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Abstract: This article aims at describing a Matlab toolbox named TRIMARAN intended to be used for Radiometric
Imaging with Microwave ARrays of ANtennas. Of course, only a few functions, the most important ones, out
of the 200 included in the toolbox are discussed and illustrated. In addition to this overview of TRIMARAN,
some concrete usages made by researchers, engineers or students are shown to illustrate the capabilities of this
toolbox. It has been used for designing aperture synthesis imaging radiometers and for quantifying instrument
performances as well as for discovering and for learning many aspects of microwave remote sensing by aper-
ture synthesis with realism.

1 INTRODUCTION

Aperture synthesis (Brouw, 1975) is a technique
that mixes the signals kept by a collection of ele-
mentary antennas (Christiansen and Högbom, 1987)
to produce images having the same angular resolu-
tion as that obtained with an instrument the size of
the entire collection. It has been used successfully
in radio astronomy since the 1950s (VLA, VLBI,
VLBA. . . ) (Thompson et al., 1980; Cohen, 1973;
Napier et al., 1994) as well as in Earth remote sensing
from space since the 1990s (ESTAR, SMOS. . . ) (Vine
et al., 1994; Barré et al., 2008; McMullan et al.,
2008). Unlike total power radiometers that point ac-
curately in many directions to measure the antenna
temperature and thus compose a brightness temper-
ature map, aperture synthesis imaging radiometers
combine the signals kept by every elementary an-
tenna, electronically or numerically, in order to pro-
duce a brightness temperature map with the aid of a
computer. There are two ways to combine these el-
ementary signals, known as multiplicative synthesis
and additive synthesis. The former combines these
antennas signals by pairs in a cross-correlator to per-
form synthetic aperture interferometry, whereas the
latter mixes them all together to operate digital beam
forming (Anterrieu et al., 2022).

TRIMARAN is a Matlab (The MathWorks, a)

a https://orcid.org/0009-0007-2233-9098

toolbox that offers users the opportunity to play nu-
merically with both paradigms on the simulation of
the radio signals kept by each elementary antenna
and on their combination to produce either complex
visibilities (multiplication synthesis in interferome-
try) or antenna array maps (additive synthesis with
beam forming). It is able to process them with up-to-
date regularized inversion methods for retrieving the
brightness temperature distribution of the scene un-
der observation. For both approaches, TRIMARAN
is capable of simulating data and of inverting them
for an observed scene in the far-field region of the an-
tenna array as well as in the near-field zone (Anterrieu
et al., 2024), in ground based as well as in airborne or
spaceborne situations. In every case TRIMARAN can
also digest real data from an actual instrument. More-
over, as an open-source software subject to evolutions
and to improvements, it will be able to process real
data from future instruments like it does today with
SMOS.

From a practical point of view, TRIMARAN is
a self-sufficient collection (no additional toolbox re-
quired) of about 200 Matlab functions written in ac-
cordance with the MathWorks programming stan-
dards. They are divided into 9 thematic groups (or-
bitography, antenna array, antenna patterns, field of
view, instrument modeling, radio signals, brightness
temperature maps, graphic and others) that are briefly
presented with illustrations in section 2. TRIMARAN
relies on multidisciplinary knowledge (microwave ra-
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diometry, antenna theory, applied mathematics, sig-
nal & image processing). It is intended for, and it is
used by, students at master science level for discover-
ing playfully and for learning rigorously many aspects
of microwave remote sensing by aperture synthesis
with realism. It is also meant for, and used by, en-
gineers from space industry and agencies for quickly
designing aperture synthesis imaging radiometers and
for practically quantifying instrument performances.
It has been operated recently by researchers for sim-
ulating a huge dataset to implement and to evaluate
the performances of a deep learning approach for the
inversion of the complex visibilities provided by the
imaging radiometer MIRAS onboard the SMOS mis-
sion of the European Space Agency (ESA). Some of
these concrete usages are shown in section 3 to illus-
trate the capabilities of TRIMARAN.

2 FUNCTIONS OVERVIEW

As outlined in the introduction, TRIMARAN is a col-
lection of about 200 Matlab functions (for ease of
reading, all elements of the Matlab language are writ-
ten here in blue with a fixed font). Of course, only
few of these functions are discussed or illustrated in
this section. For the others, the user is invited to dis-
cover them with the lookfor facility and with the
in-line examples accessible from the help command.
Indeed, all the functions of TRIMARAN meet Math-
Works programming standards and for most of them
an additional section of the in-line help entitled “Ex-
ample” has been added in order to provide the user
with illustrating usages of the function, while waiting
for a user guide to be written!

2.1 Orbitography

The function CircularOrbit returns the orbital pe-
riod T and the orbital velocity v for a circular orbit
at a given elevation h around the Earth. If h lies in
an appropriate range, it also returns the required in-
clination i for a sun-synchronous orbit, otheriwse 90◦

is returned and the orbit is a polar one. For the SMOS
mission, these elements are:

> h=771E+03;
> [i,T,v]=CircularOrbit(h)

i = 98.4526
T = 6.0068e+03
v = 7.4707e+03

Although this modeling is very basic, it is suffi-
cient to conduct pre-studies and if necessary it can be
replaced by a finer model. As a comparison between

this circular orbit approximation and the most up-
to-date orbital mechanics codes used by CNES and
ESA (Barré et al., 2008), with an average elevation of
771 Km the official orbital period of SMOS is given
for 6004.5 s and its inclination for 98.445◦, whereas
they are estimated here around 6006.8 s and 98.453◦,
respectively.

The function CircularOrbitPropagate is a
forward-backward orbit propagator that returns the
geographic coordinates (Chang, 2016) at given dates t
starting from a given location at t = 0. It also returns
the direction of the passes (ascending or descending).
Hereafter are the few lines to calculate two circular
orbits passing over London:

> LatS=dms2deg(51,30,26);
> LonS=dms2deg( 0, 7,39);
> [Lon,Lat,pass]= ...

CircularOrbitPropagate(h,i,’Asc’, ...
LonS,LatS,linspace(-T,T,1000));

> Asc=strfind(pass,’A’);
> Dsc=strfind(pass,’D’);
> figure;plot(Lon(Asc),Lat(Asc),’r.’, ...

Lon(Dsc),Lat(Dsc),’g.’);
> geoplotWORLD;
> legend(’Asc’,’Dsc’);

The geographic coordinates returned in Lat and
Lon are plotted on Figure 1 together with the world’s
costlines drawn with the function geoplotWORLD.
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Figure 1: Example of ascending (red) and descending
(green) circular orbits passing over London (black dot), as
returned by the function CircularOrbitPropagate.

2.2 Antenna Array

The function AntennaArray returns the coordinates
of the elementary antennas, the antennas pairs of ev-
ery baseline, the components of the baselines and
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the corresponding Fourier frequencies with their re-
dundancy. . . . Many geometries (circle, octagon,
hexagon, square, triangle, cross, Y) are available for
any number of elementary antennas regularly spaced
with a short spacing d and operating at a central wave-
length λo. As the guiding thread of this presentation
is the SMOS mission operating in the Bo = 20 MHz
protected band centered on fo = 1413.5 MHz, param-
eters of the MIRAS antenna array are available from
the high-level function SMOSarray:

> Bo=20E+06;
> Fo=1413.5E+06; Lo=299792458/Fo;
> d=0.875;
> [˜,˜,Xa,Ya,cal,˜,P,Q,˜,˜,Ub,Vb, ...

˜,˜,˜,Uf,Vf,Rf]=SMOSarray(90,d,Lo);
> figure;plotAA(Xa,Ya,cal);
> figure;plotFF(Uf*Lo,Vf*Lo,Rf);

The antenna array of MIRAS with its 69 elemen-
tary antennas regularly spaced with d = 0.875λo on
the three arms of a (rotated) Y is shown on Figure 2
where the cartesian coordinates Xa and Ya are re-
ported. The corresponding uv-coverage is shown on
Figure 3 where the Fourier frequencies Uf and Vf are
plotted with a color indicating the redundancy Rf.
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Figure 2: MIRAS, the antenna array of the SMOS space
mission with 69 elementary antennas, as plotted by the
function plotAA (those in green are used for calibration pur-
pose). The shortest spacing is d = 0.875λo ≃ 18.6 cm and
the longest baseline is 21

√
3d ≃ 6.75 m.

2.3 Field of View

The paired functions plotFOV cart and
plotFOV hexa plot the field of view at instru-
ment level where aperture synthesis takes place.
For the MIRAS instrument onboard SMOS that is
tilted forwardly from the Nadir direction with an
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Figure 3: The uv-coverage of MIRAS with its 2791 Fourier
frequencies, as plotted by the function plotFF. The redun-
dancy varies from 1 to 22 (for the shortest spacing).

angle ε = 31.2◦, the result is shown on Figure 4:

> tilt=32.5;
> figure;plotFOV_hexa(h,tilt,d,90,60.6);

Likewise, the twinned functions
geoplotFOV cart and geoplotFOV hexa plot
the field of view at ground level, as shown on
Figure 5:

> figure;geoplotFOV_hexa(h,i,’Asc’, ...
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Figure 4: Hexagonal field of view of SMOS at instrument
level, as plotted by the function plotFOV hexa. Here the
MIRAS antenna array is subject to field aliasing because of
the spacing between the elementary antennas: the hexag-
onal field of view and its six neighbors are drawn in red,
the Earth and its aliases are drawn in maroon, the sky and
its aliases are drawn in blue, the ground incidence 60.6◦ is
drawn in green, the black dot is the sub-satellite point with
coordinates (0,−sinε).
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Figure 5: Hexagonal field of view of SMOS at ground level,
as plotted by the function geoplotFOV hexa. Referring
back to Figure 4, here the sub-satellite point (black dot) is
geo-localized over London and the ascending pass (black
dotted curve) is that of a sun-synchronous circular orbit.

tilt,d,90,LonS,LatS,60.6);

When designing an aperture synthesis imaging ra-
diometer, these functions are very useful for making
the required trade-off between various figures of merit
that may depend from several parameters like the el-
evation h, the geometry of the antenna array and the
spacing d as well as the tilt angle ε. . . This is the case,
for example, of the useful ground swath that is re-
turned by the twinned functions swathFOV cart and
swathFOV hexa which has, together with the orbital
period T , a direct impact on the revisit time:
> swath=swathFOV_hexa(h,i,’Asc’, ...

tilt,d,90,LonS,LatS)
swath = 1.4330e+06

In that case of SMOS, 1433 Km with an orbital
period of 100 min is fully compatible with a revisit
time of 3 days at the equator.

Finally, aperture synthesis is performed at instru-
ment level with the aid of the computer. As a conse-
quence, sampling grids are required for discretizing
integral equations. The two functions grids cart
and grids hexa return the values taken by the direc-
tions cosines and by the spherical angles over sam-
pling grids as well as many other quantities:
> N = 128;
> [˜,˜,X,Y,Sxy,˜,Theta,Phi]= ...

grids_hexa(h,tilt,d,90,N);

Theta and Phi are 1×2 cell arrays with the spher-
ical angles θ and φ, respectively. X and Y are also 1×2
cell arrays with the components of ξ: ξ1 = sinθcosφ

and ξ2 = sinθsinφ, respectively. Sxy is the elemen-
tary area dξ of a pixel in the corresponding sampling

grid. For every 1×2 cell array, the first element {1} is
a N×N array limited to the field of view synthesized
by the antenna array whereas the second one {2} is
a 2N×2N array with the corresponding quantity in
the space 0 ≤ θ ≤ π/2 and 0 ≤ φ ≤ 2π in front of the
instrument. Among the other quantities returned by
these two functions, very useful ones are the indices
of the pixels from the grids X and Y that belong to the
Earth or to the sky in the field of view, returned in
1×2 cell arrays PXLearth and PXLsky.

2.4 Antenna Patterns

Elementary antenna patterns are at the heart of anten-
nas arrays. Although TRIMARAN is able to digest
any measured pattern, the AVP function returns a volt-
age pattern that follows a cosn θ law (Anterrieu et al.,
2003) with n related to the shape of the main beam:

> F{2}=AVP(Theta{2},Phi{2}-30,60,70);
> figure;plotAPP(X{2},Y{2},F{2},[-50 10]);

TRIMARAN has a family of functions
AVPestim* and APPestim* to estimate parameters of
voltage or power patterns like directivity D and equiv-
alent solid angle Ω as defined by Equations (2–23)
and (2–24) in (Balanis, 2005), Full-Width at Half-
Maximum (FWHM). . . Hereafter are the lines to
estimate these figures of merit for the power pattern
of Figure 6:

> Omega=APPestimESA(F{2},[],X{2},Y{2},Sxy)
Omega = 12.5664

> D=APPestimDIR(F{2},[],X{2},Y{2},Sxy)
D = 10.0509

> FWHM=APPestimFWHM(F{2},X{2},Y{2})
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Figure 6: An example of a power pattern |F (ξ)|2, as re-
turned by the function AVP and plotted by the function
plotAPP. Black ellipse is the half-maximum power contour.
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FWHM = 70.0000 60.0000 -60.0000

2.5 Instrument Modeling

According to the Van-Cittert Zernike theorem (van
Cittert, 1934; Zernike, 1938) and referring to Figure7,
the theoretical complex visibility Vpq for a pair of el-
ementary antennas Ap and Aq in the far-field approx-
imation is given by the relation:

Vpq =
∫ ∫
∥ξ∥≤1

Fp (ξ)√
Ωp

F ∗
q (ξ)√

Ωq
T (ξ) r̃pq

(
−

bpq·ξ
c

)

×e

−2jπ
bpq·ξ

λo dξ√
1−∥ξ∥2

,

(1)

where bpq is the baseline vector between Ap and Aq,
the components ξ1 = sinθcosφ and ξ2 = sinθsinφ of
the angular position variable ξ are direction cosines
in the reference frame of the array, θ and φ are the
traditional spherical coordinates (the colatitude and
the azimuth, respectively), Fp(ξ) and Fq(ξ) are the
voltage patterns of the two elementary antennas with
equivalent solid angles Ωp and Ωq, T (ξ) is the bright-
ness temperature distribution of the scene under ob-
servation, r̃pq(t) is the so-called fringe-washing func-
tion which accounts for spatial decorrelation effects
for t = −bpq ·ξ/c and λo = c/ fo is the central wave-
length of observation.

Aq

rq

Ap

rp

bpq

r q
−

r p

θ θ

incidentwavefront

Figure 7: Two elementary antennas Ap and Aq pointing in
the same direction, here the Nadir as illustrated by the main
beam of the power patterns (in blue), rp and rq are location
vectors with respect to the far-field source and the two an-
tennas are separated by the baseline vector bpq.

The previous integral equation is implemented in
the function GT sai. Hereafter are the few lines to
obtain the 4695 complex visibilities of MIRAS corre-
sponding to an artificial scene that is set to a constant
temperature 100 K over Earth and 0 K elsewhere:

> T=zeros(2*N,2*N); T(PXLearth{2})=100;
> Vpq=GT_sai(Fo,Bo,F{2}./sqrt(Omega), ...

P,Q,Ub,Vb,[], ...
X{2},Y{2},Sxy,0,T);

> figure;plotVIS(Ub*Lo,Vb*Lo, ...
vis2vis(P,Q,Vpq),’abs’);
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Figure 8: Magnitude of the complex visibilities Vpq of a flat
scene Tb at a constant temperature 100 K, as plotted by the
function plotVIS.

Referring back to the sampling grids introduced
earlier in this section, after discretization of the inte-
gral found in (1) the relationship between the complex
visibilities and the brightness temperature distribution
of the scene under observation can be written in the
algebraic form:

V = GT (2)

where G is the linear modeling matrix of the imaging
radiometer returned by the function matG sai:

> G=matG_sai(Fo,Bo,F{1}./sqrt(Omega), ...
P,Q,Ub,Vb,[],X{1},Y{1},Sxy);

The inverse problem which aims at inverting rela-
tion (2) is ill-posed as a consequence of the rank de-
ficiency of G which is illustrated by the distribution
of its singular values, as shown in Figure 9 where two
groups are well separated by a large gap.

> rank(G)
ans = 2791

> svG=svd(G);
> [T,idxT]=getThresholdSV(svG,Uf,Vf)

T = 8.8343e-04
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idxT = 2791 2792
> figure;plotSV(svG,[1 idxT(1)]);
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Figure 9: Distribution of the singular values of the modeling
matrix G, as plotted by the function plotSV.

As a consequence, the smallest ones have to be
discarded prior the inversion to obtain a regularized
version of G+:

> Gp=pinv(G,T);
> Tr=reshape(Gp*Vpq,[N N]);
> figure;plotBTM(X{1},Y{1},Tr,[]);
> plotFOV_hexa(h,tilt,d,90,[]);

Shown on Figure 10 is the brightness temper-
ature Tr = G+V thus obtained. TRIMARAN of-
fers alternative methods (Picard and Anterrieu, 2005)
to this popular truncated singular value decomposi-
tion (Goodberlet, 2000) among which the regularizing
approach implemented for SMOS (Anterrieu, 2004),
the Tikhonov one (Tikhonov and Arsenin, 1977) and
few total variation approaches (Chambolle, 2004).

The same kind of simulation can be performed
but with the brightness temperature distribution of
a point source, so that the Point-Spread Function
(PSF) of the instrument can be estimated. This is
exactly what is done very simply by the function
PointSpreadFunction as shown on Figure11.

> PSF=PointSpreadFunction(Uf,Vf,N);
> figure;plotBTM(X{1},Y{1},PSF,[]);
> axis([-1 1 -1 1]*0.1);

The function ApodizationWindow returns an
apodization window that can be chosen among many
and apply to any brightness temperature map with the
aid of the function apodizeBTM. With regards to any
PSF, wether it is apodized or not, the two functions
AngularResolution and GroundResolution offer
facilities to estimate the angular resolution at instru-
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Figure 10: Retrieved brightness temperature map Tr =
G+V , as plotted by the function plotBTM. Referring back
to Figure 4, Earth aliases are clearly visible exactly where
they are supposed to be. In the Earth alias-free part, the re-
trieved temperature is the expected one.

ment level and the spatial one at ground level, respec-
tively.
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Figure 11: Normalized PSF of MIRAS antenna array, as
plotted by the function plotBTM in the reduced domain
−0.1 ≤ ξ1 ≤ 0.1 and −0.1 ≤ ξ2 ≤ 0.1.

Finally, additive synthesis with digital beam form-
ing is available in TRIMARAN with the functions
GT dbf and matG dbf which implement the integral
relation between T (ξ) and the antenna array tempera-
ture T(ξ′) from a direction ξ′:

T(ξ′) =
∫ ∫
∥ξ∥≤1

|Fξ′(ξ)|2

Ωξ′
T (ξ)

dξ√
1−∥ξ∥2

, (3)
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where

Fξ′(ξ) =
M

∑
p=1

Fp(ξ)e
−2jπ

rp

λ
(ξ−ξ

′)
(4)

is the voltage pattern of the antenna array when point-
ing in the direction ξ′ and with equivalent solid an-
gle Ωξ′ . The antenna array patterns Fξ′(ξ) are cal-
culated in the ArrayAVP function and their equiv-
alent solid angle Ωξ′ is returned by the function
AVPestimESA. An example of Fξ′(ξ) is shown on Fig-
ure 12. As expected, it is much narrower than the el-
ementary pattern F (ξ) shown in Figure 6 and more
directive as its directivity returned by APPestimDIR
is about 42.5 dB (this is equal to that of F (ξ), which
is about 10 dB, augmented by the number of elemen-
tary antennas (here M = 69 ≃ 36.8 dB) and reduced
by the attenuation F (ξ′)/F (0)≃−4.3 dB).
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Figure 12: An example of antenna array power pat-
tern |Fξ′(ξ)|2 when pointing in the direction ξ′ = (0.5,0.3),
as returned by the function ArrayAVP and plotted by the
function plotAPP. Here again, referring back to Figure4,
aliases are where they are supposed to be, as illustrated by
the grating lobe in the direction ξ = (−0.64,−0.36).

2.6 Radio Signals

It is sometimes necessary to work at the level of
the signal kept by the elementary antennas (Anter-
rieu et al., 2017), particularly when the assumptions
accompanying the Van-Cittert Zernike theorem are
not satisfied. Although these calculations are time
consuming ones, thanks to GPU usage in functions
RadioSignal and RadioSignalCal, when such ac-
celerators are found on the computer and when the
Parallel Computing Toolbox (The MathWorks, b) is
available, computational time can be reduced down
to acceptable values, depending on the sampling fre-

TRIMARAN

-5

0

5

e

0 1 2 3 4

-5

0

5

m

0 5 10

t [µsec]

E
(t
)

[m
V

/m
]

[%]

Figure 13: First samples of a (complex-valued) radio signal
simulated by RadioSignal with fs = 8 GHz, as plotted by
the function plotEMF.

quency fs and on the duration Ts of the signal to sim-
ulate. Shown on Figure 13 is an example of radio
signal kept by an element of MIRAS. As shown on
Figure 14 this signal is not just a white noise with a
Gaussian Probability Density Function (PDF) in the
time domain: its Power Spectral Density (PSD) in
the frequency domain is that of a black body at the
temperature of the scene (returned by the function
PlanckLaw), as expected. Accounting for this col-
oration of the spectrum (obtained with a FIR filter
returned by the function FirPlanckLaw) as well as
for the propagation times between each pixel of the
source and any antenna (evaluated by the function
FlyingTime) to take into account the Doppler effect,
explain the consequent calculation time for such sim-
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Figure 14: PSD of the radio signal shown on Figure 13, as
computed by the function PSDwelch and plotted with Mat-
lab’s function semilogy in the range 0 ≤ f ≤ fs/2.
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ulations. When filtering the signal of Figure 13 in
the Bo = 20 MHz band centered on fo = 1413.5 MHz
(with an appropriate Raised-cosine filter calculated
with the function RcosFIR) it turns out that the auto-
correlation is about 84 K which is the value of the
complex visibilities Vpq shown in Figure 8 for |bpq|=
0, as expected.

3 ILLUSTRATIVE EXAMPLES

TRIMARAN has been used from the very early stud-
ies of SMOS (for designing the antenna array of MI-
RAS as well as for evaluating its imaging perfor-
mances) to the latest ones after launch, during com-
missioning (for checking radiometric sensitivity, an-
gular resolution. . . ) and since throughout the oper-
ational phase (for reducing floor error, detecting and
localizing RFI sources. . . ). The latest concrete usages
of TRIMARAN are briefly presented to illustrate the
capabilities of this toolbox when addressing various
problems encountered in modern aperture synthesis.

3.1 Interferometry vs. Beam Forming

More recently, TRIMARAN has been used in a
study (Anterrieu et al., 2022) to quantify the differ-
ence between two paradigms: on one hand synthetic
aperture interferometry also known as multiplicative
synthesis, and on the other hand digital beam form-
ing also known as additive synthesis. Simulations
have been conducted with MIRAS, the single pay-
load of the SMOS mission. Three figures of merit
have been targeted at image synthesis level: the floor
error, the radiometric sensitivity and the angular res-
olution. No difference has been observed on the sen-
sitivity nor on the resolution. On the contrary, the
floor error (Duran et al., 2015) that is observed in
the retrieved brightness temperature maps in the ab-
sence of any error or noise in the complex visibili-
ties turns out to be at a higher level in the operational
mode of MIRAS, i.e. synthetic aperture interferom-
etry, than with digital beam forming if this paradigm
has been chosen. This difference is illustrated on Fig-
ure 15 with simulations conducted with the brightness
temperature distributions of a typical scene over the
ocean (eq. [5] in (Zine et al., 2008)) in H and V polar-
izations. Oscillations and artifacts clearly appear in
the brightness temperature maps retrieved with syn-
thetic aperture interferometry, especially at low inci-
dence angles, but not only, whereas they are almost
absent, or at least strongly reduced, with digital beam
forming. Quantitatively, the RMSE is reduced by
about 0.4 K, which is not negligible with regards to
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Figure 15: Variations of the retrieved temperatures in H (red
dots) and V (blue dots) polarizations as well as those of the
temperatures (lines) of the scene with the ground incidence
angle when MIRAS is operating synthetic aperture interfer-
ometry (top) and if digital beam forming was the instrumen-
tal paradigm (bottom). The RMSE is about 1.51 K in H and
1.59 K in V for the first case, whereas it is about 1.16 K in
H and 1.14 K in V for the second one.

a mission’s target accuracy of 0.1 PSU with a sensi-
tivity of the surface salinity which varies from 1 K
down to 0.1 K per PSU (Font et al., 2004).

The origin of this difference has been found in
the distribution of the singular values of the model-
ing operators of the two paradigms. As illustrated on
Figure 16, whatever the approach, two groups of sin-
gular values separated by a well-determined gap are
observed. In every case, the first group is composed
of the 2791 largest singular values: the rank of the
two matrices is equal to 2791, as expected. How-
ever, in the SMOS operational case (with 69 differ-
ent antenna patterns), this gap is narrower than in the
ideal case (with the same voltage pattern for each an-
tenna). On the contrary, if MIRAS was operating dig-
ital beam forming, it would be less sensitive to the
disparity between elementary patterns as this gap re-
mains of the same order. This is why digital beam
forming is the target paradigm for the FRESCH mis-
sion (Rodriguez-Fernandez et al., 2024) that has been
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Figure 16: Distribution of the singular values of the model-
ing matrices of MIRAS when operating synthetic aperture
interferometry (top) and if digital beam forming was the in-
strumental paradigm (bottom): in both cases, the elemen-
tary patterns are those measured on ground (red) or an ideal
one (green).

proposed to ESA to continue MIRAS measurements
whereas synthetic aperture interferometry of SMOS
is only a backup principle.

3.2 Linear Algebra vs. Deep Learning

TRIMARAN has also been used in a recent
study (Faucheron et al., 2024) to explore a deep learn-
ing based approach for inverting complex visibili-
ties, an alternative to the algebraic methods used for
decades in aperture synthesis. Brightness tempera-
tures taken from SMOS L3 products (Al-Bitar et al.,
2017) have been used to simulate a large dataset of
brightness temperature maps T and complex visibili-
ties V which has been split into three subsets accord-
ing to:

• 60% of the dataset has been dedicated to the train-
ing subset, during which a Deep Neural Network
(DNN) is exercised to the relation between V

and T ;

• 20% of the dataset has been used for the validation
subset, during which the DNN learning is moni-
tored on T/V pairs not used for the training;

• 20% have been devoted to the testing subset,
which aims at comparing the performances of this
data-driven approach to the algebraic inversion
approach implemented in SMOS L1 ground seg-
ment processor, again with not previously used
T/V pairs.

Shown on Figure 17 is an example taken from
the testing subset of retrieved brightness temperature
maps over Great Britain. The first difference to be
noted is a larger reconstructed field of view without
any aliasing in the deep learning based approach. This
unexpected property is opening a new era for the de-
sign of future imaging radiometers with antenna ar-
rays as the spacing between the elementary antennas
which governs the field aliasing will no longer be a
constrained driver of the imaging performances par-
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Figure 17: A representative example of brightness temper-
ature maps retrieved from complex visibilities with SMOS
operational algebraic inversion (top) and with a deep learn-
ing one (bottom). In both cases no apodization window has
been used.
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ticipating to the trade-offs. On the contrary, the choice
of this spacing can be left entirely to the elementary
antennas designers with electromagnetism considera-
tions for reducing coupling effects between elements.

Finally, the average RMSE over the entire test-
ing subset in the Earth alias-free field of view is
about 7.8 K with the operational algebraic inversion
whereas it is only about 1 K with the deep learning
one.

3.3 Near-Field vs. Far-Field

The latest and most recent published usage of TRI-
MARAN is a study devoted to the comparison be-
tween far-field and near-field conditions in syn-
thetic aperture interferometry (Anterrieu et al., 2024).
While there is no clear boundary between these re-
gions, a common and acceptable criterion is that
2D2/λo represents a safe limit between far-field and
near-field, where D is the diameter of an elementary
antenna and λo is the central operating wavelength.
This criterion has been extended to antennas arrays
where D is now the longest baseline between the el-
ementary antennas (Selvan and Janaswamy, 2017).
However, from the imaging point of view this crite-
rion might not be sufficiently strict and should per-
haps be revisited. This is exactly what has been ob-
served in this study where the differences between far-
field conditions shown in Figure 7 and near-field ones
as illustrated by Figure 18 have been listed and taken
into account to lead to the following modeling:

Vpq =
∫ ∫
∥ξ∥≤1

Fp (ξp)√
Ωp

F ∗
q (ξq)√

Ωq
T (ξ)

r2(ξ)

rp(ξ)rq(ξ)

×e

−2jπ
rq(ξ)− rp(ξ)

λo dξ√
1−∥ξ∥2

,

(5)

where ξp and ξq are local direction cosines to account
for the true vectors rp and rq in comparison with the
direction ξ from the phase center of the array. This
modeling is available in TRIMARAN with the func-
tions GT sai nf and matG sai nf, with the aid of
the function FlyingTime for calculating the real dis-
tances. Shown on Figure 19 are the singular values of
the modeling operator of MIRAS in far-field condi-
tions and in near-field ones when the elementary an-
tennas are ideal ones with the same voltage pattern:
the effect of the distance is similar to that of the diver-
sity of the elementary patterns observed on Figure 16
with a reduction of the gap between the two groups of
singular values.

As an illustration of the impact of the distance be-
tween the antenna array and a source, shown on Fig-

Aq

rq

Ap

rp

bpq

r q
− r p

θq θp

incident
wavefront

Figure 18: Two elementary antennas Ap and Aq pointing
in the same direction, here the Nadir as illustrated by the
main beam of the power patterns (in blue), rp and rq are
location vectors with respect to the near-field source and
the two antennas are separated by the baseline vector bpq.
Contrary to far-field conditions of Figure 7 where incident
waves are planes ones, here they are spherical.

ure 20 are the complex visibilities of a point source
located in the direction ξ = (0,0) of MIRAS and at a
distance from the phase center which is in the far-field
region and closer in the near-field zone. Here again
the difference is significative and one can imagine that
the inversion has to be done with the appropriate op-
erator, whatever the regularizing approach. Indeed,
when inverting near-field visibilities with the inverse
of a modeling operator in the far-field approximation
the result might be surprising and unexpected. This is
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Figure 19: Distribution of the singular values of the model-
ing matrices of MIRAS when operating in the far-field re-
gion (green) and in the near-field zone (red): in both cases
the same ideal voltage pattern has been used for every ele-
mentary antenna.
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Figure 20: Complex visibilities of a point source located in
the Nadir direction ξ = (0,0) of MIRAS and at a distance
from the phase center which is in the far-field region (green)
and closer in the near-field zone (red).

exactly what is shown on Figure 21 which has to be
compared to Figure 11. Of course, when the appro-
priate near-field modeling operator is used, there is
no difference between near-field and far-field impulse
responses.

As already suggested in the literature, this study
has proven that 2D2/λo is not sufficiently strict for
estimating a safe limit between far-field and near-
field regions in aperture synthesis imaging applica-
tions. Indeed, it is always found to be among the
lowest values of many figures of merit for this tran-
sition interval between these two regions. In the spe-
cific case of SMOS, a criterion around 10D2/λo might
be more appropriate to preserve the imaging perfor-
mances of MIRAS. However, in the words of the au-
thors of this study “it would be very presumptuous to
claim to change the definition of this criterion solely
on the basis of a comparative study conducted with a
single antenna array”.

4 CONCLUSION

TRIMARAN, a Toolbox for Radiometric Imaging
with Microwave ARrays of ANtennas, as been briefly
described. It is a self-sufficient collection of about
200 Matlab functions that offer to users the opportu-
nity to play numerically with multiplicative and addi-
tive synthesis, from the simulation of the radio signals
kept by each elementary antenna to their combination
to produce either complex visibilities (when operating
interferometry) or antenna array temperatures (when
beam forming is the paradigm) up to their process-
ing with up-to-date regularized inversion methods to
retrieve the brightness temperature distribution of the
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Figure 21: Normalized PSF of MIRAS antenna array ob-
tained when inverting near-field visibilities (the red ones of
Figure 20) with the inverse of the modeling operator of MI-
RAS in the far-field approximation.

scene under observation.
In addition to this overview, some concrete usages

made by researchers, engineers or students have been
shown to illustrate the capabilities of TRIMARAN
for designing aperture synthesis imaging radiometers
and for quantifying instrument performances as well
as for discovering and for learning many aspects of
microwave remote sensing by aperture synthesis with
realism. In every case, this is done with very few lines
of code to write, thanks to high-level functions that
can digest simulated data as well as real ones from an
actual instrument, in ground based as well as in air-
borne or spaceborne situations.
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