited numerical precision in computational
arithmetic, and discretization and truncation errors are
introduced during the discretization process of con-
tinuous equations (Heng Xiao and Roy, 2016; Tyson,
2018). These error sources necessitate careful miti-
gation strategies, such as grid refinement, model cal-
ibration, and higher-order discretization schemes, to
improve simulation accuracy.

Despite the critical importance of minimizing er-
rors, maximizing precision in all aspects of a simu-
lation is often resource-intensive. Researchers fre-
quently adopt a conservative approach, prioritizing
maximum precision in parameter selection to ensure
accuracy and result convergence. However, this prac-
tice often leads to prolonged computational times,
even when high precision is not necessary for ev-
ery stage of the simulation. The challenge of bal-
ancing accuracy with computational efficiency has
been a persistent issue in the field, as researchers
must often make trade-offs between simulation pre-
cision and performance (Committee, 1998; Christo-
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pher J. Roy and Oberkampf, 2003; Christopher J. Roy
and McWherter-Payne, 2003; He and Ding, 2001).
This balance becomes even more complex when con-
sidering the uncertainty in input parameters, bound-
ary conditions, and material properties, which can ex-
acerbate the inherent uncertainty in multiphysics sim-
ulations.

Previous studies have proposed several ap-
proaches to address these challenges, including un-
certainty quantification (UQ) methods and precision
control techniques. UQ is essential for assessing
how variability in model inputs influences simula-
tion outputs, but traditional UQ techniques such as
reduced-order modelling, polynomial chaos expan-
sions, and Monte Carlo sampling are computation-
ally expensive and often necessitate simplifying the
model (R. A. Adams and Schmid, 2012; Ghanem
and Spanos, 1991; Oakley, 2004). While these meth-
ods reduce the dimensionality or complexity of the
problem, they may inadvertently limit the scope of
the simulation or compromise its accuracy. More-
over, precision management strategies, such as adjust-
ing arithmetic precision or discretization step sizes,
have been explored to mitigate computational cost,
but their effectiveness is constrained by the conflict-
ing demands of accuracy and performance (Harvey
and Verseghy, 2016; V. Chandola and Kumar, 2009).

To address these limitations, this paper intro-
duces a novel approach leveraging machine learning
(ML)-based anomaly detection techniques for mul-
tiphysics simulations. the proposed technique iden-
tifies anomalies—instances where simulation results
deviate from expected outcomes—without altering
the complexity of the simulation. This approach al-
lows for the monitoring of simulation performance
and the detection of critical points where errors accu-
mulate or accuracy is compromised, effectively serv-
ing as an early warning system for simulation fail-
ures. The key contribution of this paper is a machine
learning-based anomaly detection framework that en-
hances the accuracy and reliability of multiphysics
simulations while reducing computational costs. This
approach enables practitioners to make informed de-
cisions regarding precision levels and parameter se-
lection, thereby optimizing simulation performance
without sacrificing accuracy. The proposed method
enables the exploration of a broader range of simu-
lation configurations while optimizing both precision
and computational efficiency.

In this study, we apply the proposed anomaly de-
tection technique to a heat conjugate transfer (HCT)
problem, using heat transfer and Navier-Stokes equa-
tions to illustrate its effectiveness in identifying sim-
ulation anomalies. This method provides a more ef-

ficient and computationally feasible alternative to tra-
ditional error management strategies in multiphysics
simulations. Moreover, the approach facilitates a
deeper understanding of the trade-off between simu-
lation precision and performance, enabling the selec-
tive adjustment of parameters based on specific sim-
ulation needs to avoid the common practice of uni-
formly applying maximum precision and unnecessar-
ily resource-intensive.

2 METHOD

In this study, we present a framework for detecting
anomalies in multiphysics simulation results by an-
alyzing the relationship between effective parame-
ters and the governing physical equations. Our ap-
proach integrates multiphysics simulations with ML
anomaly detection algorithms. Specifically, we apply
this method to the conjugate heat transfer problem,
focusing on flow over a heated plate. Open-source
solvers and coupling tools are utilized to conduct the
simulations. The methodology consists of three key
steps. First, we assess the influence of various pa-
rameters—including physical, material, and simula-
tion parameters—on the simulation outcomes. Un-
derstanding how these parameters affect the results is
crucial for identifying potential anomalies. Second,
we investigate the relationship between these parame-
ters and the governing equations to determine whether
improper parameter settings could adversely impact
the equations and, consequently, the simulation re-
sults. This analysis enables us to quantify the extent
to which incorrect parameter values contribute to de-
viations from expected outcomes. Finally, based on
the insights gained from the parameter-equation rela-
tionship, we select an appropriate ML anomaly de-
tection algorithm. A key requirement for the algo-
rithm is that it should not rely on predefined labeled
data, as anomalies in simulation results can manifest
in diverse ways. Therefore, we employ unsupervised
learning algorithms, which do not require prior train-
ing on labeled datasets and making it ideal for rare
and unknown anomalies. Additionally, unsupervised
methods can identify previously unseen anomalies by
learning normal system behavior and effectively scale
to the large datasets typical of multiphysics problems.
Many unsupervised algorithms are also computation-
ally efficient, making them suitable for real-time or it-
erative simulations.However, selecting the most suit-
able unsupervised algorithm depends on the specific
multiphysics problem, as it is influenced by both the
governing equations and the associated parameters.
To verify the model, we compare its outcomes when
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applied to simulation results obtained under different
configurations. Specifically, we examine cases where
the value of one of the effective parameters differs
from the default configuration settings and compare
these results with the ground truth obtained from the
default simulation setup. This comparison allows us
to assess the model’s ability to detect anomalies and
validate its accuracy in identifying deviations caused
by parameter variations. Ultimately, this framework
enables the development of a model that assists in
configuring simulations appropriately for a given ap-
plication. It provides valuable insights into simula-
tion results, facilitating the identification of anomalies
specific to the problem. Moreover, it aids in optimiz-
ing the balance between computational speed and ac-
curacy based on application requirements, enhancing
the overall efficiency and reliability of multiphysics
simulations.

3 CASE STUDY

Conjugate heat transfer (CHT)(M. Vynnycky and
Pop, 1998) is a critical phenomenon that involves the
transfer of heat between fluids and solid boundaries,
where heat passes from one fluid to the solid bound-
ary and then transfers from the solid to the other fluid.
This process is particularly important in engineering
applications such as heat exchanger design and cool-
ing systems for electronic components.

In this study, we focus on a two-dimensional CHT
problem involving a rectangular, thermally conduct-
ing slab with laminar, incompressible fluid flow over
it. This scenario presents a classic CHT challenge,
where the steady heat transfer dynamics must be ac-
curately captured to ensure reliable simulation results.
The forced flow occupies the region −∞ ≤ x ≤ ∞,y >
0, with uniform velocity Us and temperature T , while
the conducting slab occupies the region −a ≤ y ≤ 0,
− b

2 ≤ x ≤ b
2 . A schematic of this setup is illustrated in

Figure 1. To accurately model this problem, two gov-
erning equations are used: the Navier-Stokes equa-
tion for fluid motion and the heat transfer equation for

Figure 1: Physical model and coordinate system of flow
over heated plate.

temperature distribution. The Navier-Stokes equation
governs the motion of the fluid and can be written as:

ρ
Dv
Dt

=−∇p+µ∇
2v+ f , (1)

Where ρ is the fluid density, v is the velocity, p is the
pressure, and µ is the fluid viscosity. This equation ac-
counts for both convection and diffusion in the fluid’s
motion. The heat transfer equation, which governs the
temperature distribution in the system, is expressed
as:

ρcp
DT
Dt

= ∇ · (k∇T )+Q, (2)

where ρ is the density, cp is the specific heat capacity
at constant pressure, DT

Dt is the substantial (material)
derivative of temperature, k is the thermal conductiv-
ity, and Q is the volumetric heat generation rate.

To simulate fluid flow and heat transfer, we uti-
lize OpenFOAM (H. Jasak, 2007)software, employ-
ing the laplacianFoam solver for steady-state heat
conduction in solid slabs and the buoyantPimpleFoam
solver for buoyancy-driven fluid flow and transient
simulations using the PIMPLE algorithm. Accurate
coupling of solvers for fluid and solid domains in
CHT simulations is addressed with PreCICE soft-
ware(H. J. Ungartz, 2016), which ensures consistent
heat flux and temperature transfer between regions,
enhances accuracy at the solid-fluid interface, and im-
proves performance through iterative methods, effec-
tive solver communication, and data mapping for non-
matching grids. This multiphysics problem analyzes
heat flux and temperature exchange to determine how
key parameters—including time step, convergence
limitation, CP, Reynolds number, and Prandtl num-
ber—impact the heat and Navier-Stokes equations,
identifying simulation discontinuities, as outlined in
Table 1.

4 STUDING EFFECTIVE
PARAMETERS

In managing the precision and computational effi-
ciency of simulations, there is a tendency to avoid
configuring all parameters at the highest precision due
to the significant increase in computational cost and
execution time. However, when parameters are not set
to these high-precision values, anomalies may emerge
in the simulation results. Figures 2 illustrate the com-
plex relationship between time steps and heat capac-
ity in relation to the output parameters of the simula-
tion. Each data point on these graphs corresponds to a
unique simulation configuration. In this study, errors
are defined as the mean difference between the simu-
lation outputs for a given parameter configuration and
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Table 1: Definition of studied Parameters in HCT problem.

Parameter Definition
Time Step The discrete intervals for simulation progression, affecting accuracy and stability.
Convergence Limita-
tion

A threshold that indicates when the iterative solution has achieved acceptable accuracy based on differ-
ences between iterations.

CP The heat required to change a unit mass of a material by one degree Celsius, affecting its temperature
response and heat transfer.

Reynolds Number A dimensionless parameter that classifies fluid flow as laminar or turbulent based on inertial versus
viscous forces.

Prandtl Number A dimensionless ratio that indicates the relative importance of momentum transfer to heat transfer in
fluid flows.

Figure 2: Time-steps versus selected outputs in flow over
heated plate problem- average error of temperature and flux,
final residual, iteration numbers, and execution time

those obtained using the default configuration. Figure
2 highlights the minimal error range observed for both
the average temperature and the final residual values,
with negligible error in the flux average across all time
steps. Notably, the uniformity in the number of iter-
ations across different time steps underscores the ro-
bustness of the results. Importantly, our findings in-
dicate that increasing the time step size results in a
nearly 50% reduction in execution time while main-
taining high simulation accuracy, with errors below
0.05% for the temperature output.

These results suggest that a wide range of parame-
ter configurations can be used without compromising
simulation precision, enabling faster simulations. The
insights gained from our findings help to elucidate the
complexities involved in multiphysics simulations, re-
vealing important relationships between critical pa-
rameters and their outcomes. The flexibility to ad-
just parameter values, while it may slightly impact

accuracy, is crucial in optimizing simulations for effi-
ciency.

5 ANALYSIS OF PARAMETER IN
HEAT TRANSFER AND
NAVIER-STOKES EQUATIONS

This section explores the influence of the Reynolds
number (Re), Prandtl number (Pr), CP, and numerical
modelling parameters such as time step and conver-
gence limitations on the solutions of the heat transfer
and Navier-stokes equations. We aim to understand
their potential to create or smooth out discontinuities
in the temperature field and heat flux.

5.0.1 Non-Dimensional Form of Heat Transfer
Equations

To understand the effects of the Re, Pr, and cp, we
non-dimensionalize the heat transfer equation. below
are dimensionless variables:

T ∗ =
T −T∞

∆T
, u∗ =

u
U
, x∗ =

x
L
, t∗ =

tU
L
, (3)

where: U is a characteristic velocity, L is a charac-
teristic length, T∞ is the reference temperature, ∆T is
the temperature difference. Substituting these into the
heat conduction equation, we first need to express all
terms in terms of the dimensionless variables. Start
with the substantial derivative term. Substitute the di-
mensionless variables:

T = T∞ +T ∗
∆T,u =Uu∗,x = Lx∗, t =

L
U

t∗. (4)

This is the non-dimensional form of the heat conduc-
tion equation:

∂T
∂t

+u ·∇T =
1

Re ·Pr
∇

2T +
QL

ρcpU∆T
. (5)

5.0.2 Non-Dimensionalization of the
Navier-Stokes Equations

The non-dimensionalization process can be applied to
the Navier-Stokes equations to better understand how
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various parameters influence heat flux.

u∗ =
u
U
, P∗ =

P
ρU2 , x∗ =

x
L
, t∗ =

tU
L

(6)

Where U is a characteristic velocity, L is a character-
istic length, P represents pressure, ρ is density. After
substituting and rearranging, the Navier-Stokes equa-
tions in their dimensionless form can be expressed as:

∂u∗

∂t∗
+u∗ ·∇∗u∗ =−∇

∗P∗+
1

Re
∇
∗2u∗+F∗ (7)

Here, F∗ represents body forces expressed in non-
dimensional form.

5.1 Effects of Physical Parameters in
Heat Transfer and Navier-Stokes
Equations

The analysis of temperature and heat flux can be
significantly affected by physical parameters. Un-
derstanding these parameters is crucial for detecting
anomalies caused by not incorrect values of these pa-
rameters

5.1.1 Reynolds Number (Re)

Re is a dimensionless quantity that characterizes the
flow regime of a fluid, representing the ratio of inertial
forces to viscous forces. It is defined as:

Re =
ρUL

µ
(8)

where ρ is the fluid density, U is the characteristic
velocity, L is the characteristic length, and µ is the
dynamic viscosity. In high Reynolds number scenar-
ios, the convective term u ·∇T dominates over the dif-
fusive term 1

Re·Pr ∇2T , leading to stronger convective
heat transfer and sharper temperature gradients, espe-
cially near walls (thermal boundary layers). Turbu-
lence enhances mixing, smoothing temperature dis-
continuities in the bulk flow while maintaining rapid
temperature changes near boundaries.

At low Reynolds numbers, viscous and thermal
diffusion become more significant, with the term

1
Re·Pr ∇2T being larger. This enhances thermal diffu-
sion, smoothing temperature gradients and resulting
in a more orderly flow with smoother temperature dis-
tributions.

In regions with high shear, such as near solid
boundaries, substantial velocity gradients can arise,
leading to abrupt changes in the velocity field, creat-
ing potential discontinuities and turbulence.

5.1.2 Prandtl Number (Pr)

Pr is another essential dimensionless quantity that re-
lates the momentum diffusivity (kinematic viscosity)
to thermal diffusivity, defined as:

Pr =
ν

α
(9)

where ν is the kinematic viscosity and α is the thermal
diffusivity. In high Pr scenarios, momentum diffu-
sivity is significantly greater than thermal diffusivity.
The term 1

Re·Pr becomes small, making the thermal
diffusion term ∇2T less influential. Consequently,
the temperature gradient near surfaces can be steep,
leading to pronounced thermal gradients and poten-
tial discontinuities. The Navier-Stokes equations can
be approximated as:

∂u
∂t

+u ·∇u =− 1
Re

∇P+
1

Re
∇

2u (10)

The reduced thermal diffusion in high Pr conditions
can result in prolonged high temperature gradients,
which can induce potential discontinuities near solid
boundaries or within flows exhibiting significant ther-
mal stratification. Conversely, when Pr is low, ther-
mal diffusivity becomes more effective, leading to a
thicker thermal boundary layer and smoother temper-
ature distributions. In this regime, the thermal dif-
fusion term ∇2T is more significant, enhancing the
conduction effect and reducing the likelihood of tem-
perature discontinuities.

5.1.3 Specific Heat Capacity (cp)

The specific heat capacity (cp) plays a pivotal role in
determining the thermal response of a fluid, defining
the amount of heat required to change the temperature
of a unit mass by one degree Celsius. A higher cp in-
dicates that the fluid can absorb more heat before ex-
periencing significant temperature changes, smooth-
ing out temperature gradients. This increased thermal
inertia also raises the thermal time constant:

τ =
ρcpL

k
(11)

Conversely, a low cp allows for a more rapid tem-
perature increase in response to heat inputs, which
can create sharper temperature gradients and increase
the likelihood of discontinuities, particularly in re-
gions with high heat flux. Although cp does not ex-
plicitly appear in the Navier-Stokes equations, it in-
fluences the coupled energy equation: This equation
shows that a higher cp increases the thermal inertia of
the fluid, resulting in smoother temperature variations
and reducing discontinuities in both velocity and tem-
perature fields, as the fluid takes longer to respond to
thermal changes.
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5.2 Numerical Modeling Considerations

5.2.1 Time Step (∆t)

The time step ∆t in numerical simulations affects both
stability and accuracy. A smaller ∆t improves the
resolution of temporal changes, capturing transient
phenomena and reducing numerical artifacts, lead-
ing to more accurate and stable solutions, though at
higher computational cost. The Courant-Friedrichs-
Lewy (CFL) condition, ∆t < L

U , ensures stability by
limiting ∆t based on grid size and velocity, preventing
instabilities and artificial discontinuities. Conversely,
a larger ∆t can cause numerical instability, leading to
oscillations, divergence, and errors in the temperature
field. Violating the CFL condition with a large time
step can result in unphysical results and the propaga-
tion of numerical errors.

5.2.2 Convergence Limitation

Numerical convergence is vital for accurate solutions,
and issues can arise from inadequate meshing, im-
proper boundary conditions, or insufficient iterations,
leading to errors or discontinuities in the temperature
field. A fine mesh resolves small-scale features, with
the mesh size ∆x satisfying ∆x < L

N for N grid points
per characteristic length L, while insufficient mesh-
ing can cause aliasing and artificial discontinuities.
Proper boundary conditions are essential to avoid un-
physical solutions, and they must match the physical
problem and be applied consistently to prevent spuri-
ous gradients. Sufficient iterations are also necessary
for solvers to converge accurately, and meeting con-
vergence criteria like residual norms ensures stable,
accurate solutions. Incomplete convergence leaves
unresolved gradients and potential discontinuities.

6 ANOMALY DETECTION FOR
HCT

Based on the equations governing the parameters
studied in Section 6, setting parameters beyond ac-
ceptable limits may cause the convective term u ·∇T
to dominate over the diffusive term 1

Re·Pr ∇2T . This
dominance leads to stronger convective heat transfer
and sharper temperature gradients. When the term

1
Re·Pr becomes small, the thermal diffusion term ∇2T
loses influence, resulting in steep temperature gradi-
ents near surfaces, which can cause significant ther-
mal gradients and potential discontinuities.

When parameter values exceed the recommended
range, the dominant terms in the governing equations

can lead to anomalies and discontinuities in the simu-
lation results.

To avoid surpassing acceptable error thresholds,
limitations, or introducing discontinuities in the sim-
ulation results, we incorporate an additional step of
anomaly detection.

Specifically, we evaluate the effectiveness of three
anomaly detection algorithms—One-Class SVM, Iso-
lation Forest, and LOF to identify anomalies in tem-
perature and heat flux data generated from the simu-
lations. These algorithms provide an important layer
of analysis to detect deviations that could indicate
emerging errors or inconsistencies in the results, help-
ing to maintain the integrity of the simulations.

6.1 Local Outlier Factor

The LOF (M. M. Breunig and Sander, 2000) is an un-
supervised anomaly detection algorithm that identi-
fies anomalies by assessing local density deviations
of data points relative to their neighbors. It is particu-
larly effective in datasets with heterogeneous density
distributions, where the density of data points varies
significantly across different regions.

The algorithm first computes the k-distance for
each data point, defined as the distance to its k-th
nearest neighbor. The choice of k critically influences
the sensitivity to anomalies; smaller k captures fine
anomalies, while larger k identifies broader patterns.

LOF computes reachability distances, which are
defined for points A and B as the maximum of the
actual distance between A and B and the k-distance
of point B. This calculation ensures local density is
accurately represented.

The LRD for each point is derived as the in-
verse of the average reachability distance to its k-
nearest neighbors, reflecting the density of surround-
ing points.

LOF scores are calculated as the average ratio of
the LRD of a point’s neighbors to its own LRD. A
score near 1 indicates a normal point, while a score
significantly greater than 1 indicates an anomaly.

6.2 One-Class SVM

The One-Class SVM(K.-L. Li and Xu, 2003) is an
unsupervised machine learning algorithm specifically
designed for anomaly detection. It is utilized to iden-
tify data points that significantly deviate from the nor-
mal data distribution. Unlike conventional SVMs,
which are primarily used for binary classification,
the One-Class SVM is trained exclusively on normal
data. Its goal is to construct a decision boundary that
encloses the majority of the normal data points, al-
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lowing the detection of anomalies that lie outside this
boundary.

SVM operates by receiving a dataset consisting
solely of normal data points, along with a kernel
function that transforms the input data into a higher-
dimensional space. This transformation is key to
enhancing the algorithm’s ability to separate normal
data points from potential anomalies, as it enables
the construction of a hyperplane in this transformed
space.

Once the decision function is learned based on the
normal data, it is applied to classify new data points.
Points that lie outside the established decision bound-
ary are classified as anomalies, while those within
the boundary are considered normal. Each new data
point is assigned an anomaly score, where negative
values denote normal points, and positive values indi-
cate anomalies.

6.3 Isolation Forest

Isolation Forest(F. T. Liu and Zhou, 2008) is an
unsupervised machine learning algorithm designed
for anomaly detection by recursively partitioning the
data. The underlying principle of Isolation Forest is
that anomalies are ”few and different,” making them
more susceptible to isolation than normal data points.
By constructing random decision trees, the algorithm
isolates individual data points and measures the path
length from the root to the point as an indicator of nor-
mality: shorter paths suggest anomalies, while longer
paths correspond to normal points.

Isolation Forest receives a dataset consisting of N
data points, along with predefined parameters such as
the maximum tree height h and the number of trees
T to be generated. It begins by constructing multi-
ple isolation trees, each of which recursively parti-
tions the data by selecting random features and ran-
dom split values within the feature’s range. The pro-
cess continues until each data point is isolated or the
maximum tree height is reached.

For each data point, the path length in each tree is
computed, representing the number of splits required
to isolate that point. By averaging the path lengths
across all trees, the algorithm assigns an anomaly
score to each point. Data points that are isolated
quickly (i.e., have shorter path lengths) are more
likely to be anomalies, while those requiring longer
path lengths are more likely to be normal.

In this study, we employed several algorithms
to detect discontinuities in heat transfer simulations
caused by numerical errors, parameter variations, or
physical phenomena. Both One-Class SVM and
Isolation Forest effectively manage high-dimensional

spaces, which is crucial for the complexity of heat
transfer simulations involving multiple interacting pa-
rameters. Additionally, the LOF excels in identifying
anomalies within datasets characterized by varying
local densities, a common occurrence in heat trans-
fer simulations where temperature and heat flux can
differ significantly across regions. Furthermore, Iso-
lation Forest is notably efficient and capable of han-
dling large-scale simulations, making it well-suited
for real-time anomaly detection in extensive heat
transfer datasets. Overall, these unsupervised learn-
ing methods improve the detection of discontinuities,
enhancing the reliability and accuracy of multiphysics
simulations. Their capabilities in managing high-
dimensional data, accommodating local density varia-
tions, and processing large datasets render them valu-
able tools for anomaly detection in complex engineer-
ing problems.

7 RESULTS AND DISCUSSION

In this section, we sought to identify the most effec-
tive method for detecting discontinuities in the sim-
ulation results. Each algorithm was assessed based
on its ability to detect anomalies without generating
excessive false positives, particularly in the context
of subtle parameter variations. The simulation out-
puts using default parameters are presented in Fig-
ure 3. The temperature and flux data exhibit smooth
and continuous behaviour in the plots, with no evi-
dence of discontinuities or abrupt changes in the base-
line truth data simulation. It is essential to identify
any discontinuities or sharp transitions that may arise
due to variations in the studied parameter values using
algorithmic detection methods. Anomalies in simu-
lation results associated with different configurations
have been identified based on these analyses.

Figure 3: Temperature and Heat flux plots of flow over a
heated plate simulation.

Figure 4 illustrates anomaly detection across
three algorithms and each subplot represents varia-
tions in parameters with temperature and heat flux
data. The black line represents the baseline, while
anomalies are marked: blue squares for IF, green cir-
cles for SVM, and red crosses for LOF.
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1. Anomaly Detection in Temperature Data: The
right column of plots shows temperature over time
for each varied parameter, generally following an ini-
tial rise before stabilizing, indicating thermal equili-
bration. This pattern helps evaluate each algorithm’s
ability to detect anomalies during both transient and
steady-state phases. The IF algorithm detects a few
anomalies, especially during the early rise phase, sug-
gesting it is more attuned to significant outliers than
to smaller deviations. SVM detects more anoma-
lies overall, reflecting higher sensitivity to variations,
though this may increase false positives, especially
during a steady state. LOF, using local density, effec-
tively identifies anomalies in the early, high-variance
phase, making it valuable for rapid-change regions,
though its detections decrease as the system stabi-
lizes.

2. Anomaly Detection in Heat Flux Data: The left
column shows heat flux over time for each parameter.
Unlike temperature, heat flux spikes initially, then de-
cays to a steady state, reflecting the system’s thermal
gradient settling into equilibrium.

IF detects a few anomalies, mainly during the ini-
tial spike, focusing on significant deviations and over-
looking minor fluctuations in the stable phase. SVM
detects anomalies consistently, including in stable pe-
riods, highlighting its sensitivity but with the potential
for false positives as flux stabilizes. LOF captures a
high density of anomalies in the initial, rapid-change
phase but fewer as flux reaches a steady state, show-
ing its strength in non-equilibrium conditions.

Parameter variations affect each algorithm
uniquely. Changes in Cp strongly impact temperature
and heat flux, yielding high anomaly counts across all
algorithms. In contrast, Re primarily affects inertial
forces, resulting in fewer detections. Ts and Pr, which
directly influence thermal gradients, prompt higher
sensitivity: Ts variation causes rapid temperature and
flux spikes, detected well by LOF and SVM, while
Pr changes create anomalies during the transition to a
steady state, effectively captured by IF and LOF.

The comparative analysis across various param-
eter changes highlights the critical balance between
sensitivity and specificity in anomaly detection al-
gorithms. One-Class SVM and Isolation Forest, de-
spite their capabilities, suffer from over-detection is-
sues that compromise their reliability, particularly
when variations are present. Conversely, LOF demon-
strated consistent accuracy and robustness in identi-
fying meaningful anomalies, suggesting it is the pre-
ferred method for ensuring the integrity of simulation
results in the presence of parameter variations.
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Figure 4: Anomaly detection results of Isolation Forest, one
class SVM and LOF on Heat Flux and Temperature quan-
tity of flow over a heated plate when selected parameters
changed.

8 CONCLUSION

The challenges associated with managing accuracy
and computational efficiency in multiphysics simu-
lations have long been a focus of research. The
necessity to balance precision and performance has
underscored the demand for innovative solutions.
This paper introduces a novel machine learning-based
anomaly detection framework that enhances the re-
liability of simulations by identifying critical points
where errors may arise. The key strength of our pro-
posed approach lies in its ability to optimize simula-
tion performance while maintaining accuracy, provid-
ing insights into the trade-off between precision and
computational cost. Our results demonstrate the ef-
fectiveness of this approach in heat transfer problems,
showcasing its versatility and potential applicability
across various scenarios. Importantly, this method-
ology simplifies the error management process, sig-
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nificantly reducing computational volume while en-
suring the integrity of the simulation outcomes. This
framework not only enhances the efficiency of multi-
physics simulations but also establishes a solid foun-
dation for confidently determining optimal precision
requirements, marking a meaningful advancement in
the field.
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