Scenario-Based Testing of Online Learning Programs

Maxence Demougeot', Sylvie Trouilhet', Jean-Paul Arcangeli' and Frangoise Adreit?
IIRIT, Université de Toulouse, Toulouse, France
2IRIT, Université de Toulouse, UT2J, Toulouse, France

Keywords:

Abstract:

Online Machine Learning, Learning Program, Test, Test Scenario, Functional Testing, Testing Process.

Testing is a solution for verification and validation of systems based on Machine Learning (ML). This paper

focuses on testing functional requirements of programs that learn online. Online learning programs build and
update ML models throughout their execution. Testing allows domain experts to measure how well they work,
identify favorable or unfavorable use cases, compare different versions or settings, or reveal defects. Testing
programs which learn online has particular features. To deal with them, a scenario-based approach and a test-
ing process are defined. This solution is implemented and automates test execution and quality measurements.
It is applied to a program that learns online the end-user’s preferences in an ambient environment, confirming

the viability of the approach.

1 INTRODUCTION

Machine Learning (ML) techniques (Mitchell, 1997)
can be used when a software solution cannot be pro-
grammed, either because there is no known algorithm,
or because the algorithm is too complex to imple-
ment. ML relies on a learning algorithm which pro-
cesses reference examples called training data, from
which it generalizes a behavior to hold (this may be
predicting, deciding, executing a task. ..) when faced
with data other than training data. The learning pro-
gram (LP) is the program that implements the learn-
ing algorithm, and a model is a product of running the
learning program with training data.

ML therefore consists in building (training) a
model by means of a learning program. In produc-
tion, the model transforms input data into outputs
(i.e., predictions, decisions...) in accordance with
the behavior learned from the training data. In Of-
fline Machine Learning, the model is built and tuned
by one or more human experts (ML experts and do-
main experts). They are responsible for choosing
an off-the-shelf learning component (i.e., a learning
program) and setting the learning parameters (hyper-
parameters). Alternatively, a specific learning pro-
gram can be developed with the help of a software
expert. ML and domain experts also select and pre-
pare the training data. After construction and fine-
tuning, the model is put in production. It can be re-
built, i.e., revised or adapted, depending on the results

Demougeot, M., Trouilhet, S., Arcangeli, J.-P. and Adreit, F.
Scenario-Based Testing of Online Learning Programs.
DOI: 10.5220/0013503100003964

obtained in production, however the rebuilt and pro-
duction phases are separate. The model is thus man-
aged like standard software with maintenance steps.

Sometimes, it is difficult to anticipate the data
that the model will face in production, and the model
needs to adapt over time according to the data encoun-
tered. Online Machine Learning addresses this is-
sue. According to S. Russell and P. Norvig (Russell
and Norvig, 2010), online ML relies on repeated com-
parisons between the outputs delivered in production
and what they should be (the outputs assumed to be
the “right” ones): when the model produces an output
for a given input, a domain expert provides it with the
“right” one as a feedback, triggering a new learning
phase. In that case, learning and production are inter-
twined, and learning is continuous: the learning pro-
gram updates the model iteratively and incrementally
throughout its execution. Since, the learning context
may be open and unpredictable, it has to deal with
unanticipated training data arriving on the fly, which
may be of poor quality but whose defects cannot be
corrected before learning as with offline learning.

In ML, testing is part of the model development
and tuning process, with the aim of assessing its qual-
ity, especially its compliance with functional require-
ments. Upstream, the LP must also be tested as de-
fects can lead to the production of poor models. Sec-
tion 2 analyzes these issues with a particular focus
on online learning, and highlights the differences be-
tween testing a model and testing a learning program.

99

In Proceedings of the 20th International Conference on Software Technologies (ICSOFT 2025), pages 99-110

ISBN: 978-989-758-757-3; ISSN: 2184-2833
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

ICSOFT 2025 - 20th International Conference on Software Technologies

This paper addresses the problem of testing
learning programs in the context of online ML. It
focuses on functional testing: the aim is to verify
that the machine learns “well”, i.e., that the LP builds
models whose behaviors are in line with the train-
ing data in the various learning situations it may face.
Testing is a way to show how well the LP works, to
identify favorable or unfavorable use cases, to com-
pare different versions or settings, or to reveal defects.

To solve this problem, we propose a scenario-
based approach and a testing process. Test scenar-
ios are designed by domain experts without neces-
sarily skills in ML, based on properties to be con-
trolled. Then, they are automatically transformed and
run to produce quality measurements. We apply this
solution to a program called OCE, which learns on-
line how to build applications for an end-user in an
open context. We show how our approach can be
used, present a toolset that implements our proposal
within the OCE framework, and examine several use
cases that show the viability of our solution.

The paper is organized as follows. Section 2 an-
alyzes the problem of testing learning programs and
sets out the research questions we are addressing.
Section 3 introduces our case study: the opportunistic
composition engine (OCE). Section 4 describes the
scenario-based approach to test programs that learn
online, with a process for carrying it out. Section 5
presents a solution to implement and run scenarios,
with a toolset we have developed to test OCE’s learn-
ing program. This approach has been validated in a
number of use cases, some of which are presented in
Section 6. Section 7 studies the related work. Finally,
we draw some conclusions in Section 8.

2 LP TESTING

Work on ML-based software testing mainly focuses
on models resulting from offline supervised learning
(Zhang et al., 2020). In this work, we target learning
programs that build models online and iteratively. In
the following, we highlight the differences between
testing models and testing learning programs, and fo-
cus on testing programs that learn online.

2.1 LP Testing vs Model Testing

Machine learning encompasses learning activities
(i.e., building a model by a learning program) and
decision-making activities (i.e., using the model),
whether learning and decision are interleaved or not.
Models and learning programs are distinct artifacts,
each of them requiring testing.

100

A common problem is the lack of precise speci-
fications, which limits verification possibilities. An-
other is the non-deterministic nature of machine
learning (Sugali, 2021), particularly (but not exclu-
sively) in the case of online learning. Randomness in-
herent in learning and decision-making mechanisms
leads to variable outcomes from one execution to an-
other, even with the same inputs. Thus, it can happen
that the expected results are not obtained during tests
even though the learning and decision-making mech-
anisms are working correctly (Khomh et al., 2018).
For example, in reinforcement learning (Sutton and
Barto, 2018), it is normal for the machine to some-
times choose, for exploration purposes, a solution
that is neither the best nor the logically expected one.
Therefore, it is difficult to determine if an unexpected
output results from a random factor or a defect in the
learning mechanism.

Model Testing: Before deploying a model, testing
aims to answer the question: is the model a “good”
model? In other words, did the machine “learn” effec-
tively? Model testing shares the same goals as tradi-
tional software testing but focuses on quality proper-
ties specific to the model such as accuracy, relevance,
or robustness (Zhang et al., 2020). It consists in run-
ning the model and evaluate the decisions it makes.
This poses several challenges that we examine below.

Since models result from running a learning pro-
gram fed by examples, defects may arise from the
training data, the learning program, or a mismatch be-
tween the two (when a program poorly learns from
certain data) (Zhang et al., 2020). However, it is chal-
lenging to trace the source of a defect to correct it.
Indeed, models do not have the same materiality as
traditional software: they do not consist of a simple
source code but are composed of more or less tan-
gible various elements (code, parameters, data) and
often operate as a “black box”.

On the other hand, ML is sometimes used by de-
velopment teams in situations where the expected re-
sults are not known in advance (Murphy et al., 2007).
In this case, predicting and interpreting test results is
an additional challenge, and it can be difficult to de-
termine whether a test passes or not. Software ex-
hibiting this problem, known as the oracle problem,
is often considered non-testable(Weyuker, 1982) due
to the absence of an oracle or the difficulty in design-
ing one (Nakajima, 2017).

Interpreting the results can also be tricky, due to
the nature of the outputs and their complexity. In this
context, it is so challenging to measure the quality of
models using commons criteria such as precision (ra-
tio of correct answers to given answers), recall (selec-

tion rate of correct answers), or F-scores (combina-
tion of precision and recall).

Learning Program Testing: Although the two
problems are closely related, testing a learning pro-
gram is not the same as testing a model. The question
is: does the learning program “learn well” across the
scope for which it was designed? In other words, does
the learning program build “good” models relative to
the training data provided to it?

The correspondence between training data and
model is captured by the formula 1, in which D is
a training dataset, Scope is the set of all training
datasets that the LP might encounter, P1 is a prop-
erty of D, Mp is the model built by the LP from D,
and P2 is an expected property of Mp:

VD € Scope,P1(D) = P2(Mp) ()

In other words, this formula means that if the
learning program has built a model Mp from train-
ing data D that satisfy P1, then Mp should satisfy P2.
For illustration purposes, let’s take the example of a
robot that learns to move from one point to another
in a complex and dynamic physical space. In this
case, the LP builds a model to guide the robot from
reference routes. We might want to check that IF D
contains no routes that use a given corridor C (P1)
THEN fo go from point A to point B, Mp guides the
robot without passing through corridor C (P2). As
usual in testing, the goal is to assess (un)satisfaction
of the formula 2, that captures the mismatch between
training data and model, i.c., a poor transformation
of training data into a model:

3D € Scope,P1(D) A —~(P2(Mp)) ()

However, identifying P1 as well as selecting D is
crucial to the overall significance of the tests and de-
mands strong domain expertise. Neither D nor Mp
are simple data, as numerical data for example. In
the case of online ML, D is a sequence of training
data which is required to meet P1. Selecting D is all
the more delicate since, in production, data arrives in
sequence and are not always expected. Hence, the
question is not about the presence of a defect in the
training data (a common source of defects in models);
rather, it’s about checking the consistency between
training data and the model built from them (possi-
bly to conclude that there is a mismatch between the
two).

Defining an expected property of the model (P2)
is another source of complexity: especially, it is not
possible to specify expected models for comparisons
and accuracy assessment (the oracle problem again).
P2 is thus a property related to the decisions that a

Scenario-Based Testing of Online Learning Programs

model makes. To check if the latter satisfies P2, and
thus indirectly evaluate the quality of the learning pro-
gram, it must be executed. Therefore, LP testing suf-
fers from the problems associated to model testing.

Cross-Validation and K-fold cross-validation
(Berrar, 2019) are standard methods for testing the
performance of models, especially overfitting and
underfitting. They are commonly used for compar-
ison and selection of the most appropriate model.
They consist in putting aside part of the training data
to use it as test data. But, in the context of online
learning, they are not applicable for assessing the
correspondence between the sequence of training
data and the model since they do not allow to capture
the consequence relationship between data and model
expessed by the IF-THEN formula 1.

Thus, to tackle the LP testing problem, testers
need to have different models built by the learning
program for different use cases, with the aim of sub-
sequently testing each of these models. So, running a
test case must first construct a model then run and
evaluate it. This makes both design and execution of
the test cases more complex.

Testing learning programs is therefore costly; it
requires significant expertise in terms of domain and
business and, as much as possible, automation.

2.2 Research Questions

Based on the above analysis, we have identified three
research questions regarding the testing of online
learning programs:

* RQ1: How to design test cases that include learn-
ing and evaluation steps and conform to expected
properties?

* RQ2: How to organize the testing workflow, from
the test set design to execution and evaluation?

* RQ3: As part of the workflow, how to implement
a test case, automate its execution, and determine
if the test passes or not?

Before presenting our answers to RQ1 and RQ2
in Section 4, and to RQ3 in Section 5, Section 3 in-
troduces the fundamental principles of our case study,
OCE, which is a program that learns online in inter-
action with the end user.

3 OCE: A PROGRAM THAT
LEARNS ONLINE

Let’s start with some background to better understand
what the Opportunistic Composition Engine (OCE)

101

ICSOFT 2025 - 20th International Conference on Software Technologies

does. A software component is an executable soft-
ware entity that provides services and requires oth-
ers to function (Sommerville, 2016). Component-
based programming involves assembling components
by binding their services to form an application. The
Figure 1 represents in UML (OMG, 2017) a sim-
ple example of a text-to-speech application that as-
sembles four components: TextInput for text input,
TextToVoice for text-to-voice conversion, Speaker,
and Button. TextInput uses the TextProcess service
provided by TextToVoice to transmit the text. Text-
ToVoice converts the text into an audio signal and
passes it to Speaker via the VoiceProcess service.
Speaker plays the audio signal, which volume can be
adjusted using Button and transmitted to Speaker via
the SetVolume service.

UML —(Required Service
Component —QO Provided Service

TextProcess TextProcess VoiceProcess VoiceProcess

--------------------- e i

SetVolume Q

SetVolume

Figure 1: UML component diagram (OMG, 2017) of the
Text-to-Speech application.

OCE is an ambient intelligence (Dunne et al.,
2021) prototype solution that dynamically builds ap-
plications based on software components present
in the ambient environment and knowledge learned
about the user’s preferences (Younes et al., 2020).
OCE automates the assembly operation. In ambient
environments, characterized by their open and dy-
namic nature, components may appear or disappear
unpredictably. So a major challenge is to manage the
variability of these environments and to offer the user
“right” applications according to their situation.

Model 1 Assembly

© . P
-

3)

™
AUT

Learning
Program

Figure 2: OCE application building process.

102

OCE consists of a reinforcement learning (Sutton
and Barto, 2018) program and a model that is con-
tinuously trained and evolving. An OCE “cycle” is a
sequence of several steps (Figure 2):

1. OCE detects the available components in the
user’s ambient environment.

2. Based on the available components and learned
knowledge about the user’s preferences, OCE’s
model decides on the assembly to build.

3. OCE presents the assembly proposition to the user
through a graphical interface.

4. The user accepts, modifies, or rejects the assem-
bly proposition. These actions translate into pos-
itive or negative rewards, which serve as training
data for OCE’s learning program.

5. OCE learns by reinforcement, i.e., OCE’s learning
program increments and adapts the model.

Thus, through successive cycles and interactions
with the user, OCE learning solution builds and
evolves online a model on which the future decisions
will be made.

Several working prototypes of OCE have been de-
veloped. Do they propose applications to the user that
are tailored to their preferences in the current situa-
tion? Testing is a way to answer this question and to
build trust in OCE.

4 SCENARIO-BASED TESTING
APPROACH

4.1 Test Scenario

To be evaluated, a learning program must be executed
on training data. Then, the resulting model must be
evaluated in turn. Since the learning program builds
different models depending on the training data, dif-
ferent models must be evaluated. In an iterative and
incremental context such as online learning, design-
ing a test case requires defining a sequence of inter-
actions between the learning program and its learning
environment to build a model. To check that the built
model behaves as expected, other interactions are re-
quired for evaluation purposes. Learning and evalu-
ation interactions can be intertwined. We call a se-
quence of such interactions a test scenario.

A learning phase consists in a sequence of inter-
actions which must conform to P1 with, for each in-
teraction, an output produced by the model from the
input data, a feedback, then a learning operation to
improve the model. Each interaction is so described

by: (i) a learning situation, i.e., the environment in
which the model should produce an output, (ii) an
output that the model should ideally return in this sit-
uation, called ideal output. Defining the ideal output
for each learning interaction, as well as expected out-
puts facilitates automation: it avoids the need for the
tester to constantly interact with the learning program,
which is tedious and costly. Based on the outputs pro-
duced by the model and the ideal outputs, the learning
program learns and updates the model in the learning
phase of the test as it does in normal operation. At
the end of this phase, a model is built that is ready for
evaluation.

An evaluation phase consists of one or several
interactions too. An interaction is defined by the de-
scription of both the situation in which the model has
to deliver an output and a property of this output that
must be checked (P2). In its simplest form, the prop-
erty can be the expected output or several possible
correct outputs. Expected outputs are intended to be
compared with the output returned by the model to
give a measure of quality. Depending on what the
designer expresses in terms of expected property (a
single or several expected outputs, or a more general
property), they act more or less like an oracle.

Organized in this way, such scenarios support the
testing of online learning programs, which answers
RQ1. We now apply this solution to a particular case:
OCE’s online learning program.

Application to OCE. For OCE, an interaction cor-
responds to a cycle, and a test scenario is a sequence
of learning and evaluation cycles. A learning cycle is
described by a list of software components populat-
ing the ambient environment and the ideal assembly.
The latter specifies the assembly the user would ac-
cept in normal use in this situation, and which is used
to learn. An evaluation cycle is also defined by a
list of software components, this time with a property
of the assembly that OCE’s model is expected to re-
turn. This can be in the form of one or more expected
assemblies for comparison, or take the form of more
general properties, e.g., the presence of certain com-
ponents or connections in the assembly.

It is possible to define scenarios to test OCE’s
learning program in different ambient environments,
with more or less dynamics according to P1.

For instance, as a tester, we seek to verify that IF a
user expresses a preference for a component in a cer-
tain situation, and that component disappears from
the ambient environment (P1) THEN if it reappears
in a similar situation, OCE again proposes an assem-
bly with that component (P2). To define a scenario,
let’s take a toy example adapted from (Younes et al.,

Scenario-Based Testing of Online Learning Programs

,,,,,,,,,,,,,,,, Ideal Assembly

Cycle 0 Cycle 1

Order Order
Order Order

~~~~~~~~~ -
Order Order

Figure 3: Learning cycles of the example scenario.

! Order;

2020) and simplified for clarity. Mary is at work. In
her ambient environment, there are a software compo-
nent Desk that provides a room booking service called
Order, and three components, Text, Voice, and Tac-
tile, which allow the user to make a booking request
(with different interaction modes) and require the Or-
der service. Through the Order service, these three
components may be assembled with Desk. Thus,
three applications are possible (Text-Desk, Voice-
Desk, Tactile-Desk), enabling Mary to book a meet-
ing room. To do so, Mary prefers the component
Voice. Then, Voice disappears and reappears later.
We seek to verify that OCE again proposes the as-
sembly Voice-Desk when Voice reappears.

Let’s define a scenario with three cycles. Cycles
0 and 1 (Figure 3) define the learning phase. Cycle
0 is defined by the list of the 4 components and the
ideal assembly Voice-Desk (Mary’s preference). For
cycle 1, Voice has disappeared, so the components are
Desk, Text, and Tactile, and the ideal assembly in this
case is Text-Desk. The composition of the ambient
environment and the ideal assemblies in cycles 0 and
1 satisfy P1.

------------- Expected Assembly

Order

Order Order,

rrrrrrrrrrrrr

Figure 4: Evaluation cycle of the example scenario.

In the evaluation phase, cycle 2 (Figure 4) defines
a situation, different from the two previous ones, in
which OCE must provide an assembly: the ambient
environment is composed of Desk, Text, and Voice
that has reappeared (Tactile has desappeared). Here,
Voice-Desk is specified as the expected assembly in
order to be compared with the assembly proposed by
OCE. Here, P2 is defined at the simplest by a single
expected assembly and coupled with a function that
computes a distance between the expected assembly
and the OCE output. To measure this distance, such
a function may, for instance, compute a Jaccard Sim-
ilarity Index'.

Uhttps://en.wikipedia.org/wiki/Taccard_index

103



ICSOFT 2025 - 20th International Conference on Software Technologies

4.2 Scenario-Based Testing Process

Specify a formula Define the
(P1 &P2) to Test Evaluation Metrics
Design a Set of ¢ |
Scenarios

Implement [ Implement
Scenario 1 Scenario n

| !

{ Run Scenario 1 } [.] { Run Scenario n }

y Y

Analyze Evaluation I Analyze Evaluation
Results Results

Draw Conclusions

X

Figure 5: Activity Diagram of the Scenario-based Testing
Process.

In a scenario-based testing process (Figure 5), the first
activity is to identify a formula to be tested, namely
P1 which describes a property of the training data (in
the case of OCE, a property that the sequence of ambi-
ent environments and ideal outputs must satisfy), and
P2 which relates to the expected result.

Next, it is necessary to define the ways of veri-
fying that P2 is satisfied. A standard way is to use
statistical metrics based on the performance of the
model, such as accuracy, recall, or Fl-score. In the
case of OCE, a metric based on the distance between
proposed assemblies and expected assemblies can be
used to check whether the model has made good as-
sembly proposals or not.

Then, an iterative design of the scenario test set
begins. Defining scenarios is guided by tactics, e.g.,
limiting the complexity of the training sequence con-
forming to P1 in order to facilitate the analysis of
test results. For each scenario, the learning phase is
designed to meet P1 and the evaluation phase is de-
signed to enable the assessment of P2.

Once the set of scenarios is considered to suffi-
ciently cover the scope for which the LP was designed

104

(as it stands, the question of the coverage of the ap-
plication scope by the set of test scenarios is up to
the tester - see sections 6.4), each scenario is imple-
mented then executed, and the results analyzed. The
metrics previously defined support measures that en-
able testers to evaluate the model’s behavior and de-
termine whether it satisfies P2, i.e., whether the test
passes or not.

It is then possible to draw general conclusions
about the learning program depending on possibly in-
adequate model behaviors that have been highlighted
in the test. Note that the issues related to defect loca-
tion and their correction are beyond the scope of this
paper.

This process (represented in Figure 5) can be re-
peated for different formulas, answering so to RQ2.
Besides, since testing online LP is costly, it is cru-
cial to automate the process as much as possible. In
the following section, we propose an answer to RQ3,
which covers the Implementation, Run and, partially,
Analysis phases of the testing process.

S TOOLING

This section first presents the general principles of
scenario implementation and automatic execution.
Then, it describes the application of these principles
to the testing of OCE’s learning program, supported
by two tools: Maker and Runner.

5.1 General Principles

To achieve the scenario-based approach and provide
abstractions and facilities to testers, several tools are
required. To implement a scenario, domain experts
need a scenario editor. To describe the learning data,
the editor must enable the expression of the learning
interactions, each containing a learning situation with
its associated ideal output. In addition, it must al-
low evaluation interactions to be expressed, i.e., sit-
uations in which the model must produce a result, as
well as the measurement functions that evaluate the
expected properties of the results. Finally, the tool
must translate the scenario into an automatically exe-
cutable form.

To automatically run a scenario with the LP under
test, a second tool is required. This one orchestrates
the execution of a scenario by sequentially running
the interactions. It interacts with the online LP under
test, providing both learning situations and feedback.
In an evaluation interaction, the tool also provides a
situation, gets the LP output, applies the measurement
functions to it and delivers the measured values.



5.2 Application to OCE

To apply these principles to the test of OCE’s learn-
ing program, we have developed two tools: OCE Sce-
nario Maker to edit OCE scenarios and OCE Scenario
Runner to automatically run them. A short additional
video? demonstrates their usage in the scenario de-
scribed in Section 4.1.

5.2.1 OCE Scenario Maker

This is an interactive tool for implementing OCE sce-
narios. In practice, the tester can reuse or define fic-
titious components (Figure 6, left panel). For a learn-
ing cycle, according to the formula they want to test,
they can drag and drop components into a panel to de-
fine the ambient environment, and bind their services
to define the ideal assembly, following P1 (Figure 6,
right panel). The same principle applies for evalua-
tion cycles. In this case, the tester sets a measure-
ment function to assess the satisfaction of the prop-
erty they expect on the assembly proposed by OCE
(P2). For example, the function can measure a dis-
tance (e.g., a Jaccard Similarity Index) between the
proposed assembly and an expected one, or an aver-
age distance with several assemblies, or the presence
of a specific component or connection in the proposed
assembly. Additional features, such as the ability to
duplicate a cycle, reduce the tester’s workload. From
a sequence of cycles, Maker generates a JSON? file
that implements a scenario intended to be automati-
cally run with the second tool, Runner.

5.2.2 OCE Scenario Runner

This is a Java application that, coupled with OCE,
allows the automated execution of OCE scenarios in
JSON format, such as those generated by Maker. The
tester selects a scenario to run. Various parameters
need to be set, such as learning hyperparameters (e.g.,
exploration rate of reinforcement learning), and the
version of OCE to test. To mitigate the impact of the
non-deterministic nature of machine learning, Runner
allows to repeat the execution of the scenario.

Once the parameter values are set, it operates cou-
pled with OCE without further intervention from the
tester. To assess the relevance of OCE’s outputs, Run-
ner runs the measurement function at each evaluation
cycle, then provides an average value over all evalu-
ation cycles, last an average value over all scenario
repetitions. This measure indicates whether the con-
structed models made relevant propositions based on

https://www.irit.fr/OppoCompo/
makerrunnerusecase2024/
3https://www.json.org/json-en.html

Scenario-Based Testing of Online Learning Programs

Component

Library OCE Scenario Maker
Desk a MaryAtWork
Order: Order -
provided
Voice a
Order: Order - Cycle number 0 ﬂ
Desk_1 a
Tactile
E - Order: Order - provided
New Voice_1 a
Component Order: Order -
Component name
Tactile_1 a
Add services Order: Order -
Service Name
Text_1
Interface ID - a
Order: Order -
@ Required
O Provided

Cycle number 1 ﬂ
Reset

Figure 6: Maker’s interface for scenario implementation.

what OCE’s learning program learned, i.e., based on
the user’s preferences.

5.2.3 Architecture

Maker and Runner have been implemented and inte-
grated into the OCE system, which architecture can be
represented in the form of a UML component diagram
too (OMG, 2017). Figure 7 represents the configura-
tion of the OCE system in production. When the am-
bient environment changes, OCE receives from Am-
bient Env. the list of components that are currently
present (ProcessOneEnv service). OCE builds an as-
sembly and proposes it to the user via the User Inter-
face and the user provides feedback in the form of an
assembly (Feedback service).

ProcessOneEnv

ProcessOneEnv .- Ambient g

T Env.
o a2

e User
Feedback O Interface %
Feedbac

Figure 7: Architectural view of OCE in production config-
uration.

ProcessOneEnv ReadScenario

ProcessOneEny .-~ ‘
-OCE ] z =" Feedback w
—

Feedback SaveScenario
SaveScenario

R ReadScenario

Figure 8: Architectural view of OCE in testing configura-
tion.

Figure 8 shows how Maker and Runner have been

105



ICSOFT 2025 - 20th International Conference on Software Technologies

integrated into OCE architecture. The modularity of
this architecture allows replacing Ambient Env. and
User Interface by Runner to perform tests imple-
mented with Maker. In the testing configuration,
Runner executes a scenario taken from the Repos-
itory of scenarios (ReadScenario service). The di-
rectory is populated by scenarios implemented with
Maker (SaveScenario service). For each cycle of the
scenario, Runner requests OCE to propose an assem-
bly (ProcessOneEnv service). In learning cycles, fol-
lowing the proposition, Runner provides OCE with
the ideal assembly (Feedback service), which OCE
treats as user feedback. In evaluation cycles, Run-
ner computes quality measurements on the assem-
blies proposed by OCE.

6 VALIDATION

We have applied the scenario-based testing approach
to conduct a test campaign of OCE’s learning pro-
gram. The aim of this campaign is to evaluate its abil-
ity to learn user preferences in various use cases. We
present three of them, all related to the disappearance
and appearance of components that are involved in the
user’s favorite assemblies. More specifically, the test-
ing process described in Section 4.2 is applied to:

1. The disappearance and reappearance of a compo-
nent involved in the user’s favorite assembly.

2. The disappearance and appearance of two compo-
nents used together and preferred by the user.

3. The disappearance and appearance of components
in a realistic case of a smart home.

For each use case, i.e., for each formula to be eval-
uated, several scenario were designed but only one
is presented in this paper. The experimental condi-
tions are as follows. We take the standard version
of OCE with default settings. In these settings, the
value of the reinforcement learning exploration co-
efficient is 0.1. This means that the OCE’s model
has a 10% probability of exploring alternative con-
nections between components rather than exploiting
knowledge acquired about user preferences. In addi-
tion, to smooth out the impact of random factors, each
scenario is run 100 times.

6.1 Use Case 1: Disappearance and
Reappearance of a Component

Here is the first use case for the scenario-based test-

ing approach: as OCE testers, we want to verify that
IF the user expresses a preference for a component

106

in their ambient environment and this component dis-
appears (P1), THEN OCE proposes again an assem-
bly including this component when it reappears (P2).
Different scenarios were designed for this use case
(by varying the number of cycles, appearances and
disappearances. .. ) using two tactics:

* Limit the complexity of the Pl-compliant train-
ing sequence, i.e., the number of components, ser-
vices, and cycles.

* Ensure that OCE’s model has to make a choice be-
tween several possible connections at each cycle
(decide), in order to leverage knowledge of user’s
preferences and make them evolve from user’s
feedback.

In order to evaluate P2, the tester chooses to use the
Jaccard Similarity Index between the assembly pro-
posed by OCE and a given expected one.

A scenario designed for this use case is the three-
cycle scenario described in Section 4.1: the compo-
nent Voice, preferred by Mary in Cycle 0, disappears
in Cycle 1 then reappears in Cycle 2. Cycles 0 and 1
are the training data (D) satisfying P1. The goal is to
verify that OCE’s model proposes again the assembly
Voice-Desk when Voice reappears, i.e., P2(Mp).

This scenario was implemented using Maker and
run using Runner. Running showed that out of the
100 runs, in about 90 the similarity index calculated
between the assembly proposed by OCE and the ex-
pected one in the evaluation cycle equals 1.0, indicat-
ing that the produced and expected outputs are identi-
cal. This means that OCE did actually propose the as-
sembly with the component Voice when it reappeared.
In the other 10 runs, OCE did not propose this as-
sembly, due to exploration during the evaluation cy-
cle. The other designed scenarios showed the same
results. Thus, for this use case, testing did not reveal
a value of D such as formula 2 is true, i.e., no incorrect
behavior of OCE’s learning program was identified.

In the following use cases, test design was based
on the same tactics and distance measurement func-
tion. So, we do not repeat these points in the text.

6.2 Use Case 2: Disappearance and
Reappearance of Two Components
Used Together

In this use case, we take component disappearance
and reappearance a step further, where two compo-
nents used together are affected. This time, we want
to verify that IF the user expresses a preference for
using two components together (P1), THEN OCE
later selects these two components when they are
available together again (P2).



o

Cycle

TextProcess TextProcess VoiceProcess VoiceProcess

Keyboard@ """""" O TextTo\/oice@ —————————————— o

VoiceProcess

O—PhoneSpeakes]

Cycle 1

VoiceProcess VoiceProcess

==

VoiceProcess

TextProcess

e TextToVoiced] (-

TextProcess
I e
Cycle 2

TextProcessTextProcess VoiceProcess VoiceProcess

Keyboard% -0 TexlToVoice% O Speaker %

TextProcess: VoiceProcess

VKeyboard | (- S— O—{Phonespeake]

Cycle 3

TextProcess TextProcess VoiceProcess VoiceProcess

Keybnardgl|—( """""" O TextToVoice] (- - o

VoiceProcess

O— TVSpeaker gl

Figure 9: Learning cycles of the use case 2.

TextProcess TextPr VoicePr VoicePr

Keyboardgl """""" O TextToVoiceg rrrrrrrrrrrrr O Speaker %

VoiceProcess

O PhoneSpeakeg

Figure 10: Evaluation cycle of the use case 2.

Here is a scenario with components for a text-to-
speech application. It includes four learning cycles
that define D, which satisfies P1 (Figure 9) followed
by one evaluation cycle that specifies P2 (Figure 10).
When the user uses the keyboard (Keyboard), they
prefer to use the room’s speaker (Speaker) at the
same time. This preference is expressed by the ideal
assemblies of cycles 0 and 3. But when the smart-
phone’s virtual keyboard (VKeyboard) is available in
the ambient environment, they prefer to use it together
with the smartphone’s speaker (PhoneSpeaker). This
is expressed by the ideal assemblies of cycles 1 and
2. In this context, we would like to check that if
VKeyboard disappears, OCE actually proposes to
use Speaker together with Keyboard.

This scenario yielded some interesting results. In
about 90 runs, the similarity index is equal to 0.33.
This score means that the produced output is far from
the expected one. In these runs, OCE proposed an
assembly with PhoneSpeaker even though VKey-
board was unavailable, thus did not learn well the
user’s preferences. In the other 10 runs, OCE did pro-
pose the expected assembly due to exploration at cy-
cle 4. This result shows a value of D for which the
formula 2 is true. This use case thus reveals an un-
expected behavior of OCE’s learning program, proba-
bly requiring further tests and in-depth analysis which
could lead to the conclusion that, in such cases, OCE

Scenario-Based Testing of Online Learning Programs

fails to generalize what it has learned.

6.3 Use Case 3: Towards a More
Realistic Use Case

Cycle 0 - Bedroom Cycle 1 - Kitchen
Click  Click,

lick  Click
Button %}“{ """"" O—| Lampl gl| ‘ Button gl}-( rrrrrrrr O CoﬁeeMaker@
PM PM PM Click
PMBuIIon% . O—| Treadmill %I | ‘ PMBunongl }—( —————— ]
“PM :
D—| Heater gl|

Cycle 2 - Living Room

Click PM Display
o
o
AudioSignal

O PhoneScree%
PM P
PMButton] (€

M Displa)
O
Speaker2 @ s StreamApp%]
-0 :

i AudioSignal i :

P Display i

T ST R
AudioSignal

Figure 11: Learning cycles of the use case 3.

Cycle 3 - Bedroom
Click  Click Jick

rrrrrrrrrrr g

Cycle 4 - Kitchen

PM PM PM Click
PMButton] (. Treadmin$]| ‘ PMButton®] {-C-+--- L ©
SLPM PM | PM
k Heater @| Headphones%'] |—O o
Click
o PressCoukel@
Cycle 5 - Living Room
Click Display Display
o
.
o
PM .
PM PM Displa)
PMBulIon@ Speakerzg s SIreamAp;ﬁl
-0 i
+ AudioSignal i
P Display i
Headphoneséi] O I
AudioSignal

Figure 12: Evaluation cycles of the use case 3.

In this use case, we want to test the behavior of OCE’s
learning program in a more realistic context of a smart
home. The aim is to verify that IF the user moves
around several rooms in their home, involving a se-
ries of appearances and disappearances of compo-
nents in their surrounding environment (P1) THEN
when the user returns to these rooms, OCE proposes
their favorite assemblies in the room, despite slight
variations in the ambient environment (P2). To do
so, we designed a scenario where the user navigates
between the bedroom, kitchen and living room. As
a result, several components become available or un-
available in their ambient environment depending on
the room. Besides, the user has a smartphone pro-

107



ICSOFT 2025 - 20th International Conference on Software Technologies

viding a button for switching a device on or off, and
a plus-minus button for adjusting a device (e.g., the
volume of a speaker). Embedded in the user’s phone,
which they keep close at all times, these two compo-
nents are permanently available.

The scenario comprises three learning cycles (Fig-
ure 11) followed by three evaluation cycles (Fig-
ure 12). When the user wakes up, they are in their
bedroom. Here, there are three components: a heater,
atreadmill and a lamp. In this context, the user prefers
to use the first button provided by the smartphone to
turn on the lamp, and the plus-minus button to turn
down the heating. In the cycle 0 of the scenario (see
Figure 11), these preferences are translated into the
ideal assembly. Next, the user heads for the kitchen to
make a coffee. On the way, they find their headphones
and want to listen to the news on the radio. The user
then uses the buttons on their smartphone to switch
on the coffee machine and adjust the volume of the
headphones, which corresponds to the ideal assembly
in the cycle 1. Finally, the user sits down in the liv-
ing room to watch an episode of their favorite show.
To do this, the user uses their smartphone’s streaming
application to project the show onto the TV, using the
second speaker (ideal assembly of the cycle 2).

This sequence is repeated the next day. In the sce-
nario, it is defined by the three evaluation cycles, to
check that OCE’s learning program learned the user’s
preferences in each room of the home. However, a
few changes took place: the user has received their
brand-new pressure cooker, which they store in the
kitchen. This new component can be turned on/off
via the button of the smartphone. Besides, in the liv-
ing room, the battery of their tablet is fully recharged.
The user might now project shows on it and adjust
the volume using the plus-minus button. Lastly, the
first speaker in the living room is broken thus is no
longer available in the ambient environment. These
changes have an impact on the composition of ambi-
ent environments of the evaluation cycles, but as the
user preferences remain unchanged, the expected as-
semblies are the same as the ideal ones that have been
stated in the learning phase.

For each evaluation cycle, in about 90% of runs,
we got an average similarity score equals to 1.0,
which means that OCE’s model proposed the right
assembly. In the remaining 10%, the score is low-
ered (between 0.33 and 0.5) because OCE’s model
explored one or several connections in its proposition.
Here, as for the use case 1, testing did not reveal an
incorrect behavior of OCE’s learning program.

108

6.4 Lessons Learned

The scenario-based testing approach has been applied
beyond the three use cases described in this paper.
It made possible to test both simple and more com-
plex cases, with a greater number of cycles, compo-
nents and services. The test campaign highlighted
situations where OCE’s LP behaves as expected, but
also the presence of defects, e.g., in the way the user
feedback was taken into account by the learning pro-
gram. Despite its black-box nature, making default
location and correction difficult, the revealed defects
have been corrected by the OCE development team.
At this stage of our work, our solution suffers from
certain limitations. In particular, domain experts have
to design test cases by hand. In addition to the formu-
las to be tested, they must imagine the scenarios they
believe to be the most significant, which can easily
lead to oversights. As it stands, designing a scenario-
based test set (see Fig. 5) is rather cumbersome and
costly, without guaranteeing a good coverage of the
application domain. This point argues for more au-
tomation within the process to further answer RQ1.

7 RELATED WORK

7.1 Testing ML-Based Systems

Research work on testing and formal verification of
Al-based software systems is reviewed in (De Ange-
lis et al., 2023). Research on testing software based
on ML is relatively recent compared to work on soft-
ware testing in general. Several papers address the
general problem of developing ML-based software
from a software engineering perspective but provide
only brief explanations on testing issues (Giray, 2021;
Martinez-Fernandez et al., 2022).

However, significant papers have been published
in recent years. Zhang et al. (Zhang et al., 2020)
provided a comprehensive study on testing ML-based
software, focusing on model evaluation and properties
such as accuracy, robustness, and fairness. Among
other things, a testing process is defined which targets
the ML model and debugging: it is organized in two
phases, offline testing (before deployment) and online
testing (after deployment, in a real environment). Our
process is limited to the offline phase and focuses on
the learning program. In (Braiek and Khomh, 2020),
Ben Braiek and Khomh reviewed the engineering is-
sues of ML programs and examined the testing prac-
tices. Unlike our point of view, which separates the
learning part (the LP) and the decision-making part
(the model), models are considered as a whole (in-



cluding the learning part) for testing, which does not
highlight the problem of transforming training data
into decision-making models. Riccio et al. (Riccio
et al., 2020) systematically analyzed the literature and
highlighted the main challenges related to testing, in-
cluding test case specification, adequacy criteria, cost,
and the oracle problem. In (Mazouni et al., 2023), the
recent literature is surveyed but restricted to the test-
ing of software based on neural networks.

Among the solutions for testing ML-based sys-
tems, metamorphic testing (Chen et al., 2020) is used
to verify model behavior in the absence of an oracle.
Our approach tackles the oracle problem but in a dif-
ferent way from metamorphic testing, by expressing
P2 with a modulable level of abstraction relative to
the expected assembly.

There are works that target model testing with par-
ticular concerns. The one by Mazouni et al. aims
to reveal, not the maximum number of defects, but
their diverse natures in the context of reinforcement
learning (RL) (Mazouni et al., 2024). Biagiola and
Tonella focus on deep RL and the test of models,
called agents, by means of surrogate models (Biagi-
ola and Tonella, 2024): for that, they propose to gen-
erate environmental configurations likely to be at the
origin of agent failures. In a previous work, the same
authors examined the problem of plasticity of solu-
tions based on deep RL, i.e., their ability to adapt to
environmental conditions that deviate from the train-
ing one (Biagiola and Tonella, 2022), in the context
of continuous learning. Their approach allows to get
measures to verify the continuous evolution of mod-
els (including their non-regression) and thus to char-
acterize favorable and unfavorable use cases in open
environments. OCE also learns continuously in open
environments, but this objective differs from our own,
which is to check the alignment between the training
data and the model built by the learning program.

7.2 Scenario-Based Approaches

C. Kaner (Cem Kaner, 2013) defines a scenario as a
story of a person trying to accomplish something with
the tested product. Hussain et al. (Hussain et al.,
2015) propose a similar definition, but not directly
tied to testing: a scenario is an informal description
of a specific use of software, or of a part of it, by a
user. Here, scenarios are defined from user needs (use
cases) and are used to derive test cases. According to
these definitions, a scenario is described as a sequence
of interactions between the software and a user. This
is precisely how we use scenarios to test OCE. Indeed,
a scenario describes a sequence of ambient environ-
ments (where an environment is represented by a list

Scenario-Based Testing of Online Learning Programs

of software components) as well as ideal assemblies
that model interactions between the user and OCE.

In the domain of autonomous vehicles, the con-
cept of scenario is used to evaluate vehicle behaviors
based on machine learning. For instance, Ulbrich et
al. (Ulbrich et al., 2015) describe a scenario as a tem-
poral sequence of scenes, where each scene represents
a configuration of the physical environment in which
one or more autonomous vehicles operate. A scenario
details the scenes, the transitions between scenes, and
the evaluation criteria. In this context, a scenario
specifies sequences of physical environments rather
than user-software interactions.

The scenario-based approach enables the compre-
hensive description of a use case, thereby facilitat-
ing end-to-end (system level) testing. This makes it
particularly suitable for evaluating machine learning-
based software due to their black-box nature. We have
tailored this approach for online learning by interleav-
ing learning and evaluation phases within a scenario.

7.3 Tools

Tools like Gymnasium (Brockman et al., 2016),
DotRL (Papis and Wawrzyfiski, 2013), and Cogment
(AI Redefined et al., 2021) are designed for the devel-
opment and experimentation of reinforcement learn-
ing solutions. Evaluation of a solution typically in-
volves comparing it against other algorithms in pre-
defined environments. However, these tools do not
include the notion of scenario. They only offer bench-
marks to compare algorithms, providing the tester raw
result data that need to be analyzed. In contrast, Run-
ner provides facilities such as tester-specified quality
measures of outputs, thereby making analysis easier.

8 CONCLUSION

In this paper, we define a scenario-based approach for
functional testing of online learning programs, i.e.,
of programs which iteratively build and update ML
models. Using test scenarios designed by domain ex-
perts without ML knowledge, this approach makes
them able to show how well the learning program
works, identify favorable or unfavorable use cases,
compare several versions or setting, or reveal the pres-
ence of defects. A testing process accompanying the
approach is also defined, where the activities of im-
plementation, execution and result analysis can be au-
tomated, at least in part. This solution has been ap-
plied to OCE, a ML-based solution that learns online
human user preferences in an ambient environment. It
helped to better delimit the application scope of OCE,

109



ICSOFT 2025 - 20th International Conference on Software Technologies

and revealed several defects. Although the scenario-
based testing approach has only been experimented
with OCE using OCE-specific tooling, we believe that
the general principles, which are independent of OCE
and the application domain, are transferable to other
online learning systems.

REFERENCES

Al Redefined, Gottipati, S. K., Kurandwad, S., Mars,
C., Szriftgiser, G., and Chabot, F. (2021). Cog-
ment: Open Source Framework For Distributed Multi-
actor Training, Deployment & Operations. CoRR,
abs/2106.11345.

Berrar, D. (2019). Cross-validation. In Ranganathan, S.,
Gribskov, M., Nakai, K., and Schonbach, C., editors,
Encyclopedia of Bioinformatics and Computational
Biology, pages 542-545. Academic Press, Oxford.

Biagiola, M. and Tonella, P. (2022). Testing the plasticity
of reinforcement learning-based systems. ACM Trans.
Softw. Eng. Methodol., 31(4).

Biagiola, M. and Tonella, P. (2024). Testing of deep re-
inforcement learning agents with surrogate models.
ACM Trans. Softw. Eng. Methodol., 33(3).

Braiek, H. B. and Khomh, F. (2020). On testing machine
learning programs. Journal of Systems and Software,
164:110542.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. (2016). Ope-
nAl Gym. CoRR.

Cem Kaner, J. (2013). An introduction to scenario testing.
Florida Institute of Technology, Melbourne, pages 1—
13.

Chen, T. Y., Cheung, S. C., and Yiu, S. M. (2020). Meta-
morphic testing: a new approach for generating next
test cases. arXiv preprint arXiv:2002.12543.

De Angelis, E., De Angelis, G., and Proietti, M. (2023). A
classification study on testing and verification of ai-
based systems. In 2023 IEEE Int. Conf. On Artificial
Intelligence Testing (AlTest), pages 1-8.

Dunne, R., Morris, T., and Harper, S. (2021). A survey
of ambient intelligence. ACM Computing Surveys
(CSUR), 54(4):1-27.

Giray, G. (2021). A software engineering perspective
on engineering machine learning systems: State of
the art and challenges. J. of Systems and Software,
180:111031.

Hussain, A., Nadeem, A., and Ikram, M. T. (2015). Re-
view on formalizing use cases and scenarios: Scenario
based testing. In 2015 Int. Conf. on Emerging Tech-
nologies (ICET), pages 1-6. IEEE.

Khomh, F., Adams, B., Cheng, J., Fokaefs, M., and Anto-
niol, G. (2018). Software engineering for machine-
learning applications: The road ahead. IEEE Soft-
ware, 35(5):81-84.

Martinez-Ferndndez, S., Bogner, J., Franch, X., Oriol, M.,
Siebert, J., Trendowicz, A., Vollmer, A.-M., and Wag-

110

ner, S. (2022). Software engineering for Al-based sys-
tems: a survey. ACM Trans. on Software Engineering
and Methodology (TOSEM), 31(2):1-59.

Mazouni, Q., Spieker, H., Gotlieb, A., and Acher, M.
(2023). A review of validation and verification of
neural network-based policies for sequential decision
making. https://arxiv.org/abs/2312.09680.

Mazouni, Q., Spieker, H., Gotlieb, A., and Acher, M.
(2024). Testing for fault diversity in reinforcement
learning. page 136-146, New York, NY, USA. ACM.

Mitchell, T. (1997). Machine Learning. McGraw-Hill, New
York.

Murphy, C., Kaiser, G. E., and Arias, M. (2007). An ap-
proach to software testing of machine learning appli-
cations. In Int. Conf. on Software Engineering and
Knowledge Engineering.

Nakajima, S. (2017). Generalized Oracle for Testing Ma-
chine Learning Computer Programs. In Software En-
gineering and Formal Methods - SEFM 2017, volume
10729 of LNCS, pages 174-179. Springer.

OMG (2017). Unified Modeling Language, chapter 11.6.
https://www.omg.org/spec/UML/2.5.1/PDF.

Papis, B. and Wawrzynski, P. (2013). dotRL: A platform
for rapid Reinforcement Learning methods develop-
ment and validation. In 2013 Fed. Conf. on Computer
Science and Information Systems (FEDCSIS), pages
129-136. IEEE.

Riccio, V., Jahangirova, G., Stocco, A., Humbatova, N.,
Weiss, M., and Tonella, P. (2020). Testing machine
learning based systems: a systematic mapping. Em-
pirical Software Engineering, 25:5193-5254.

Russell, S. J. and Norvig, P. (2010). Artificial intelligence:
A Modern Approach. Pearson Education, Inc.

Sommerville, 1. (2016). Component-based software engi-
neering. In Software Engineering, pages 464—489.
Pearson Education, 10" edition.

Sugali, K. (2021). Software testing: Issues and challenges
of artificial intelligence & machine learning. Int. J. of
Artificial Intelligence & Applications, 12(1):101-112.

Sutton, R. and Barto, A. (2018). Reinforcement Learning:
An Introduction. MIT Press, 2nd edition.

Ulbrich, S., Menzel, T., Reschka, A., Schuldt, F., and Mau-
rer, M. (2015). Defining and substantiating the terms
scene, situation, and scenario for automated driving.
In IEEE 18th Int. Conf. on intelligent transportation
systems, pages 982-988. IEEE.

Weyuker, E. J. (1982). On testing non-testable programs.
The Computer Journal, 25(4):465—-470.

Younes, W., Trouilhet, S., Adreit, F., and Arcangeli, J.-
P. (2020). Agent-mediated application emergence
through reinforcement learning from user feedback.
In 29th IEEF Int. Conf. on Enabling Technologies: In-
frastructure for Collaborative Enterprises (WETICE),
pages 3-8. IEEE Press.

Zhang, J. M., Harman, M., Ma, L., and Liu, Y. (2020). Ma-
chine learning testing: Survey, landscapes and hori-
zons. IEEE Trans. on Software Eng., 48(1):1-36.



